Internet Engineering Task Force (IETF) A. Atlas Request for Comments: 7812 C. Bowers Category: Standards Track Juniper Networks ISSN: 2070-1721 G. Enyedi Ericsson June 2016 An Architecture for IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR) Abstract This document defines the architecture for IP and LDP Fast Reroute using Maximally Redundant Trees (MRT-FRR). MRT-FRR is a technology that gives link-protection and node-protection with 100% coverage in any network topology that is still connected after the failure. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7812. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Atlas, et al. Standards Track [Page 1]
RFC 7812 MRT Unicast FRR Architecture June 2016 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Importance of 100% Coverage . . . . . . . . . . . . . . . 4 1.2. Partial Deployment and Backwards Compatibility . . . . . 5 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 5 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 4. Maximally Redundant Trees (MRT) . . . . . . . . . . . . . . . 7 5. MRT and Fast Reroute . . . . . . . . . . . . . . . . . . . . 9 6. Unicast Forwarding with MRT Fast Reroute . . . . . . . . . . 9 6.1. Introduction to MRT Forwarding Options . . . . . . . . . 10 6.1.1. MRT LDP Labels . . . . . . . . . . . . . . . . . . . 10 6.1.1.1. Topology-Scoped FEC Encoded Using a Single Label (Option 1A) . . . . . . . . . . . . . . . . . . . 10 6.1.1.2. Topology and FEC Encoded Using a Two-Label Stack (Option 1B) . . . . . . . . . . . . . . . . . . . 11 6.1.1.3. Compatibility of MRT LDP Label Options 1A and 1B 12 6.1.1.4. Required Support for MRT LDP Label Options . . . 12 6.1.2. MRT IP Tunnels (Options 2A and 2B) . . . . . . . . . 12 6.2. Forwarding LDP Unicast Traffic over MRT Paths . . . . . . 13 6.2.1. Forwarding LDP Traffic Using MRT LDP Label Option 1A 13 6.2.2. Forwarding LDP Traffic Using MRT LDP Label Option 1B 14 6.2.3. Other Considerations for Forwarding LDP Traffic Using MRT LDP Labels . . . . . . . . . . . . . . . . . . . 14 6.2.4. Required Support for LDP Traffic . . . . . . . . . . 14 6.3. Forwarding IP Unicast Traffic over MRT Paths . . . . . . 14 6.3.1. Tunneling IP Traffic Using MRT LDP Labels . . . . . . 15 6.3.1.1. Tunneling IP Traffic Using MRT LDP Label Option 1A . . . . . . . . . . . . . . . . . . . . . . . 15 6.3.1.2. Tunneling IP Traffic Using MRT LDP Label Option 1B . . . . . . . . . . . . . . . . . . . . . . . 15 6.3.2. Tunneling IP Traffic Using MRT IP Tunnels . . . . . . 16 6.3.3. Required Support for IP Traffic . . . . . . . . . . . 16 7. MRT Island Formation . . . . . . . . . . . . . . . . . . . . 16 7.1. IGP Area or Level . . . . . . . . . . . . . . . . . . . . 17 7.2. Support for a Specific MRT Profile . . . . . . . . . . . 17 7.3. Excluding Additional Routers and Interfaces from the MRT Island . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.3.1. Existing IGP Exclusion Mechanisms . . . . . . . . . . 18 7.3.2. MRT-Specific Exclusion Mechanism . . . . . . . . . . 19 7.4. Connectivity . . . . . . . . . . . . . . . . . . . . . . 19 7.5. Algorithm for MRT Island Identification . . . . . . . . . 19 8. MRT Profile . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.1. MRT Profile Options . . . . . . . . . . . . . . . . . . . 19 8.2. Router-Specific MRT Parameters . . . . . . . . . . . . . 21 8.3. Default MRT Profile . . . . . . . . . . . . . . . . . . . 21 9. LDP Signaling Extensions and Considerations . . . . . . . . . 22 Atlas, et al. Standards Track [Page 2]
RFC 7812 MRT Unicast FRR Architecture June 2016 10. Inter-area Forwarding Behavior . . . . . . . . . . . . . . . 23 10.1. ABR Forwarding Behavior with MRT LDP Label Option 1A . . 23 10.1.1. Motivation for Creating the Rainbow-FEC . . . . . . 24 10.2. ABR Forwarding Behavior with IP Tunneling (Option 2) . . 24 10.3. ABR Forwarding Behavior with MRT LDP Label Option 1B . . 25 11. Prefixes Multiply Attached to the MRT Island . . . . . . . . 26 11.1. Protecting Multihomed Prefixes Using Tunnel Endpoint Selection . . . . . . . . . . . . . . . . . . . . . . . 28 11.2. Protecting Multihomed Prefixes Using Named Proxy-Nodes . 29 11.3. MRT Alternates for Destinations outside the MRT Island . 31 12. Network Convergence and Preparing for the Next Failure . . . 32 12.1. Micro-loop Prevention and MRTs . . . . . . . . . . . . . 32 12.2. MRT Recalculation for the Default MRT Profile . . . . . 33 13. Operational Considerations . . . . . . . . . . . . . . . . . 34 13.1. Verifying Forwarding on MRT Paths . . . . . . . . . . . 34 13.2. Traffic Capacity on Backup Paths . . . . . . . . . . . . 34 13.3. MRT IP Tunnel Loopback Address Management . . . . . . . 36 13.4. MRT-FRR in a Network with Degraded Connectivity . . . . 36 13.5. Partial Deployment of MRT-FRR in a Network . . . . . . . 37 14. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 37 15. Security Considerations . . . . . . . . . . . . . . . . . . . 38 16. References . . . . . . . . . . . . . . . . . . . . . . . . . 38 16.1. Normative References . . . . . . . . . . . . . . . . . . 38 16.2. Informative References . . . . . . . . . . . . . . . . . 39 Appendix A. Inter-level Forwarding Behavior for IS-IS . . . . . 41 Appendix B. General Issues with Area Abstraction . . . . . . . . 42 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 43 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 44 1. Introduction This document describes a solution for IP/LDP fast reroute [RFC5714]. MRT-FRR creates two alternate forwarding trees that are distinct from the primary next-hop forwarding used during stable operation. These two trees are maximally diverse from each other, providing link and node protection for 100% of paths and failures as long as the failure does not cut the network into multiple pieces. This document defines the architecture for IP/LDP fast reroute with MRT. [RFC7811] describes how to compute maximally redundant trees using a specific algorithm: the MRT Lowpoint algorithm. The MRT Lowpoint algorithm is used by a router that supports the Default MRT Profile, as specified in this document. IP/LDP Fast Reroute using Maximally Redundant Trees (MRT-FRR) uses two maximally diverse forwarding topologies to provide alternates. A primary next hop should be on only one of the diverse forwarding Atlas, et al. Standards Track [Page 3]
RFC 7812 MRT Unicast FRR Architecture June 2016 topologies; thus, the other can be used to provide an alternate. Once traffic has been moved to one of the MRTs by one Point of Local Repair (PLR), that traffic is not subject to further repair actions by another PLR, even in the event of multiple simultaneous failures. Therefore, traffic repaired by MRT-FRR will not loop between different PLRs responding to different simultaneous failures. While MRT provides 100% protection for a single link or node failure, it may not protect traffic in the event of multiple simultaneous failures, nor does it take into account Shared Risk Link Groups (SRLGs). Also, while the MRT Lowpoint algorithm is computationally efficient, it is also new. In order for MRT-FRR to function properly, all of the other nodes in the network that support MRT must correctly compute next hops based on the same algorithm and install the corresponding forwarding state. This is in contrast to other FRR methods where the calculation of backup paths generally involves repeated application of the simpler and widely deployed Shortest Path First (SPF) algorithm, and backup paths themselves reuse the forwarding state used for shortest path forwarding of normal traffic. Section 13 provides operational guidance related to verification of MRT forwarding paths. In addition to supporting IP and LDP unicast fast reroute, the diverse forwarding topologies and guarantee of 100% coverage permit fast-reroute technology to be applied to multicast traffic as described in [MRT-ARCH]. However, the current document does not address the multicast applications of MRTs. 1.1. Importance of 100% Coverage Fast reroute is based upon the single failure assumption: that the time between single failures is long enough for a network to reconverge and start forwarding on the new shortest paths. That does not imply that the network will only experience one failure or change. It is straightforward to analyze a particular network topology for coverage. However, a real network does not always have the same topology. For instance, maintenance events will take links or nodes out of use. Simply costing out a link can have a significant effect on what Loop-Free Alternates (LFAs) are available. Similarly, after a single failure has happened, the topology is changed and its associated coverage has changed as well. Finally, many networks have new routers or links added and removed; each of those changes can have an effect on the coverage for topology-sensitive methods such as LFA and Remote LFA. If fast reroute is important for the network services provided, then a method that guarantees 100% coverage is important to accommodate natural network topology changes. Atlas, et al. Standards Track [Page 4]
RFC 7812 MRT Unicast FRR Architecture June 2016 When a network needs to use Ordered FIB [RFC6976] or Nearside Tunneling [RFC5715] as a micro-loop prevention mechanism [RFC5715], then the whole IGP area needs to have alternates available. This allows the micro-loop prevention mechanism, which requires slower network convergence, to take the necessary time without adversely impacting traffic. Without complete coverage, traffic to the unprotected destinations will be dropped for significantly longer than with current convergence -- where routers individually converge as fast as possible. See Section 12.1 for more discussion of micro- loop prevention and MRTs. 1.2. Partial Deployment and Backwards Compatibility MRT-FRR supports partial deployment. Routers advertise their ability to support MRT. Inside the MRT-capable connected group of routers (referred to as an MRT Island), the MRTs are computed. Alternates to destinations outside the MRT Island are computed and depend upon the existence of a loop-free neighbor of the MRT Island for that destination. MRT Islands are discussed in detail in Section 7, and partial deployment is discussed in more detail in Section 13.5. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 3. Terminology network graph: A graph that reflects the network topology where all links connect exactly two nodes and broadcast links have been transformed into the standard pseudonode representation. cut-link: A link whose removal partitions the network. A cut-link by definition must be connected between two cut-vertices. If there are multiple parallel links, then they are referred to as cut-links in this document if removing the set of parallel links would partition the network graph. cut-vertex: A vertex whose removal partitions the network graph. 2-connected: A graph that has no cut-vertices. This is a graph that requires two nodes to be removed before the network is partitioned. 2-connected cluster: A maximal set of nodes that are 2-connected. block: Either a 2-connected cluster, a cut-edge, or a cut-vertex. Atlas, et al. Standards Track [Page 5]
RFC 7812 MRT Unicast FRR Architecture June 2016 Redundant Trees (RT): A pair of trees where the path from any node X to the root R along the first tree is node-disjoint with the path from the same node X to the root along the second tree. Redundant trees can always be computed in 2-connected graphs. Maximally Redundant Trees (MRT): A pair of trees where the path from any node X to the root R along the first tree and the path from the same node X to the root along the second tree share the minimum number of nodes and the minimum number of links. Each such shared node is a cut-vertex. Any shared links are cut-links. In graphs that are not 2-connected, it is not possible to compute RTs. However, it is possible to compute MRTs. MRTs are maximally redundant in the sense that they are as redundant as possible given the constraints of the network graph. Directed Acyclic Graph (DAG): A graph where all links are directed and there are no cycles in it. Almost Directed Acyclic Graph (ADAG): A graph with one node designated as the root. The graph has the property that if all links incoming to the root were removed, then the resulting graph would be a DAG. Generalized ADAG (GADAG): A graph that is the combination of the ADAGs of all blocks. MRT-Red: MRT-Red is used to describe one of the two MRTs; it is used to describe the associated forwarding topology and MPLS Multi-Topology IDentifier (MT-ID). Specifically, MRT-Red is the decreasing MRT where links in the GADAG are taken in the direction from a higher topologically ordered node to a lower one. MRT-Blue: MRT-Blue is used to describe one of the two MRTs; it is used to described the associated forwarding topology and MPLS MT-ID. Specifically, MRT-Blue is the increasing MRT where links in the GADAG are taken in the direction from a lower topologically ordered node to a higher one. Rainbow MRT: It is useful to have an MPLS MT-ID that refers to the multiple MRT forwarding topologies and to the default forwarding topology. This is referred to as the Rainbow MRT MPLS MT-ID and is used by LDP to reduce signaling and permit the same label to always be advertised to all peers for the same (MT-ID, Prefix). MRT Island: The set of routers that support a particular MRT profile and the links connecting them that support MRT. Atlas, et al. Standards Track [Page 6]
RFC 7812 MRT Unicast FRR Architecture June 2016 Island Border Router (IBR): A router in the MRT Island that is connected to a router not in the MRT Island, both of which are in a common area or level. Island Neighbor (IN): A router that is not in the MRT Island but is adjacent to an IBR and in the same area/level as the IBR. named proxy-node: A proxy-node can represent a destination prefix that can be attached to the MRT Island via at least two routers. It is named if there is a way that traffic can be encapsulated to reach specifically that proxy node; this could be because there is an LDP FEC (Forwarding Equivalence Class) for the associated prefix or because MRT-Red and MRT-Blue IP addresses are advertised in an undefined fashion for that proxy-node. 4. Maximally Redundant Trees (MRT) A pair of Maximally Redundant Trees is a pair of directed spanning trees that provides maximally disjoint paths towards their common root. Only links or nodes whose failure would partition the network (i.e., cut-links and cut-vertices) are shared between the trees. The MRT Lowpoint algorithm is given in [RFC7811]. This algorithm can be computed in O(e + n log n); it is less than three SPFs. This document describes how the MRTs can be used and not how to compute them. MRT provides destination-based trees for each destination. Each router stores its normal primary next hop(s) as well as MRT-Blue next hop(s) and MRT-Red next hop(s) toward each destination. The alternate will be selected between the MRT-Blue and MRT-Red. The most important thing to understand about MRTs is that for each pair of destination-routed MRTs, there is a path from every node X to the destination D on the Blue MRT that is as disjoint as possible from the path on the Red MRT. For example, in Figure 1, there is a network graph that is 2-connected in (a) and associated MRTs in (b) and (c). One can consider the paths from B to R; on the Blue MRT, the paths are B->F->D->E->R or B->C->D->E->R. On the Red MRT, the path is B->A->R. These are clearly link and node-disjoint. These MRTs are redundant trees because the paths are disjoint. Atlas, et al. Standards Track [Page 7]
RFC 7812 MRT Unicast FRR Architecture June 2016 [E]---[D]---| [E]<--[D]<--| [E]-->[D]---| | | | | ^ | | | | | | V | | V V [R] [F] [C] [R] [F] [C] [R] [F] [C] | | | ^ ^ ^ | | | | | | | | V | [A]---[B]---| [A]-->[B]---| [A]<--[B]<--| (a) (b) (c) a 2-connected graph Blue MRT towards R Red MRT towards R Figure 1: A 2-Connected Network By contrast, in Figure 2, the network in (a) is not 2-connected. If C, G, or the link C<->G failed, then the network would be partitioned. It is clearly impossible to have two link-disjoint or node-disjoint paths from G, J, or H to R. The MRTs given in (b) and (c) offer paths that are as disjoint as possible. For instance, the paths from B to R are the same as in Figure 1 and the path from G to R on the Blue MRT is G->C->D->E->R and on the Red MRT is G->C->B->A->R. [E]---[D]---| |---[J] | | | | | | | | | | [R] [F] [C]---[G] | | | | | | | | | | | [A]---[B]---| |---[H] (a) a graph that is not 2-connected [E]<--[D]<--| [J] [E]-->[D]---| |---[J] | ^ | | | | | ^ V | | | V V V | [R] [F] [C]<--[G] | [R] [F] [C]<--[G] | ^ ^ ^ | ^ | | | | | | V | V | | [A]-->[B]---| |---[H] [A]<--[B]<--| [H] (b) Blue MRT towards R (c) Red MRT towards R Figure 2: A Network That Is Not 2-Connected Atlas, et al. Standards Track [Page 8]
RFC 7812 MRT Unicast FRR Architecture June 2016 5. MRT and Fast Reroute In normal IGP routing, each router has its Shortest Path Tree (SPT) to all destinations. From the perspective of a particular destination, D, this looks like a reverse SPT (rSPT). To use MRT, in addition, each destination D has two MRTs associated with it; by convention these will be called the MRT-Blue and MRT-Red. MRT-FRR is realized by using multi-topology forwarding. There is a MRT-Blue forwarding topology and a MRT-Red forwarding topology. Any IP/LDP fast-reroute technique beyond LFA requires an additional dataplane procedure, such as an additional forwarding mechanism. The well-known options are multi-topology forwarding (used by MRT-FRR), tunneling (e.g., [RFC6981] or [RFC7490]), and per-interface forwarding (e.g., Loop-Free Failure Insensitive Routing in [EnyediThesis]). When there is a link or node failure affecting, but not partitioning, the network, each node will still have at least one path via one of the MRTs to reach the destination D. For example, in Figure 2, B would normally forward traffic to R across the path B->A->R. If the B<->A link fails, then B could use the MRT-Blue path B->F->D->E->R. As is always the case with fast-reroute technologies, forwarding does not change until a local failure is detected. Packets are forwarded along the shortest path. The appropriate alternate to use is pre- computed. [RFC7811] describes exactly how to determine whether the MRT-Blue next hops or the MRT-Red next hops should be the MRT alternate next hops for a particular primary next hop to a particular destination. MRT alternates are always available to use. It is a local decision whether to use an MRT alternate, an LFA, or some other type of alternate. As described in [RFC5286], when a worse failure than is anticipated happens, using LFAs that are not downstream neighbors can cause looping among alternates. Section 1.1 of [RFC5286] gives an example of link-protecting alternates causing a loop on node failure. Even if a worse failure than anticipated happens, the use of MRT alternates will not cause looping. 6. Unicast Forwarding with MRT Fast Reroute There are three possible types of routers involved in forwarding a packet along an MRT path. At the MRT ingress router, the packet leaves the shortest path to the destination and follows an MRT path to the destination. In an FRR application, the MRT ingress router is Atlas, et al. Standards Track [Page 9]
RFC 7812 MRT Unicast FRR Architecture June 2016 the PLR. An MRT transit router takes a packet that arrives already associated with the particular MRT, and forwards it on that same MRT. In some situations (to be discussed later), the packet will need to leave the MRT path and return to the shortest path. This takes place at the MRT egress router. The MRT ingress and egress functionality may depend on the underlying type of packet being forwarded (LDP or IP). The MRT transit functionality is independent of the type of packet being forwarded. We first consider several MRT transit forwarding mechanisms. Then, we look at how these forwarding mechanisms can be applied to carrying LDP and IP traffic. 6.1. Introduction to MRT Forwarding Options The following options for MRT forwarding mechanisms are considered. 1. MRT LDP Labels A. Topology-scoped FEC encoded using a single label B. Topology and FEC encoded using a two-label stack 2. MRT IP Tunnels A. MRT IPv4 Tunnels B. MRT IPv6 Tunnels 6.1.1. MRT LDP Labels We consider two options for the MRT forwarding mechanisms using MRT LDP labels. 6.1.1.1. Topology-Scoped FEC Encoded Using a Single Label (Option 1A) [RFC7307] provides a mechanism to distribute FEC-label bindings scoped to a given MPLS topology (represented by MPLS MT-ID). To use multi-topology LDP to create MRT forwarding topologies, we associate two MPLS MT-IDs with the MRT-Red and MRT-Blue forwarding topologies, in addition to the default shortest path forwarding topology with MT-ID=0. With this forwarding mechanism, a single label is distributed for each topology-scoped FEC. For a given FEC in the default topology (call it default-FEC-A), two additional topology-scoped FECs would be created, corresponding to the Red and Blue MRT forwarding topologies (call them red-FEC-A and blue-FEC-A). A router supporting this MRT transit forwarding mechanism advertises a different FEC-label binding for each of the three topology-scoped FECs. When a packet is Atlas, et al. Standards Track [Page 10]
RFC 7812 MRT Unicast FRR Architecture June 2016 received with a label corresponding to red-FEC-A (for example), an MRT transit router will determine the next hop for the MRT-Red forwarding topology for that FEC, swap the incoming label with the outgoing label corresponding to red-FEC-A learned from the MRT-Red next-hop router, and forward the packet. This forwarding mechanism has the useful property that the FEC associated with the packet is maintained in the labels at each hop along the MRT. We will take advantage of this property when specifying how to carry LDP traffic on MRT paths using multi-topology LDP labels. This approach is very simple for hardware to support. However, it reduces the label space for other uses, and it increases the memory needed to store the labels and the communication required by LDP to distribute FEC-label bindings. In general, this approach will also increase the time needed to install the FRR entries in the Forwarding Information Base (FIB) and, hence, the time needed before the next failure can be protected. This forwarding option uses the LDP signaling extensions described in [RFC7307]. The MRT-specific LDP extensions required to support this option will be described elsewhere. 6.1.1.2. Topology and FEC Encoded Using a Two-Label Stack (Option 1B) With this forwarding mechanism, a two-label stack is used to encode the topology and the FEC of the packet. The top label (topology-id label) identifies the MRT forwarding topology, while the second label (FEC label) identifies the FEC. The top label would be a new FEC type with two values corresponding to MRT Red and Blue topologies. When an MRT transit router receives a packet with a topology-id label, the router pops the top label and uses that it to guide the next-hop selection in combination with the next label in the stack (the FEC label). The router then swaps the FEC label, using the FEC- label bindings learned through normal LDP mechanisms. The router then pushes the topology-id label for the next hop. As with Option 1A, this forwarding mechanism also has the useful property that the FEC associated with the packet is maintained in the labels at each hop along the MRT. This forwarding mechanism has minimal usage of additional labels, memory and LDP communication. It does increase the size of packets and the complexity of the required label operations and lookups. Atlas, et al. Standards Track [Page 11]
RFC 7812 MRT Unicast FRR Architecture June 2016 This forwarding option is consistent with context-specific label spaces, as described in [RFC5331]. However, the precise LDP behavior required to support this option for MRT has not been specified. 6.1.1.3. Compatibility of MRT LDP Label Options 1A and 1B MRT transit forwarding based on MRT LDP Label options 1A and 1B can coexist in the same network, with a packet being forwarded along a single MRT path using the single label of Option 1A for some hops and the two-label stack of Option 1B for other hops. However, to simplify the process of MRT Island formation, we require that all routers in the MRT Island support at least one common forwarding mechanism. As an example, the Default MRT Profile requires support for the MRT LDP Label Option 1A forwarding mechanism. This ensures that the routers in an MRT island supporting the Default MRT Profile will be able to establish MRT forwarding paths based on MRT LDP Label Option 1A. However, an implementation supporting Option 1A may also support Option 1B. If the scaling or performance characteristics for the two options differ in this implementation, then it may be desirable for a pair of adjacent routers to use Option 1B labels instead of the Option 1A labels. If those routers successfully negotiate the use of Option 1B labels, they are free to use them. This can occur without any of the other routers in the MRT Island being made aware of it. Note that this document only defines the Default MRT Profile, which requires support for the MRT LDP Label Option 1A forwarding mechanism. 6.1.1.4. Required Support for MRT LDP Label Options If a router supports a profile that includes the MRT LDP Label Option 1A for the MRT transit forwarding mechanism, then it MUST support Option 1A, which encodes topology-scoped FECs using a single label. The router MAY also support Option 1B. If a router supports a profile that includes the MRT LDP Label Option 1B for the MRT transit forwarding mechanism, then it MUST support Option 1B, which encodes the topology and FEC using a two-label stack. The router MAY also support Option 1A. 6.1.2. MRT IP Tunnels (Options 2A and 2B) IP tunneling can also be used as an MRT transit forwarding mechanism. Each router supporting this MRT transit forwarding mechanism announces two additional loopback addresses and their associated MRT color. Those addresses are used as destination addresses for MRT- blue and MRT-red IP tunnels, respectively. The special loopback Atlas, et al. Standards Track [Page 12]
RFC 7812 MRT Unicast FRR Architecture June 2016 addresses allow the transit nodes to identify the traffic as being forwarded along either the MRT-blue or MRT-red topology to reach the tunnel destination. For example, an MRT ingress router can cause a packet to be tunneled along the MRT-red path to router X by encapsulating the packet using the MRT-red loopback address advertised by router X. Upon receiving the packet, router X would remove the encapsulation header and forward the packet based on the original destination address. Either IPv4 (Option 2A) or IPv6 (Option 2B) can be used as the tunneling mechanism. Note that the two forwarding mechanisms using LDP Label options do not require additional loopbacks per router, as is required by the IP tunneling mechanism. This is because LDP labels are used on a hop- by-hop basis to identify MRT-blue and MRT-red forwarding topologies. 6.2. Forwarding LDP Unicast Traffic over MRT Paths In the previous section, we examined several options for providing MRT transit forwarding functionality, which is independent of the type of traffic being carried. We now look at the MRT ingress functionality, which will depend on the type of traffic being carried (IP or LDP). We start by considering LDP traffic. We also simplify the initial discussion by assuming that the network consists of a single IGP area, and that all routers in the network participate in MRT. Other deployment scenarios that require MRT egress functionality are considered later in this document. In principle, it is possible to carry LDP traffic in MRT IP tunnels. However, for LDP traffic, it is desirable to avoid tunneling. Tunneling LDP traffic to a remote node requires knowledge of remote FEC-label bindings so that the LDP traffic can continue to be forwarded properly when it leaves the tunnel. This requires targeted LDP sessions, which can add management complexity. As described below, the two MRT forwarding mechanisms that use LDP labels do not require targeted LDP sessions. 6.2.1. Forwarding LDP Traffic Using MRT LDP Label Option 1A The MRT LDP Label Option 1A forwarding mechanism uses topology-scoped FECs encoded using a single label as described in Section 6.1.1.1. When a PLR receives an LDP packet that needs to be forwarded on the MRT-Red (for example), it does a label swap operation, replacing the usual LDP label for the FEC with the MRT-Red label for that FEC received from the next-hop router in the MRT-Red computed by the PLR. When the next-hop router in the MRT-Red receives the packet with the Atlas, et al. Standards Track [Page 13]
RFC 7812 MRT Unicast FRR Architecture June 2016 MRT-Red label for the FEC, the MRT transit forwarding functionality continues as described in Section 6.1.1.1. In this way, the original FEC associated with the packet is maintained at each hop along the MRT. 6.2.2. Forwarding LDP Traffic Using MRT LDP Label Option 1B The MRT LDP Label Option 1B forwarding mechanism encodes the topology and the FEC using a two-label stack as described in Section 6.1.1.2. When a PLR receives an LDP packet that needs to be forwarded on the MRT-Red, it first does a normal LDP label swap operation, replacing the incoming normal LDP label associated with a given FEC with the outgoing normal LDP label for that FEC learned from the next hop on the MRT-Red. In addition, the PLR pushes the topology-id label associated with the MRT-Red, and forward the packet to the appropriate next hop on the MRT-Red. When the next-hop router in the MRT-Red receives the packet with the MRT-Red label for the FEC, the MRT transit forwarding functionality continues as described in Section 6.1.1.2. As with Option 1A, the original FEC associated with the packet is maintained at each hop along the MRT. 6.2.3. Other Considerations for Forwarding LDP Traffic Using MRT LDP Labels Note that forwarding LDP traffic using MRT LDP Labels can be done without the use of targeted LDP sessions when an MRT path to the destination FEC is used. The alternates selected in [RFC7811] use the MRT path to the destination FEC, so targeted LDP sessions are not needed. If instead one found it desirable to have the PLR use an MRT to reach the primary next-next-hop for the FEC, and then continue forwarding the LDP packet along the shortest path from the primary next-next-hop, this would require tunneling to the primary next-next- hop and a targeted LDP session for the PLR to learn the FEC-label binding for primary next-next-hop to correctly forward the packet. 6.2.4. Required Support for LDP Traffic For greatest hardware compatibility, routers implementing MRT fast reroute of LDP traffic MUST support Option 1A of encoding the MT-ID in the labels (See Section 9). 6.3. Forwarding IP Unicast Traffic over MRT Paths For IPv4 traffic, there is no currently practical alternative except tunneling to gain the bits needed to indicate the MRT-Blue or MRT-Red forwarding topology. For IPv6 traffic, in principle, one could define bits in the IPv6 options header to indicate the MRT-Blue or MRT-Red forwarding topology. However, in this document, we have Atlas, et al. Standards Track [Page 14]
RFC 7812 MRT Unicast FRR Architecture June 2016 chosen not to define a solution that would work for IPv6 traffic but not for IPv4 traffic. The choice of tunnel egress is flexible since any router closer to the destination than the next hop can work. This architecture assumes that the original destination in the area is selected (see Section 11 for handling of multihomed prefixes); another possible choice is the next-next-hop towards the destination. As discussed in the previous section, for LDP traffic, using the MRT to the original destination simplifies MRT-FRR by avoiding the need for targeted LDP sessions to the next-next-hop. For IP, that consideration doesn't apply. Some situations require tunneling IP traffic along an MRT to a tunnel endpoint that is not the destination of the IP traffic. These situations will be discussed in detail later. We note here that an IP packet with a destination in a different IGP area/level from the PLR should be tunneled on the MRT to the Area Border Router (ABR) or Level Border Router (LBR) on the shortest path to the destination. For a destination outside of the PLR's MRT Island, the packet should be tunneled on the MRT to a non-proxy-node immediately before the named proxy-node on that particular color MRT. 6.3.1. Tunneling IP Traffic Using MRT LDP Labels An IP packet can be tunneled along an MRT path by pushing the appropriate MRT LDP label(s). Tunneling using LDP labels, as opposed to IP headers, has the advantage that more installed routers can do line-rate encapsulation and decapsulation using LDP than using IP. Also, no additional IP addresses would need to be allocated or signaled. 6.3.1.1. Tunneling IP Traffic Using MRT LDP Label Option 1A The MRT LDP Label Option 1A forwarding mechanism uses topology-scoped FECs encoded using a single label as described in Section 6.1.1.1. When a PLR receives an IP packet that needs to be forwarded on the MRT-Red to a particular tunnel endpoint, it does a label push operation. The label pushed is the MRT-Red label for a FEC originated by the tunnel endpoint, learned from the next hop on the MRT-Red. 6.3.1.2. Tunneling IP Traffic Using MRT LDP Label Option 1B The MRT LDP Label Option 1B forwarding mechanism encodes the topology and the FEC using a two-label stack as described in Section 6.1.1.2. When a PLR receives an IP packet that needs to be forwarded on the MRT-Red to a particular tunnel endpoint, the PLR pushes two labels on Atlas, et al. Standards Track [Page 15]
RFC 7812 MRT Unicast FRR Architecture June 2016 the IP packet. The first (inner) label is the normal LDP label learned from the next hop on the MRT-Red, associated with a FEC originated by the tunnel endpoint. The second (outer) label is the topology-id label associated with the MRT-Red. For completeness, we note here a potential variation that uses a single label as opposed to two labels. In order to tunnel an IP packet over an MRT to the destination of the IP packet as opposed to an arbitrary tunnel endpoint, one could just push a topology-id label directly onto the packet. An MRT transit router would need to pop the topology-id label, do an IP route lookup in the context of that topology-id label, and push the topology-id label. 6.3.2. Tunneling IP Traffic Using MRT IP Tunnels In order to tunnel over the MRT to a particular tunnel endpoint, the PLR encapsulates the original IP packet with an additional IP header using the MRT-Blue or MRT-Red loopback address of the tunnel endpoint. 6.3.3. Required Support for IP Traffic For greatest hardware compatibility and ease in removing the MRT- topology marking at area/level boundaries, routers that support MPLS and implement IP MRT fast reroute MUST support tunneling of IP traffic using MRT LDP Label Option 1A (topology-scoped FEC encoded using a single label). 7. MRT Island Formation The purpose of communicating support for MRT is to indicate that the MRT-Blue and MRT-Red forwarding topologies are created for transit traffic. The MRT architecture allows for different, potentially incompatible options. In order to create consistent MRT forwarding topologies, the routers participating in a particular MRT Island need to use the same set of options. These options are grouped into MRT profiles. In addition, the routers in an MRT Island all need to use the same set of nodes and links within the Island when computing the MRT forwarding topologies. This section describes the information used by a router to determine the nodes and links to include in a particular MRT Island. Some information already exists in the IGPs and can be used by MRT in Island formation, subject to the interpretation defined here. Other information needs to be communicated between routers for which there do not currently exist protocol extensions. This new information needs to be shared among all routers in an IGP area, so Atlas, et al. Standards Track [Page 16]
RFC 7812 MRT Unicast FRR Architecture June 2016 defining extensions to existing IGPs to carry this information makes sense. These new protocol extensions will be defined elsewhere. Deployment scenarios using multi-topology OSPF or IS-IS, or running both IS-IS and OSPF on the same routers is out of scope for this specification. As with LFA, MRT-FRR does not support OSPF Virtual Links. At a high level, an MRT Island is defined as the set of routers supporting the same MRT profile, in the same IGP area/level and with bidirectional links interconnecting those routers. More detailed descriptions of these criteria are given below. 7.1. IGP Area or Level All links in an MRT Island are bidirectional and belong to the same IGP area or level. For IS-IS, a link belonging to both Level-1 and Level-2 would qualify to be in multiple MRT Islands. A given ABR or LBR can belong to multiple MRT Islands, corresponding to the areas or levels in which it participates. Inter-area forwarding behavior is discussed in Section 10. 7.2. Support for a Specific MRT Profile All routers in an MRT Island support the same MRT profile. A router advertises support for a given MRT profile using an 8-bit MRT Profile ID value. The "MRT Profile Identifier Registry" is defined in this document. The protocol extensions for advertising the MRT Profile ID value will be defined in a future specification. A given router can support multiple MRT profiles and participate in multiple MRT Islands. The options that make up an MRT Profile, as well as the Default MRT Profile, are defined in Section 8. The process of MRT Island formation takes place independently for each MRT profile advertised by a given router. For example, consider a network with 40 connected routers in the same area advertising support for MRT Profile A and MRT Profile B. Two distinct MRT Islands will be formed corresponding to Profile A and Profile B, with each island containing all 40 routers. A complete set of maximally redundant trees will be computed for each island following the rules defined for each profile. If we add a third MRT Profile to this example, with Profile C being advertised by a connected subset of 30 routers, there will be a third MRT Island formed corresponding to those 30 routers, and a third set of maximally redundant trees will be computed. In this example, 40 routers would compute and install two sets of MRT transit forwarding entries corresponding to Profiles A and B, while 30 routers would compute and install three sets of MRT transit forwarding entries corresponding to Profiles A, B, and C. Atlas, et al. Standards Track [Page 17]
RFC 7812 MRT Unicast FRR Architecture June 2016 7.3. Excluding Additional Routers and Interfaces from the MRT Island MRT takes into account existing IGP mechanisms for discouraging traffic from using particular links and routers, and it introduces an MRT-specific exclusion mechanism for links. 7.3.1. Existing IGP Exclusion Mechanisms Mechanisms for discouraging traffic from using particular links already exist in IS-IS and OSPF. In IS-IS, an interface configured with a metric of 2^24-2 (0xFFFFFE) will only be used as a last resort. (An interface configured with a metric of 2^24-1 (0xFFFFFF) will not be advertised into the topology.) In OSPF, an interface configured with a metric of 2^16-1 (0xFFFF) will only be used as a last resort. These metrics can be configured manually to enforce administrative policy or they can be set in an automated manner as with LDP IGP synchronization [RFC5443]. Mechanisms also already exist in IS-IS and OSPF to discourage or prevent transit traffic from using a particular router. In IS-IS, the overload bit is prevents transit traffic from using a router. For OSPFv2 and OSPFv3, [RFC6987] specifies setting all outgoing interface metrics to 0xFFFF to discourage transit traffic from using a router. ([RFC6987] defines the metric value 0xFFFF as MaxLinkMetric, a fixed architectural value for OSPF.) For OSPFv3, [RFC5340] specifies that a router be excluded from the intra-area SPT computation if the V6-bit or R-bit of the Link State Advertisement (LSA) options is not set in the Router LSA. The following rules for MRT Island formation ensure that MRT FRR protection traffic does not use a link or router that is discouraged or prevented from carrying traffic by existing IGP mechanisms. 1. A bidirectional link MUST be excluded from an MRT Island if either the forward or reverse cost on the link is 0xFFFFFE (for IS-IS) or 0xFFFF for OSPF. 2. A router MUST be excluded from an MRT Island if it is advertised with the overload bit set (for IS-IS), or it is advertised with metric values of 0xFFFF on all of its outgoing interfaces (for OSPFv2 and OSPFv3). 3. A router MUST be excluded from an MRT Island if it is advertised with either the V6-bit or R-bit of the LSA options not set in the Router LSA. Atlas, et al. Standards Track [Page 18]
RFC 7812 MRT Unicast FRR Architecture June 2016 7.3.2. MRT-Specific Exclusion Mechanism This architecture also defines a means of excluding an otherwise usable link from MRT Islands. The protocol extensions for advertising that a link is MRT-Ineligible will be defined elsewhere. A link with either interface advertised as MRT-Ineligible MUST be excluded from an MRT Island. Note that an interface advertised as MRT-Ineligible by a router is ineligible with respect to all profiles advertised by that router. 7.4. Connectivity All of the routers in an MRT Island MUST be connected by bidirectional links with other routers in the MRT Island. Disconnected MRT Islands will operate independently of one another. 7.5. Algorithm for MRT Island Identification An algorithm that allows a computing router to identify the routers and links in the local MRT Island satisfying the above rules is given in Section 5.2 of [RFC7811]. 8. MRT Profile An MRT Profile is a set of values and options related to MRT behavior. The complete set of options is designated by the corresponding 8-bit Profile ID value. This document specifies the values and options that correspond to the Default MRT Profile (Profile ID = 0). Future documents may define other MRT Profiles by specifying the MRT Profile Options below. 8.1. MRT Profile Options Below is a description of the values and options that define an MRT Profile. MRT Algorithm: This identifies the particular algorithm for computing maximally redundant trees used by the router for this profile. MRT-Red MT-ID: This specifies the MPLS MT-ID to be associated with the MRT-Red forwarding topology. It is allocated from the MPLS Multi-Topology Identifiers Registry. MRT-Blue MT-ID: This specifies the MPLS MT-ID to be associated with the MRT-Blue forwarding topology. It is allocated from the MPLS Multi-Topology Identifiers Registry. Atlas, et al. Standards Track [Page 19]
RFC 7812 MRT Unicast FRR Architecture June 2016 GADAG Root Selection Policy: This specifies the manner in which the GADAG root is selected. All routers in the MRT Island need to use the same GADAG root in the calculations used construct the MRTs. A valid GADAG Root Selection Policy MUST be such that each router in the MRT Island chooses the same GADAG root based on information available to all routers in the MRT Island. GADAG Root Selection Priority values, advertised as router-specific MRT parameters, MAY be used in a GADAG Root Selection Policy. MRT Forwarding Mechanism: This specifies which forwarding mechanism the router uses to carry transit traffic along MRT paths. A router that supports a specific MRT forwarding mechanism must program appropriate next hops into the forwarding plane. The current options are MRT LDP Label Option 1A, MRT LDP Label Option 1B, IPv4 Tunneling, IPv6 Tunneling, and None. If IPv4 is supported, then both MRT-Red and MRT-Blue IPv4 loopback addresses SHOULD be specified. If IPv6 is supported, both MRT-Red and MRT- Blue IPv6 loopback addresses SHOULD be specified. Recalculation: Recalculation specifies the process and timing by which new MRTs are computed after the topology has been modified. Area/Level Border Behavior: This specifies how traffic traveling on the MRT-Blue or MRT-Red in one area should be treated when it passes into another area. Other Profile-Specific Behavior: Depending upon the use-case for the profile, there may be additional profile-specific behavior. When a new MRT Profile is defined, new and unique values should be allocated from the "MPLS Multi-Topology Identifiers Registry", corresponding to the MRT-Red and MRT-Blue MT-ID values for the new MRT Profile. If a router advertises support for multiple MRT profiles, then it MUST create the transit forwarding topologies for each of those, unless the profile specifies the None option for the MRT Forwarding Mechanism. The ability of MRT-FRR to support transit forwarding entries for multiple profiles can be used to facilitate a smooth transition from an existing deployed MRT Profile to a new MRT Profile. The new profile can be activated in parallel with the existing profile, installing the transit forwarding entries for the new profile without affecting the transit forwarding entries for the existing profile. Once the new transit forwarding state has been verified, the router can be configured to use the alternates computed by the new profile in the event of a failure. Atlas, et al. Standards Track [Page 20]
RFC 7812 MRT Unicast FRR Architecture June 2016 8.2. Router-Specific MRT Parameters For some profiles, additional router-specific MRT parameters may need to be advertised. While the set of options indicated by the MRT Profile ID must be identical for all routers in an MRT Island, these router-specific MRT parameters may differ between routers in the same MRT Island. Several such parameters are described below. GADAG Root Selection Priority: A GADAG Root Selection Policy MAY rely on the GADAG Root Selection Priority values advertised by each router in the MRT Island. A GADAG Root Selection Policy may use the GADAG Root Selection Priority to allow network operators to configure a parameter to ensure that the GADAG root is selected from a particular subset of routers. An example of this use of the GADAG Root Selection Priority value by the GADAG Root Selection Policy is given in the Default MRT Profile below. MRT-Red Loopback Address: This provides the router's loopback address to reach the router via the MRT-Red forwarding topology. It can be specified for either IPv4 or IPv6. Note that this parameter is not needed to support the Default MRT Profile. MRT-Blue Loopback Address: This provides the router's loopback address to reach the router via the MRT-Blue forwarding topology. It can be specified for either IPv4 and IPv6. Note that this parameter is not needed to support the Default MRT Profile. Protocol extensions for advertising a router's GADAG Root Selection Priority value will be defined in other documents. Protocol extensions for the advertising a router's MRT-Red and MRT-Blue loopback addresses will be defined elsewhere. 8.3. Default MRT Profile The following set of options defines the Default MRT Profile. The Default MRT Profile is indicated by the MRT Profile ID value of 0. MRT Algorithm: MRT Lowpoint algorithm defined in [RFC7811]. MRT-Red MPLS MT-ID: This temporary registration has been allocated from the "MPLS Multi-Topology Identifiers" registry. The registration request appears in [LDP-MRT]. MRT-Blue MPLS MT-ID: This temporary registration has been allocated from the "MPLS Multi-Topology Identifiers" registry. The registration request appears in [LDP-MRT]. Atlas, et al. Standards Track [Page 21]
RFC 7812 MRT Unicast FRR Architecture June 2016 GADAG Root Selection Policy: Among the routers in the MRT Island with the lowest numerical value advertised for GADAG Root Selection Priority, an implementation MUST pick the router with the highest Router ID to be the GADAG root. Note that a lower numerical value for GADAG Root Selection Priority indicates a higher preference for selection. Forwarding Mechanisms: MRT LDP Label Option 1A Recalculation: Recalculation of MRTs SHOULD occur as described in Section 12.2. This allows the MRT forwarding topologies to support IP/LDP fast-reroute traffic. Area/Level Border Behavior: As described in Section 10, ABRs/LBRs SHOULD ensure that traffic leaving the area also exits the MRT-Red or MRT-Blue forwarding topology. 9. LDP Signaling Extensions and Considerations The protocol extensions for LDP will be defined in another document. A router must indicate that it has the ability to support MRT; having this explicit allows the use of MRT-specific processing, such as special handling of FECs sent with the Rainbow MRT MT-ID. A FEC sent with the Rainbow MRT MT-ID indicates that the FEC applies to all the MRT-Blue and MRT-Red MT-IDs in supported MRT profiles. The FEC-label bindings for the default shortest-path-based MT-ID 0 MUST still be sent (even though it could be inferred from the Rainbow FEC-label bindings) to ensure continuous operation of normal LDP forwarding. The Rainbow MRT MT-ID is defined to provide an easy way to handle the special signaling that is needed at ABRs or LBRs. It avoids the problem of needing to signal different MPLS labels to different LDP neighbors for the same FEC. Because the Rainbow MRT MT-ID is used only by ABRs/LBRs or an LDP egress router, it is not MRT profile specific. The value of the Rainbow MRT MPLS MT-ID has been temporarily allocated from the "MPLS Multi-Topology Identifiers" registry. The registration request appears in [LDP-MRT]. Atlas, et al. Standards Track [Page 22]
RFC 7812 MRT Unicast FRR Architecture June 2016 10. Inter-area Forwarding Behavior An ABR/LBR has two forwarding roles. First, it forwards traffic within areas. Second, it forwards traffic from one area into another. These same two roles apply for MRT transit traffic. Traffic on MRT-Red or MRT-Blue destined inside the area needs to stay on MRT-Red or MRT-Blue in that area. However, it is desirable for traffic leaving the area to also exit MRT-Red or MRT-Blue and return to shortest path forwarding. For unicast MRT-FRR, the need to stay on an MRT forwarding topology terminates at the ABR/LBR whose best route is via a different area/ level. It is highly desirable to go back to the default forwarding topology when leaving an area/level. There are three basic reasons for this. First, the default topology uses shortest paths; the packet will thus take the shortest possible route to the destination. Second, this allows a single router failure that manifests itself in multiple areas (as would be the case with an ABR/LBR failure) to be separately identified and repaired around. Third, the packet can be fast-rerouted again, if necessary, due to a second distinct failure in a different area. In OSPF, an ABR that receives a packet on MRT-Red or MRT-Blue towards destination Z should continue to forward the packet along MRT-Red or MRT-Blue only if the best route to Z is in the same OSPF area as the interface that the packet was received on. Otherwise, the packet should be removed from MRT-Red or MRT-Blue and forwarded on the shortest-path default forwarding topology. The above description applies to OSPF. The same essential behavior also applies to IS-IS if one substitutes IS-IS level for OSPF area. However, the analogy with OSPF is not exact. An interface in OSPF can only be in one area, whereas an interface in IS-IS can be in both Level-1 and Level-2. Therefore, to avoid confusion and address this difference, we explicitly describe the behavior for IS-IS in Appendix A. In the following sections, only the OSPF terminology is used. 10.1. ABR Forwarding Behavior with MRT LDP Label Option 1A For LDP forwarding where a single label specifies (MT-ID, FEC), the ABR is responsible for advertising the proper label to each neighbor. Assume that an ABR has allocated three labels for a particular destination: L_primary, L_blue, and L_red. To those routers in the same area as the best route to the destination, the ABR advertises the following FEC-label bindings: L_primary for the default topology, L_blue for the MRT-Blue MT-ID, and L_red for the MRT-Red MT-ID, as expected. However, to routers in other areas, the ABR advertises the Atlas, et al. Standards Track [Page 23]
RFC 7812 MRT Unicast FRR Architecture June 2016 following FEC-label bindings: L_primary for the default topology and L_primary for the Rainbow MRT MT-ID. Associating L_primary with the Rainbow MRT MT-ID causes the receiving routers to use L_primary for the MRT-Blue MT-ID and for the MRT-Red MT-ID. The ABR installs all next hops for the best area: primary next hops for L_primary, MRT-Blue next hops for L_blue, and MRT-Red next hops for L_red. Because the ABR advertised (Rainbow MRT MT-ID, FEC) with L_primary to neighbors not in the best area, packets from those neighbors will arrive at the ABR with a label L_primary and will be forwarded into the best area along the default topology. By controlling what labels are advertised, the ABR can thus enforce that packets exiting the area do so on the shortest-path default topology. 10.1.1. Motivation for Creating the Rainbow-FEC The desired forwarding behavior could be achieved in the above example without using the Rainbow-FEC. This could be done by having the ABR advertise the following FEC-label bindings to neighbors not in the best area: L1_primary for the default topology, L1_primary for the MRT-Blue MT-ID, and L1_primary for the MRT-Red MT-ID. Doing this would require machinery to spoof the labels used in FEC-label binding advertisements on a per-neighbor basis. Such label-spoofing machinery does not currently exist in most LDP implementations and doesn't have other obvious uses. Many existing LDP implementations do however have the ability to filter FEC-label binding advertisements on a per-neighbor basis. The Rainbow-FEC allows us to reuse the existing per-neighbor FEC filtering machinery to achieve the desired result. By introducing the Rainbow FEC, we can use per-neighbor FEC-filtering machinery to advertise the FEC-label binding for the Rainbow-FEC (and filter those for MRT-Blue and MRT-Red) to non-best-area neighbors of the ABR. An ABR may choose to either distribute the Rainbow-FEC or distribute separate MRT-Blue and MRT-Red advertisements. This is a local choice. A router that supports the MRT LDP Label Option 1A forwarding mechanism MUST be able to receive and correctly interpret the Rainbow-FEC. 10.2. ABR Forwarding Behavior with IP Tunneling (Option 2) If IP tunneling is used, then the ABR behavior is dependent upon the outermost IP address. If the outermost IP address is an MRT loopback address of the ABR, then the packet is decapsulated and forwarded based upon the inner IP address, which should go on the default SPT topology. If the outermost IP address is not an MRT loopback address of the ABR, then the packet is simply forwarded along the associated Atlas, et al. Standards Track [Page 24]
RFC 7812 MRT Unicast FRR Architecture June 2016 forwarding topology. A PLR sending traffic to a destination outside its local area/level will pick the MRT and use the associated MRT loopback address of the selected ABR advertising the lowest cost to the external destination. Thus, for these two MRT forwarding mechanisms (MRT LDP Label Option 1A and IP tunneling Option 2), there is no need for additional computation or per-area forwarding state. 10.3. ABR Forwarding Behavior with MRT LDP Label Option 1B The other MRT forwarding mechanism described in Section 6 uses two labels: a topology-id label and a FEC-label. This mechanism would require that any router whose MRT-Red or MRT-Blue next hop is an ABR would need to determine whether the ABR would forward the packet out of the area/level. If so, then that router should pop off the topology-id label before forwarding the packet to the ABR. For example, in Figure 3, if node H fails, node E has to put traffic towards prefix p onto MRT-Red. But since node D knows that ABR1 will use a best route from another area, it is safe for D to pop the topology-id label and just forward the packet to ABR1 along the MRT- Red next hop. ABR1 will use the shortest path in Area 10. In all cases for IS-IS and most cases for OSPF, the penultimate router can determine what decision the adjacent ABR will make. The one case where it can't be determined is when two ASBRs are in different non-backbone areas attached to the same ABR, then the ASBR's Area ID may be needed for tie-breaking (prefer the route with the largest OSPF area ID), and the Area ID isn't announced as part of the ASBR LSA. In this one case, suboptimal forwarding along the MRT in the other area would happen. If that becomes a realistic deployment scenario, protocol extensions could be developed to address this issue. Atlas, et al. Standards Track [Page 25]
RFC 7812 MRT Unicast FRR Architecture June 2016 +----[C]---- --[D]--[E] --[D]--[E] | \ / \ / \ p--[A] Area 10 [ABR1] Area 0 [H]--p +-[ABR1] Area 0 [H]-+ | / \ / | \ / | +----[B]---- --[F]--[G] | --[F]--[G] | | | | other | +----------[p]-------+ area (a) Example topology (b) Proxy node view in Area 0 nodes +----[C]<--- [D]->[E] V \ \ +-[A] Area 10 [ABR1] Area 0 [H]-+ | ^ / / | | +----[B]<--- [F]->[G] V | | +------------->[p]<--------------+ (c) rSPT towards destination p ->[D]->[E] -<[D]<-[E] / \ / \ [ABR1] Area 0 [H]-+ +-[ABR1] [H] / | | \ [F]->[G] V V -<[F]<-[G] | | | | [p]<------+ +--------->[p] (d) MRT-Blue in Area 0 (e) MRT-Red in Area 0 Figure 3: ABR Forwarding Behavior and MRTs 11. Prefixes Multiply Attached to the MRT Island How a computing router S determines its local MRT Island for each supported MRT profile is already discussed in Section 7. There are two types of prefixes or FECs that may be multiply attached to an MRT Island. The first type are multihomed prefixes that usually connect at a domain or protocol boundary. The second type represent routers that do not support the profile for the MRT Island. Atlas, et al. Standards Track [Page 26]
RFC 7812 MRT Unicast FRR Architecture June 2016 The key difference is whether the traffic, once out of the MRT Island, might re-enter the MRT Island if a loop-free exit point is not selected. FRR using LFA has the useful property that it is able to protect multihomed prefixes against ABR failure. For instance, if a prefix from the backbone is available via both ABR A and ABR B, if A fails, then the traffic should be redirected to B. This can be accomplished with MRT FRR as well. If ASBR protection is desired, this has additional complexities if the ASBRs are in different areas. Similarly, protecting labeled BGP traffic in the event of an ASBR failure has additional complexities due to the per-ASBR label spaces involved. As discussed in [RFC5286], a multihomed prefix could be: o An out-of-area prefix announced by more than one ABR, o An AS-External route announced by two or more ASBRs, o A prefix with iBGP multipath to different ASBRs, o etc. See Appendix B for a discussion of a general issue with multihomed prefixes connected in two different areas. There are also two different approaches to protection. The first is tunnel endpoint selection where the PLR picks a router to tunnel to where that router is loop-free with respect to the failure-point. Conceptually, the set of candidate routers to provide LFAs expands to all routers that can be reached via an MRT alternate, attached to the prefix. The second is to use a proxy-node, which can be named via MPLS label or IP address, and pick the appropriate label or IP address to reach it on either MRT-Blue or MRT-Red as appropriate to avoid the failure point. A proxy-node can represent a destination prefix that can be attached to the MRT Island via at least two routers. It is termed a named proxy-node if there is a way that traffic can be encapsulated to reach specifically that proxy-node; this could be because there is an LDP FEC for the associated prefix or because MRT-Red and MRT-Blue IP addresses are advertised (in an as-yet undefined fashion) for that proxy-node. Traffic to a named proxy-node may take a different path than traffic to the attaching router; traffic is also explicitly forwarded from the attaching router along a predetermined interface towards the relevant prefixes. Atlas, et al. Standards Track [Page 27]
RFC 7812 MRT Unicast FRR Architecture June 2016 For IP traffic, multihomed prefixes can use tunnel endpoint selection. For IP traffic that is destined to a router outside the MRT Island, if that router is the egress for a FEC advertised into the MRT Island, then the named proxy-node approach can be used. For LDP traffic, there is always a FEC advertised into the MRT Island. The named proxy-node approach should be used, unless the computing router S knows the label for the FEC at the selected tunnel endpoint. If a FEC is advertised from outside the MRT Island into the MRT Island and the forwarding mechanism specified in the profile includes LDP Label Option 1A, then the routers learning that FEC MUST also advertise labels for (MRT-Red, FEC) and (MRT-Blue, FEC) to neighbors inside the MRT Island. Any router receiving a FEC corresponding to a router outside the MRT Island or to a multihomed prefix MUST compute and install the transit MRT-Blue and MRT-Red next hops for that FEC. The FEC-label bindings for the topology-scoped FECs ((MT-ID 0, FEC), (MRT-Red, FEC), and (MRT-Blue, FEC)) MUST also be provided via LDP to neighbors inside the MRT Island. 11.1. Protecting Multihomed Prefixes Using Tunnel Endpoint Selection Tunnel endpoint selection is a local matter for a router in the MRT Island since it pertains to selecting and using an alternate and does not affect the transit MRT-Red and MRT-Blue forwarding topologies. Let the computing router be S and the next hop F be the node whose failure is to be avoided. Let the destination be prefix p. Have A be the router to which the prefix p is attached for S's shortest path to p. The candidates for tunnel endpoint selection are those to which the destination prefix is attached in the area/level. For a particular candidate B, it is necessary to determine if B is loop-free to reach p with respect to S and F for node-protection or at least with respect to S and the link (S, F) for link-protection. If B will always prefer to send traffic to p via a different area/level, then this is definitional. Otherwise, distance-based computations are necessary and an SPF from B's perspective may be necessary. The following equations give the checks needed; the rationale is similar to that given in [RFC5286]. In the inequalities below, D_opt(X,Y) means the shortest distance from node X to node Y, and D_opt(X,p) means the shortest distance from node X to prefix p. Loop-Free for S: D_opt(B, p) < D_opt(B, S) + D_opt(S, p) Loop-Free for F: D_opt(B, p) < D_opt(B, F) + D_opt(F, p) Atlas, et al. Standards Track [Page 28]
RFC 7812 MRT Unicast FRR Architecture June 2016 The latter is equivalent to the following, which avoids the need to compute the shortest path from F to p. Loop-Free for F: D_opt(B, p) < D_opt(B, F) + D_opt(S, p) - D_opt(S, F) Finally, the rules for Endpoint selection are given below. The basic idea is to repair to the prefix-advertising router selected for the shortest-path and only to select and tunnel to a different endpoint if necessary (e.g., A=F or F is a cut-vertex or the link (S,F) is a cut-link). 1. Does S have a node-protecting alternate to A? If so, select that. Tunnel the packet to A along that alternate. For example, if LDP is the forwarding mechanism, then push the label (MRT-Red, A) or (MRT-Blue, A) onto the packet. 2. If not, then is there a router B that is loop-free to reach p while avoiding both F and S? If so, select B as the endpoint. Determine the MRT alternate to reach B while avoiding F. Tunnel the packet to B along that alternate. For example, with LDP, push the label (MRT-Red, B) or (MRT-Blue, B) onto the packet. 3. If not, then does S have a link-protecting alternate to A? If so, select that. 4. If not, then is there a router B that is loop-free to reach p while avoiding S and the link from S to F? If so, select B as the endpoint and the MRT alternate for reaching B from S that avoid the link (S,F). The tunnel endpoint selected will receive a packet destined to itself and, being the egress, will pop that MPLS label (or have signaled Implicit Null) and forward based on what is underneath. This suffices for IP traffic since the tunnel endpoint can use the IP header of the original packet to continue forwarding the packet. However, tunneling of LDP traffic requires targeted LDP sessions for learning the FEC-label binding at the tunnel endpoint. 11.2. Protecting Multihomed Prefixes Using Named Proxy-Nodes Instead, the named proxy-node method works with LDP traffic without the need for targeted LDP sessions. It also has a clear advantage over tunnel endpoint selection, in that it is possible to explicitly forward from the MRT Island along an interface to a loop-free island neighbor when that interface may not be a primary next hop. Atlas, et al. Standards Track [Page 29]
RFC 7812 MRT Unicast FRR Architecture June 2016 A named proxy-node represents one or more destinations and, for LDP forwarding, has a FEC associated with it that is signaled into the MRT Island. Therefore, it is possible to explicitly label packets to go to (MRT-Red, FEC) or (MRT-Blue, FEC); at the border of the MRT Island, the label will swap to meaning (MT-ID 0, FEC). It would be possible to have named proxy-nodes for IP forwarding, but this would require extensions to signal two IP addresses to be associated with MRT-Red and MRT-Blue for the proxy-node. A named proxy-node can be uniquely represented by the two routers in the MRT Island to which it is connected. The extensions to signal such IP addresses will be defined elsewhere. The details of what label-bindings must be originated will be described in another document. Computing the MRT next hops to a named proxy-node and the MRT alternate for the computing router S to avoid a particular failure node F is straightforward. The details of the simple constant-time functions, Select_Proxy_Node_NHs() and Select_Alternates_Proxy_Node(), are given in [RFC7811]. A key point is that computing these MRT next hops and alternates can be done as new named proxy-nodes are added or removed without requiring a new MRT computation or impacting other existing MRT paths. This maps very well to, for example, how OSPFv2 (see [RFC2328], Section 16.5) does incremental updates for new summary-LSAs. The remaining question is how to attach the named proxy-node to the MRT Island; all the routers in the MRT Island MUST do this consistently. No more than two routers in the MRT Island can be selected; one should only be selected if there are no others that meet the necessary criteria. The named proxy-node is logically part of the area/level. There are two sources for candidate routers in the MRT Island to connect to the named proxy-node. The first set is made up of those routers in the MRT Island that are advertising the prefix; the named- proxy-cost assigned to each prefix-advertising router is the announced cost to the prefix. The second set is made up of those routers in the MRT Island that are connected to routers not in the MRT Island but in the same area/level; such routers will be defined as Island Border Routers (IBRs). The routers connected to the IBRs that are not in the MRT Island and are in the same area/level as the MRT Island are Island Neighbors (INs). Since packets sent to the named proxy-node along MRT-Red or MRT-Blue may come from any router inside the MRT Island, it is necessary that whatever router to which an IBR forwards the packet be loop-free with respect to the whole MRT Island for the destination. Thus, an IBR is a candidate router only if it possesses at least one IN whose shortest path to the prefix does not enter the MRT Island. A method Atlas, et al. Standards Track [Page 30]
RFC 7812 MRT Unicast FRR Architecture June 2016 for identifying Loop-Free Island Neighbors (LFINs) is given in [RFC7811]. The named-proxy-cost assigned to each (IBR, IN) pair is cost(IBR, IN) + D_opt(IN, prefix). From the set of prefix-advertising routers and the set of IBRs with at least one LFIN, the two routers with the lowest named-proxy-cost are selected. Ties are broken based upon the lowest Router ID. For ease of discussion, the two selected routers will be referred to as proxy-node attachment routers. A proxy-node attachment router has a special forwarding role. When a packet is received destined to (MRT-Red, prefix) or (MRT-Blue, prefix), if the proxy-node attachment router is an IBR, it MUST swap to the shortest path forwarding topology (e.g., swap to the label for (MT-ID 0, prefix) or remove the outer IP encapsulation) and forward the packet to the IN whose cost was used in the selection. If the proxy-node attachment router is not an IBR, then the packet MUST be removed from the MRT forwarding topology and sent along the interface(s) that caused the router to advertise the prefix; this interface might be out of the area/level/AS. 11.3. MRT Alternates for Destinations outside the MRT Island A natural concern with new functionality is how to have it be useful when it is not deployed across an entire IGP area. In the case of MRT FRR, where it provides alternates when appropriate LFAs aren't available, there are also deployment scenarios where it may make sense to only enable some routers in an area with MRT FRR. A simple example of such a scenario would be a ring of six or more routers that is connected via two routers to the rest of the area. Destinations inside the local island can obviously use MRT alternates. Destinations outside the local island can be treated like a multihomed prefix and either endpoint selection or Named Proxy-Nodes can be used. Named proxy-nodes MUST be supported when LDP forwarding is supported and a label-binding for the destination is sent to an IBR. Naturally, there are more-complicated options to improve coverage, such as connecting multiple MRT Islands across tunnels, but the need for the additional complexity has not been justified. Atlas, et al. Standards Track [Page 31]
RFC 7812 MRT Unicast FRR Architecture June 2016 12. Network Convergence and Preparing for the Next Failure After a failure, MRT detours ensure that packets reach their intended destination while the IGP has not reconverged onto the new topology. As link-state updates reach the routers, the IGP process calculates the new shortest paths. Two things need attention: micro-loop prevention and MRT recalculation. 12.1. Micro-loop Prevention and MRTs A micro-loop is a transient packet-forwarding loop among two or more routers that can occur during convergence of IGP forwarding state. [RFC5715] discusses several techniques for preventing micro-loops. This section discusses how MRT-FRR relates to two of the micro-loop prevention techniques discussed in [RFC5715]: Nearside and Farside Tunneling. In Nearside Tunneling, a router (PLR) adjacent to a failure performs local repair and informs remote routers of the failure. The remote routers initially tunnel affected traffic to the nearest PLR, using tunnels that are unaffected by the failure. Once the forwarding state for normal shortest path routing has converged, the remote routers return the traffic to shortest path forwarding. MRT-FRR is relevant for Nearside Tunneling for the following reason. The process of tunneling traffic to the PLRs and waiting a sufficient amount of time for IGP forwarding state convergence with Nearside Tunneling means that traffic will generally rely on the local repair at the PLR for longer than it would in the absence of Nearside Tunneling. Since MRT-FRR provides 100% coverage for single link and node failure, it may be an attractive option to provide the local repair paths when Nearside Tunneling is deployed. MRT-FRR is also relevant for the Farside Tunneling micro-loop prevention technique. In Farside Tunneling, remote routers tunnel traffic affected by a failure to a node downstream of the failure with respect to traffic destination. This node can be viewed as being on the farside of the failure with respect to the node initiating the tunnel. Note that the discussion of Farside Tunneling in [RFC5715] focuses on the case where the farside node is immediately adjacent to a failed link or node. However, the farside node may be any node downstream of the failure with respect to traffic destination, including the destination itself. The tunneling mechanism used to reach the farside node must be unaffected by the failure. The alternative forwarding paths created by MRT-FRR have the potential to be used to forward traffic from the remote routers upstream of the failure all the way to the destination. In the event of failure, either the MRT-Red or MRT-Blue path from the remote upstream router to the destination is guaranteed to avoid a link Atlas, et al. Standards Track [Page 32]
RFC 7812 MRT Unicast FRR Architecture June 2016 failure or inferred node failure. The MRT forwarding paths are also guaranteed to not be subject to micro-loops because they are locked to the topology before the failure. We note that the computations in [RFC7811] address the case of a PLR adjacent to a failure determining which choice of MRT-Red or MRT-Blue will avoid a failed link or node. More computation may be required for an arbitrary remote upstream router to determine whether to choose MRT-Red or MRT-Blue for a given destination and failure. 12.2. MRT Recalculation for the Default MRT Profile This section describes how the MRT recalculation SHOULD be performed for the Default MRT Profile. This is intended to support FRR applications. Other approaches are possible, but they are not specified in this document. When a failure event happens, traffic is put by the PLRs onto the MRT topologies. After that, each router recomputes its SPT and moves traffic over to that. Only after all the PLRs have switched to using their SPTs and traffic has drained from the MRT topologies should each router install the recomputed MRTs into the FIBs. At each router, therefore, the sequence is as follows: 1. Receive failure notification 2. Recompute SPT. 3. Install the new SPT in the FIB. 4. If the network was stable before the failure occurred, wait a configured (or advertised) period for all routers to be using their SPTs and traffic to drain from the MRTs. 5. Recompute MRTs. 6. Install new MRTs in the FIB. While the recomputed MRTs are not installed in the FIB, protection coverage is lowered. Therefore, it is important to recalculate the MRTs and install them quickly. New protocol extensions for advertising the time needed to recompute shortest path routes and install them in the FIB will be defined elsewhere. Atlas, et al. Standards Track [Page 33]
RFC 7812 MRT Unicast FRR Architecture June 2016 13. Operational Considerations The following aspects of MRT-FRR are useful to consider when deploying the technology in different operational environments and network topologies. 13.1. Verifying Forwarding on MRT Paths The forwarding paths created by MRT-FRR are not used by normal (non- FRR) traffic. They are only used to carry FRR traffic for a short period of time after a failure has been detected. It is RECOMMENDED that an operator proactively monitor the MRT forwarding paths in order to be certain that the paths will be able to carry FRR traffic when needed. Therefore, an implementation SHOULD provide an operator with the ability to test MRT paths with Operations, Administration, and Maintenance (OAM) traffic. For example, when MRT paths are realized using LDP labels distributed for topology-scoped FECs, an implementation can use the MPLS ping and traceroute as defined in [RFC4379] and extended in [RFC7307] for topology-scoped FECs. 13.2. Traffic Capacity on Backup Paths During a fast-reroute event initiated by a PLR in response to a network failure, the flow of traffic in the network will generally not be identical to the flow of traffic after the IGP forwarding state has converged, taking the failure into account. Therefore, even if a network has been engineered to have enough capacity on the appropriate links to carry all traffic after the IGP has converged after the failure, the network may still not have enough capacity on the appropriate links to carry the flow of traffic during a fast- reroute event. This can result in more traffic loss during the fast- reroute event than might otherwise be expected. Note that there are two somewhat distinct aspects to this phenomenon. The first is that the path from the PLR to the destination during the fast-reroute event may be different from the path after the IGP converges. In this case, any traffic for the destination that reaches the PLR during the fast-reroute event will follow a different path from the PLR to the destination than will be followed after IGP convergence. The second aspect is that the amount of traffic arriving at the PLR for affected destinations during the fast-reroute event may be larger than the amount of traffic arriving at the PLR for affected destinations after IGP convergence. Immediately after a failure, any non-PLR routers that were sending traffic to the PLR before the failure will continue sending traffic to the PLR, and that traffic will be carried over backup paths from the PLR to the destinations. Atlas, et al. Standards Track [Page 34]
RFC 7812 MRT Unicast FRR Architecture June 2016 After IGP convergence, upstream non-PLR routers may direct some traffic away from the PLR. In order to reduce or eliminate the potential for transient traffic loss due to inadequate capacity during fast-reroute events, an operator can model the amount of traffic taking different paths during a fast-reroute event. If it is determined that there is not enough capacity to support a given fast-reroute event, the operator can address the issue either by augmenting capacity on certain links or modifying the backup paths themselves. The MRT Lowpoint algorithm produces a pair of diverse paths to each destination. These paths are generated by following the directed links on a common GADAG. The decision process for constructing the GADAG in the MRT Lowpoint algorithm takes into account individual IGP link metrics. At any given node, links are explored in order from lowest IGP metric to highest IGP metric. Additionally, the process for constructing the MRT-Red and Blue trees uses SPF traversals of the GADAG. Therefore, the IGP link metric values affect the computed backup paths. However, adjusting the IGP link metrics is not a generally applicable tool for modifying the MRT backup paths. Achieving a desired set of MRT backup paths by adjusting IGP metrics while at the same time maintaining the desired flow of traffic along the shortest paths is not possible in general. MRT-FRR allows an operator to exclude a link from the MRT Island, and thus the GADAG, by advertising it as MRT-Ineligible. Such a link will not be used on the MRT forwarding path for any destination. Advertising links as MRT-Ineligible is the main tool provided by MRT- FRR for keeping backup traffic off of lower bandwidth links during fast-reroute events. Note that all of the backup paths produced by the MRT Lowpoint algorithm are closely tied to the common GADAG computed as part of that algorithm. Therefore, it is generally not possible to modify a subset of paths without affecting other paths. This precludes more fine-grained modification of individual backup paths when using only paths computed by the MRT Lowpoint algorithm. However, it may be desirable to allow an operator to use MRT-FRR alternates together with alternates provided by other FRR technologies. A policy-based alternate selection process can allow an operator to select the best alternate from those provided by MRT and other FRR technologies. As a concrete example, it may be desirable to implement a policy where a downstream LFA (if it exists for a given failure mode and destination) is preferred over a given MRT alternate. This combination gives the operator the ability to affect where traffic flows during a fast-reroute event, while still Atlas, et al. Standards Track [Page 35]
RFC 7812 MRT Unicast FRR Architecture June 2016 producing backup paths that use no additional labels for LDP traffic and will not loop under multiple failures. This and other choices of alternate selection policy can be evaluated in the context of their effect on fast-reroute traffic flow and available capacity, as well as other deployment considerations. Note that future documents may define MRT profiles in addition to the default profile defined here. Different MRT profiles will generally produce alternate paths with different properties. An implementation may allow an operator to use different MRT profiles instead of or in addition to the default profile. 13.3. MRT IP Tunnel Loopback Address Management As described in Section 6.1.2, if an implementation uses IP tunneling as the mechanism to realize MRT forwarding paths, each node must advertise an MRT-Red and an MRT-Blue loopback address. These IP addresses must be unique within the routing domain to the extent that they do not overlap with each other or with any other routing table entries. It is expected that operators will use existing tools and processes for managing infrastructure IP addresses to manage these additional MRT-related loopback addresses. 13.4. MRT-FRR in a Network with Degraded Connectivity Ideally, routers in a service provider network using MRT-FRR will be initially deployed in a 2-connected topology, allowing MRT-FRR to find completely diverse paths to all destinations. However, a network can differ from an ideal 2-connected topology for many possible reasons, including network failures and planned maintenance events. MRT-FRR is designed to continue to function properly when network connectivity is degraded. When a network contains cut-vertices or cut-links dividing the network into different 2-connected blocks, MRT-FRR will continue to provide completely diverse paths for destinations within the same block as the PLR. For a destination in a different block from the PLR, the redundant paths created by MRT- FRR will be link and node diverse within each block, and the paths will only share links and nodes that are cut-links or cut-vertices in the topology. If a network becomes partitioned with one set of routers having no connectivity to another set of routers, MRT-FRR will function independently in each set of connected routers, providing redundant paths to destinations in same set of connected routers as a given PLR. Atlas, et al. Standards Track [Page 36]
RFC 7812 MRT Unicast FRR Architecture June 2016 13.5. Partial Deployment of MRT-FRR in a Network A network operator may choose to deploy MRT-FRR only on a subset of routers in an IGP area. MRT-FRR is designed to accommodate this partial deployment scenario. Only routers that advertise support for a given MRT profile will be included in a given MRT Island. For a PLR within the MRT Island, MRT-FRR will create redundant forwarding paths to all destinations with the MRT Island using maximally redundant trees all the way to those destinations. For destinations outside of the MRT Island, MRT-FRR creates paths to the destination that use forwarding state created by MRT-FRR within the MRT Island and shortest path forwarding state outside of the MRT Island. The paths created by MRT-FRR to non-Island destinations are guaranteed to be diverse within the MRT Island (if topologically possible). However, the part of the paths outside of the MRT Island may not be diverse. 14. IANA Considerations IANA has created the "MRT Profile Identifier Registry". The range is 0 to 255. The Default MRT Profile defined in this document has value 0. Values 1-200 are allocated by Standards Action. Values 201-220 are for Experimental Use. Values 221-254 are for Private Use. Value 255 is reserved for future registry extension. (The allocation and use policies are described in [RFC5226].) The initial registry is shown below. Value Description Reference ------- ---------------------------------------- ------------ 0 Default MRT Profile RFC 7812 1-200 Unassigned 201-220 Experimental Use 221-254 Private Use 255 Reserved (for future registry extension) The "MRT Profile Identifier Registry" is a new registry in the IANA Matrix. Following existing conventions, http://www.iana.org/ protocols displays a new header: "Maximally Redundant Tree (MRT) Parameters". Under that header, there is an entry for "MRT Profile Identifier Registry", which links to the registry itself at http://www.iana.org/assignments/mrt-parameters. Atlas, et al. Standards Track [Page 37]
RFC 7812 MRT Unicast FRR Architecture June 2016 15. Security Considerations In general, MRT forwarding paths do not follow shortest paths. The transit forwarding state corresponding to the MRT paths is created during normal operations (before a failure occurs). Therefore, a malicious packet with an appropriate header injected into the network from a compromised location would be forwarded to a destination along a non-shortest path. When this technology is deployed, a network security design should not rely on assumptions about potentially malicious traffic only following shortest paths. It should be noted that the creation of non-shortest forwarding paths is not unique to MRT. MRT-FRR requires that routers advertise information used in the formation of MRT backup paths. While this document does not specify the protocol extensions used to advertise this information, we discuss security considerations related to the information itself. Injecting false MRT-related information could be used to direct some MRT backup paths over compromised transmission links. Combined with the ability to generate network failures, this could be used to send traffic over compromised transmission links during a fast-reroute event. In order to prevent this potential exploit, a receiving router needs to be able to authenticate MRT-related information that claims to have been advertised by another router. 16. References 16.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>. [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, DOI 10.17487/RFC5226, May 2008, <http://www.rfc-editor.org/info/rfc5226>. [RFC7307] Zhao, Q., Raza, K., Zhou, C., Fang, L., Li, L., and D. King, "LDP Extensions for Multi-Topology", RFC 7307, DOI 10.17487/RFC7307, July 2014, <http://www.rfc-editor.org/info/rfc7307>. Atlas, et al. Standards Track [Page 38]
RFC 7812 MRT Unicast FRR Architecture June 2016 [RFC7811] Enyedi, G., Ed., Csaszar, A., Atlas, A., Ed., Bowers, C., and A. Gopalan, "An Algorithm for Computing IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR)", RFC 7811, DOI 10.17487/RFC7811, June 2016, <http://www.rfc-editor.org/info/rfc7811>. 16.2. Informative References [EnyediThesis] Enyedi, G., "Novel Algorithms for IP Fast Reroute", Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics Ph.D. Thesis, February 2011, <https://repozitorium.omikk.bme.hu/bitstream/ handle/10890/1040/ertekezes.pdf>. [LDP-MRT] Atlas, A., Tiruveedhula, K., Bowers, C., Tantsura, J., and IJ. Wijnands, "LDP Extensions to Support Maximally Redundant Trees", Work in Progress, draft-ietf-mpls-ldp- mrt-03, May 2016. [MRT-ARCH] Atlas, A., Kebler, R., Wijnands, IJ., Csaszar, A., and G. Enyedi, "An Architecture for Multicast Protection Using Maximally Redundant Trees", Work in Progress, draft-atlas- rtgwg-mrt-mc-arch-02, July 2013. [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/RFC2328, April 1998, <http://www.rfc-editor.org/info/rfc2328>. [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures", RFC 4379, DOI 10.17487/RFC4379, February 2006, <http://www.rfc-editor.org/info/rfc4379>. [RFC5286] Atlas, A., Ed. and A. Zinin, Ed., "Basic Specification for IP Fast Reroute: Loop-Free Alternates", RFC 5286, DOI 10.17487/RFC5286, September 2008, <http://www.rfc-editor.org/info/rfc5286>. [RFC5331] Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream Label Assignment and Context-Specific Label Space", RFC 5331, DOI 10.17487/RFC5331, August 2008, <http://www.rfc-editor.org/info/rfc5331>. Atlas, et al. Standards Track [Page 39]
RFC 7812 MRT Unicast FRR Architecture June 2016 [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, <http://www.rfc-editor.org/info/rfc5340>. [RFC5443] Jork, M., Atlas, A., and L. Fang, "LDP IGP Synchronization", RFC 5443, DOI 10.17487/RFC5443, March 2009, <http://www.rfc-editor.org/info/rfc5443>. [RFC5714] Shand, M. and S. Bryant, "IP Fast Reroute Framework", RFC 5714, DOI 10.17487/RFC5714, January 2010, <http://www.rfc-editor.org/info/rfc5714>. [RFC5715] Shand, M. and S. Bryant, "A Framework for Loop-Free Convergence", RFC 5715, DOI 10.17487/RFC5715, January 2010, <http://www.rfc-editor.org/info/rfc5715>. [RFC6976] Shand, M., Bryant, S., Previdi, S., Filsfils, C., Francois, P., and O. Bonaventure, "Framework for Loop-Free Convergence Using the Ordered Forwarding Information Base (oFIB) Approach", RFC 6976, DOI 10.17487/RFC6976, July 2013, <http://www.rfc-editor.org/info/rfc6976>. [RFC6981] Bryant, S., Previdi, S., and M. Shand, "A Framework for IP and MPLS Fast Reroute Using Not-Via Addresses", RFC 6981, DOI 10.17487/RFC6981, August 2013, <http://www.rfc-editor.org/info/rfc6981>. [RFC6987] Retana, A., Nguyen, L., Zinin, A., White, R., and D. McPherson, "OSPF Stub Router Advertisement", RFC 6987, DOI 10.17487/RFC6987, September 2013, <http://www.rfc-editor.org/info/rfc6987>. [RFC7490] Bryant, S., Filsfils, C., Previdi, S., Shand, M., and N. So, "Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)", RFC 7490, DOI 10.17487/RFC7490, April 2015, <http://www.rfc-editor.org/info/rfc7490>. Atlas, et al. Standards Track [Page 40]
RFC 7812 MRT Unicast FRR Architecture June 2016 Appendix A. Inter-level Forwarding Behavior for IS-IS In the description below, we use the terms "Level-1-only interface", "Level-2-only interface", and "Level-1-and-Level-2 interface" to mean an interface that has formed only a Level-1 adjacency, only a Level-2 adjacency, or both Level-1 and Level-2 adjacencies. Note that IS-IS also defines the concept of areas. A router is configured with an IS-IS area identifier, and a given router may be configured with multiple IS-IS area identifiers. For an IS-IS Level-1 adjacency to form between two routers, at least one IS-IS area identifier must match. IS-IS Level-2 adjacencies do not require any area identifiers to match. The behavior described below does not explicitly refer to IS-IS area identifiers. However, IS-IS area identifiers will indirectly affect the behavior by affecting the formation of Level-1 adjacencies. First, consider a packet destined to Z on MRT-Red or MRT-Blue received on a Level-1-only interface. If the best shortest path route to Z was learned from a Level-1 advertisement, then the packet should continue to be forwarded along MRT-Red or MRT-Blue. If, instead, the best route was learned from a Level-2 advertisement, then the packet should be removed from MRT-Red or MRT-Blue and forwarded on the shortest-path default forwarding topology. Now consider a packet destined to Z on MRT-Red or MRT-Blue received on a Level-2-only interface. If the best route to Z was learned from a Level-2 advertisement, then the packet should continue to be forwarded along MRT-Red or MRT-Blue. If, instead, the best route was learned from a Level-1 advertisement, then the packet should be removed from MRT-Red or MRT-Blue and forwarded on the shortest-path default forwarding topology. Finally, consider a packet destined to Z on MRT-Red or MRT-Blue received on a Level-1-and-Level-2 interface. This packet should continue to be forwarded along MRT-Red or MRT-Blue, regardless of which level the route was learned from. An implementation may simplify the decision-making process above by using the interface of the next hop for the route to Z to determine the level from which the best route to Z was learned. If the next hop points out a Level-1-only interface, then the route was learned from a Level-1 advertisement. If the next hop points out a Level- 2-only interface, then the route was learned from a Level-2 advertisement. A next hop that points out a Level-1-and-Level-2 interface does not provide enough information to determine the source of the best route. With this simplification, an implementation would need to continue forwarding along MRT-Red or MRT-Blue when the next- hop points out a Level-1-and-Level-2 interface. Therefore, a packet Atlas, et al. Standards Track [Page 41]
RFC 7812 MRT Unicast FRR Architecture June 2016 on MRT-Red or MRT-Blue going from Level-1 to Level-2 (or vice versa) that traverses a Level-1-and-Level-2 interface in the process will remain on MRT-Red or MRT-Blue. This simplification may not always produce the optimal forwarding behavior, but it does not introduce interoperability problems. The packet will stay on an MRT backup path longer than necessary, but it will still reach its destination. Appendix B. General Issues with Area Abstraction When a multihomed prefix is connected in two different areas, it may be impractical to protect them without adding the complexity of explicit tunneling. This is also a problem for LFA and Remote-LFA. 50 |----[ASBR Y]---[B]---[ABR 2]---[C] Backbone Area 0: | | ABR 1, ABR 2, C, D | | | | Area 20: A, ASBR X | | p ---[ASBR X]---[A]---[ABR 1]---[D] Area 10: B, ASBR Y 5 p is a Type 1 AS-external Figure 4: AS External Prefixes in Different Areas Consider the network in Figure 4 and assume there is a richer connective topology that isn't shown, where the same prefix is announced by ASBR X and ASBR Y, which are in different non-backbone areas. If the link from A to ASBR X fails, then an MRT alternate could forward the packet to ABR 1 and ABR 1 could forward it to D, but then D would find the shortest route is back via ABR 1 to Area 20. This problem occurs because the routers, including the ABR, in one area are not yet aware of the failure in a different area. The only way to get it from A to ASBR Y is to explicitly tunnel it to ASBR Y. If the traffic is unlabeled or the appropriate MPLS labels are known, then explicit tunneling MAY be used as long as the shortest path of the tunnel avoids the failure point. In that case, A must determine that it should use an explicit tunnel instead of an MRT alternate. Atlas, et al. Standards Track [Page 42]
RFC 7812 MRT Unicast FRR Architecture June 2016 Acknowledgements The authors would like to thank Mike Shand for his valuable review and contributions. The authors would like to thank Joel Halpern, Hannes Gredler, Ted Qian, Kishore Tiruveedhula, Shraddha Hegde, Santosh Esale, Nitin Bahadur, Harish Sitaraman, Raveendra Torvi, Anil Kumar SN, Bruno Decraene, Eric Wu, Janos Farkas, Rob Shakir, Stewart Bryant, and Alvaro Retana for their suggestions and review. Contributors Robert Kebler Juniper Networks 10 Technology Park Drive Westford, MA 01886 United States Email: rkebler@juniper.net Andras Csaszar Ericsson Konyves Kalman krt 11 Budapest 1097 Hungary Email: Andras.Csaszar@ericsson.com Jeff Tantsura Ericsson 300 Holger Way San Jose, CA 95134 United States Email: jeff.tantsura@ericsson.com Russ White VCE Email: russw@riw.us Atlas, et al. Standards Track [Page 43]
RFC 7812 MRT Unicast FRR Architecture June 2016
Authors' Addresses
Alia Atlas
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States
Email: akatlas@juniper.net
Chris Bowers
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
United States
Email: cbowers@juniper.net
Gabor Sandor Enyedi
Ericsson
Konyves Kalman krt 11.
Budapest 1097
Hungary
Email: Gabor.Sandor.Enyedi@ericsson.com
Atlas, et al. Standards Track [Page 44]
mirror server hosted at Truenetwork, Russian Federation.