Network Working Group                               N. Mavrogiannopoulos
Request for Comments: 5081                                   Independent
Category: Experimental                                     November 2007


  Using OpenPGP Keys for Transport Layer Security (TLS) Authentication

Status of This Memo

   This memo defines an Experimental Protocol for the Internet
   community.  It does not specify an Internet standard of any kind.
   Discussion and suggestions for improvement are requested.
   Distribution of this memo is unlimited.

Abstract

   This memo proposes extensions to the Transport Layer Security (TLS)
   protocol to support the OpenPGP key format.  The extensions discussed
   here include a certificate type negotiation mechanism, and the
   required modifications to the TLS Handshake Protocol.

Table of Contents

   1. Introduction ....................................................2
   2. Terminology .....................................................2
   3. Changes to the Handshake Message Contents .......................2
      3.1. Client Hello ...............................................2
      3.2. Server Hello ...............................................3
      3.3. Server Certificate .........................................3
      3.4. Certificate Request ........................................4
      3.5. Client Certificate .........................................5
      3.6. Other Handshake Messages ...................................5
   4. Security Considerations .........................................5
   5. IANA Considerations .............................................6
   6. Acknowledgements ................................................6
   7. References ......................................................6
      7.1. Normative References .......................................6
      7.2. Informative References .....................................7













Mavrogiannopoulos             Experimental                      [Page 1]


RFC 5081                   Using OpenPGP Keys              November 2007


1.  Introduction

   The IETF has two sets of standards for public key certificates, one
   set for use of X.509 certificates [PKIX] and one for OpenPGP
   certificates [OpenPGP].  At the time of writing, TLS [TLS] standards
   are defined to use only X.509 certificates.  This document specifies
   a way to negotiate use of OpenPGP certificates for a TLS session, and
   specifies how to transport OpenPGP certificates via TLS.  The
   proposed extensions are backward compatible with the current TLS
   specification, so that existing client and server implementations
   that make use of X.509 certificates are not affected.

2.  Terminology

   The term "OpenPGP key" is used in this document as in the OpenPGP
   specification [OpenPGP].  We use the term "OpenPGP certificate" to
   refer to OpenPGP keys that are enabled for authentication.

   This document uses the same notation and terminology used in the TLS
   Protocol specification [TLS].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Changes to the Handshake Message Contents

   This section describes the changes to the TLS handshake message
   contents when OpenPGP certificates are to be used for authentication.

3.1.  Client Hello

   In order to indicate the support of multiple certificate types,
   clients MUST include an extension of type "cert_type" (see Section 5)
   to the extended client hello message.  The hello extension mechanism
   is described in [TLSEXT].

   This extension carries a list of supported certificate types the
   client can use, sorted by client preference.  This extension MUST be
   omitted if the client only supports X.509 certificates.  The
   "extension_data" field of this extension contains a
   CertificateTypeExtension structure.









Mavrogiannopoulos             Experimental                      [Page 2]


RFC 5081                   Using OpenPGP Keys              November 2007


      enum { client, server } ClientOrServerExtension;

      enum { X.509(0), OpenPGP(1), (255) } CertificateType;

      struct {
         select(ClientOrServerExtension) {
            case client:
               CertificateType certificate_types<1..2^8-1>;
            case server:
               CertificateType certificate_type;
         }
      } CertificateTypeExtension;

   No new cipher suites are required to use OpenPGP certificates.  All
   existing cipher suites that support a compatible, with the key, key
   exchange method can be used in combination with OpenPGP certificates.

3.2.  Server Hello

   If the server receives a client hello that contains the "cert_type"
   extension and chooses a cipher suite that requires a certificate,
   then two outcomes are possible.  The server MUST either select a
   certificate type from the certificate_types field in the extended
   client hello or terminate the connection with a fatal alert of type
   "unsupported_certificate".

   The certificate type selected by the server is encoded in a
   CertificateTypeExtension structure, which is included in the extended
   server hello message using an extension of type "cert_type".  Servers
   that only support X.509 certificates MAY omit including the
   "cert_type" extension in the extended server hello.

3.3.  Server Certificate

   The contents of the certificate message sent from server to client
   and vice versa are determined by the negotiated certificate type and
   the selected cipher suite's key exchange algorithm.

   If the OpenPGP certificate type is negotiated, then it is required to
   present an OpenPGP certificate in the certificate message.  The
   certificate must contain a public key that matches the selected key
   exchange algorithm, as shown below.









Mavrogiannopoulos             Experimental                      [Page 3]


RFC 5081                   Using OpenPGP Keys              November 2007


      Key Exchange Algorithm  OpenPGP Certificate Type

      RSA                     RSA public key that can be used for
                              encryption.

      DHE_DSS                 DSS public key that can be used for
                              authentication.

      DHE_RSA                 RSA public key that can be used for
                              authentication.

   An OpenPGP certificate appearing in the certificate message is sent
   using the binary OpenPGP format.  The certificate MUST contain all
   the elements required by Section 11.1 of [OpenPGP].

   The option is also available to send an OpenPGP fingerprint, instead
   of sending the entire certificate.  The process of fingerprint
   generation is described in Section 12.2 of [OpenPGP].  The peer shall
   respond with a "certificate_unobtainable" fatal alert if the
   certificate with the given fingerprint cannot be found.  The
   "certificate_unobtainable" fatal alert is defined in Section 4 of
   [TLSEXT].

      enum {
           cert_fingerprint (0), cert (1), (255)
      } OpenPGPCertDescriptorType;

      opaque OpenPGPCertFingerprint<16..20>;

      opaque OpenPGPCert<0..2^24-1>;

      struct {
           OpenPGPCertDescriptorType descriptorType;
           select (descriptorType) {
                case cert_fingerprint: OpenPGPCertFingerprint;
                case cert: OpenPGPCert;
           }
      } Certificate;

3.4.  Certificate Request

   The semantics of this message remain the same as in the TLS
   specification.  However, if this message is sent, and the negotiated
   certificate type is OpenPGP, the "certificate_authorities" list MUST
   be empty.






Mavrogiannopoulos             Experimental                      [Page 4]


RFC 5081                   Using OpenPGP Keys              November 2007


3.5.  Client Certificate

   This message is only sent in response to the certificate request
   message.  The client certificate message is sent using the same
   formatting as the server certificate message, and it is also required
   to present a certificate that matches the negotiated certificate
   type.  If OpenPGP certificates have been selected and no certificate
   is available from the client, then a certificate structure that
   contains an empty OpenPGPCert vector MUST be sent.  The server SHOULD
   respond with a "handshake_failure" fatal alert if client
   authentication is required.

3.6.  Other Handshake Messages

   All the other handshake messages are identical to the TLS
   specification.

4.  Security Considerations

   All security considerations discussed in [TLS], [TLSEXT], and
   [OpenPGP] apply to this document.  Considerations about the use of
   the web of trust or identity and certificate verification procedure
   are outside the scope of this document.  These are considered issues
   to be handled by the application layer protocols.

   The protocol for certificate type negotiation is identical in
   operation to ciphersuite negotiation of the [TLS] specification with
   the addition of default values when the extension is omitted.  Since
   those omissions have a unique meaning and the same protection is
   applied to the values as with ciphersuites, it is believed that the
   security properties of this negotiation are the same as with
   ciphersuite negotiation.

   When using OpenPGP fingerprints instead of the full certificates, the
   discussion in Section 6.3 of [TLSEXT] for "Client Certificate URLs"
   applies, especially when external servers are used to retrieve keys.
   However, a major difference is that although the
   "client_certificate_url" extension allows identifying certificates
   without including the certificate hashes, this is not possible in the
   protocol proposed here.  In this protocol, the certificates, when not
   sent, are always identified by their fingerprint, which serves as a
   cryptographic hash of the certificate (see Section 12.2 of
   [OpenPGP]).

   The information that is available to participating parties and
   eavesdroppers (when confidentiality is not available through a
   previous handshake) is the number and the types of certificates they
   hold, plus the contents of certificates.



Mavrogiannopoulos             Experimental                      [Page 5]


RFC 5081                   Using OpenPGP Keys              November 2007


5.  IANA Considerations

   This document defines a new TLS extension, "cert_type", assigned a
   value of 9 from the TLS ExtensionType registry defined in [TLSEXT].
   This value is used as the extension number for the extensions in both
   the client hello message and the server hello message.  The new
   extension type is used for certificate type negotiation.

   The "cert_type" extension contains an 8-bit CertificateType field,
   for which a new registry, named "TLS Certificate Types", is
   established in this document, to be maintained by IANA.  The registry
   is segmented in the following way:

   1.  Values 0 (X.509) and 1 (OpenPGP) are defined in this document.

   2.  Values from 2 through 223 decimal inclusive are assigned via IETF
       Consensus [RFC2434].

   3.  Values from 224 decimal through 255 decimal inclusive are
       reserved for Private Use [RFC2434].

6.  Acknowledgements

   This document was based on earlier work made by Will Price and
   Michael Elkins.

   The author wishes to thank Werner Koch, David Taylor, Timo Schulz,
   Pasi Eronen, Jon Callas, Stephen Kent, Robert Sparks, and Hilarie
   Orman for their suggestions on improving this document.

7.  References

7.1.  Normative References

   [TLS]      Dierks, T. and E. Rescorla, "The TLS Protocol Version
              1.1", RFC 4346, April 2006.

   [OpenPGP]  Callas, J., Donnerhacke, L., Finey, H., Shaw, D., and R.
              Thayer, "OpenPGP Message Format", RFC 4880, November 2007.

   [TLSEXT]   Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
              and T. Wright, "Transport Layer Security (TLS)
              Extensions", RFC 4366, April 2006.

   [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", RFC 2434,
              October 1998.




Mavrogiannopoulos             Experimental                      [Page 6]


RFC 5081                   Using OpenPGP Keys              November 2007


   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", RFC 2119, March 1997.

7.2.  Informative References

   [PKIX]     Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
              X.509 Public Key Infrastructure Certificate and
              Certificate Revocation List (CRL) Profile", RFC 3280,
              April 2002.

Author's Address

   Nikos Mavrogiannopoulos
   Independent
   Arkadias 8
   Halandri, Attiki  15234
   Greece

   EMail: nmav@gnutls.org
   URI:   http://www.gnutls.org/































Mavrogiannopoulos             Experimental                      [Page 7]


RFC 5081                   Using OpenPGP Keys              November 2007


Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.












Mavrogiannopoulos             Experimental                      [Page 8]

mirror server hosted at Truenetwork, Russian Federation.