
RFC 9203
The Object Security for Constrained RESTful
Environments (OSCORE) Profile of the
Authentication and Authorization for Constrained
Environments (ACE) Framework

Abstract
This document specifies a profile for the Authentication and Authorization for Constrained
Environments (ACE) framework. It utilizes Object Security for Constrained RESTful
Environments (OSCORE) to provide communication security and proof-of-possession for a key
owned by the client and bound to an OAuth 2.0 access token.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9203
Standards Track
March 2022
2070-1721

 F. Palombini
Ericsson AB

L. Seitz
Combitech

G. Selander
Ericsson AB

M. Gunnarsson
RISE

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9203

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Palombini, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9203
https://www.rfc-editor.org/info/rfc9203
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Terminology

2. Protocol Overview

3. Client-AS Communication

3.1. C-to-AS: POST to Token Endpoint

3.2. AS-to-C: Access Token

3.2.1. The OSCORE_Input_Material

4. Client-RS Communication

4.1. C-to-RS: POST to authz-info Endpoint

4.1.1. The Nonce 1 Parameter

4.1.2. The ace_client_recipientid Parameter

4.2. RS-to-C: 2.01 (Created)

4.2.1. The Nonce 2 Parameter

4.2.2. The ace_server_recipientid Parameter

4.3. OSCORE Setup

4.4. Access Rights Verification

5. Secure Communication with AS

6. Discarding the Security Context

7. Security Considerations

8. Privacy Considerations

9. IANA Considerations

9.1. ACE Profile Registry

9.2. OAuth Parameters Registry

9.3. OAuth Parameters CBOR Mappings Registry

9.4. OSCORE Security Context Parameters Registry

9.5. CWT Confirmation Methods Registry

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 2

9.6. JWT Confirmation Methods Registry

9.7. Expert Review Instructions

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Profile Requirements

Acknowledgments

Authors' Addresses

1. Introduction
This document specifies the "coap_oscore" profile of the ACE framework . In this profile,
a client (C) and a resource server (RS) use the Constrained Application Protocol (CoAP)
to communicate. The client uses an access token, bound to a symmetric key (the proof-of-
possession (PoP) key) to authorize its access to the resource server. Note that this profile uses a
symmetric-crypto-based scheme, where the symmetric secret is used as input material for keying
material derivation. In order to provide communication security and PoP, the client and resource
server use Object Security for Constrained RESTful Environments (OSCORE) as defined in

. Note that the PoP is not achieved through a dedicated protocol element but rather
occurs after the first message exchange using OSCORE.

OSCORE specifies how to use CBOR Object Signing and Encryption (COSE) to
secure CoAP messages. Note that OSCORE can be used to secure CoAP messages, as well as HTTP
and combinations of HTTP and CoAP; a profile of ACE similar to the one described in this
document, with the difference of using HTTP instead of CoAP as the communication protocol,
could be specified analogously to this one.

[RFC9200]
[RFC7252]

[RFC8613]

[RFC9052] [RFC9053]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

Certain security-related terms such as "authentication", "authorization", "confidentiality", "(data)
integrity", "Message Authentication Code (MAC)", "Hash-based Message Authentication Code
(HMAC)", and "verify" are taken from .

RESTful terminology follows HTTP .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC4949]

[RFC7231]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 3

2. Protocol Overview
This section gives an overview of how to use the ACE Framework to secure the
communication between a client and a resource server using OSCORE . The parameters
needed by the client to negotiate the use of this profile with the AS, as well as the OSCORE setup
process, are described in detail in the following sections.

The RS maintains a collection of OSCORE Security Contexts with associated authorization
information for all the clients that it is communicating with. The authorization information is
maintained as policy that is used as input to processing requests from those clients.

This profile requires a client to retrieve an access token from the AS for the resource it wants to
access on an RS, by sending an access token request to the token endpoint, as specified in

. The access token request and response be confidentiality protected and
ensure authenticity. The use of OSCORE between the client and AS is in this profile,
to reduce the number of libraries the client has to support, but other protocols fulfilling the
security requirements defined in alternatively be used, such as TLS

 or DTLS .

Once the client has retrieved the access token, it generates a nonce N1, as defined in this
document (see Section 4.1.1). The client also generates its own OSCORE Recipient ID, ID1 (see

), for use with the keying material associated to the RS. The client posts the
token N1 and its Recipient ID to the RS using the authz-info endpoint and mechanisms specified
in and Content-Format = application/ace+cbor. When using this profile,
the communication with the authz-info endpoint is not protected, except for the update of access
rights.

Readers are expected to be familiar with the terms and concepts defined in OSCORE ,
such as "Security Context" and "Recipient ID".

Terminology for entities in the architecture is defined in OAuth 2.0 , such as client (C),
resource server (RS), and authorization server (AS). It is assumed in this document that a given
resource on a specific RS is associated to a unique AS.

Concise Binary Object Representation (CBOR) and Concise Data Definition Language
(CDDL) are used in this document. CDDL predefined type names, especially "bstr" for
CBOR byte strings and "tstr" for CBOR text strings, are used extensively in this document.

Note that the term "endpoint" is used as in , following its OAuth definition, which is to
denote resources such as token and introspect at the AS and authz-info at the RS. The CoAP
definition, which is "[a]n entity participating in the CoAP protocol" , is not used in this
document.

Examples throughout this document are expressed in CBOR diagnostic notation without the tag
and value abbreviations.

[RFC8613]

[RFC6749]

[RFC8949]
[RFC8610]

[RFC9200]

[RFC7252]

[RFC9200]
[RFC8613]

Section
5.8 of [RFC9200] MUST

RECOMMENDED

Section 5 of [RFC9200] MAY
[RFC8446] [RFC9147]

Section 3.1 of [RFC8613]

Section 5.8 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9200#section-5.8
https://www.rfc-editor.org/rfc/rfc9200#section-5.8
https://www.rfc-editor.org/rfc/rfc9200#section-5
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8

If the access token is valid, the RS replies to this request with a 2.01 (Created) response with
Content-Format = application/ace+cbor, which contains a nonce N2 and its newly generated
OSCORE Recipient ID, ID2, for use with the keying material associated to the client. Moreover, the
server concatenates the input salt received in the token, N1, and N2 to obtain the Master Salt of
the OSCORE Security Context (see). The RS then derives the complete
Security Context associated with the received token from the Master Salt; the OSCORE Recipient
ID generated by the client (set as its OSCORE Sender ID); its own OSCORE Recipient ID; plus the
parameters received in the access token from the AS, following .

In a similar way, after receiving the nonce N2, the client concatenates the input salt N1 and N2 to
obtain the Master Salt of the OSCORE Security Context. The client then derives the complete
Security Context from the Master Salt; the OSCORE Recipient ID generated by the RS (set as its
OSCORE Sender ID); its own OSCORE Recipient ID; plus the parameters received from the AS.

Finally, the client starts the communication with the RS by sending a request protected with
OSCORE to the RS. If the request is successfully verified, the server stores the complete Security
Context state that is ready for use in protecting messages and uses it in the response, and in
further communications with the client, until token deletion due to, for example, expiration. This
Security Context is discarded when a token (whether the same or a different one) is used to
successfully derive a new Security Context for that client.

The use of nonces N1 and N2 during the exchange prevents the reuse of an Authenticated
Encryption with Associated Data (AEAD) nonce/key pair for two different messages. Reuse might
otherwise occur when the client and RS derive a new Security Context from an existing (non-
expired) access token, as might occur when either party has just rebooted, and that might lead to
loss of both confidentiality and integrity. Instead, by using the exchanged nonces N1 and N2 as
part of the Master Salt, the request to the authz-info endpoint posting the same token results in a
different Security Context, by OSCORE construction, since even though the Master Secret, Sender
ID, and Recipient ID are the same, the Master Salt is different (see). If the
exchanged nonces were reused, a node reusing a non-expired old token would be susceptible to
on-path attackers provoking the creation of an OSCORE message using an old AEAD key and
nonce.

After the whole message exchange has taken place, the client can contact the AS to request an
update of its access rights, sending a similar request to the token endpoint that also includes an
identifier so that the AS can find the correct OSCORE security input material it has previously
shared with the client. This specific identifier, encoded as a byte string, is assigned by the AS to be
unique in the sets of its OSCORE security input materials, and it is not used as input material to
derive the full OSCORE Security Context.

An overview of the profile flow for the OSCORE profile is given in Figure 1. The names of messages
coincide with those of when applicable.

Section 3 of [RFC8613]

Section 3.2 of [RFC8613]

Section 3.2.1 of [RFC8613]

[RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8613#section-3
https://www.rfc-editor.org/rfc/rfc8613#section-3.2
https://www.rfc-editor.org/rfc/rfc8613#section-3.2.1

Figure 1: Protocol Overview

 C RS AS
 | | |
 | ----- POST /token ----------------------------> |
 | | |
 | <---------------------------- Access Token ----- |
 | + Access Information |
---- POST /authz-info --->	
(access_token, N1, ID1)	
<- 2.01 Created (N2, ID2)-	
/Sec Context /Sec Context	
derivation/ derivation/	
---- OSCORE Request ----->	
/proof-of-possession	
Sec Context storage/	
<--- OSCORE Response -----	
/proof-of-possession	
Sec Context storage/	
---- OSCORE Request ----->	
<--- OSCORE Response -----	
...	

3. Client-AS Communication
The following subsections describe the details of the POST request and response to the token
endpoint between the client and AS. defines how to derive a Security
Context based on a shared Master Secret and a set of other parameters, established between the
client and server, which the client receives from the AS in this exchange. The PoP key included in
the response from the AS be used as a Master Secret in OSCORE.

Section 3.2 of [RFC8613]

MUST

3.1. C-to-AS: POST to Token Endpoint
The client-to-AS request is specified in .

The client must send this POST request to the token endpoint over a secure channel that
guarantees authentication, message integrity, and confidentiality (see Section 5).

An example of such a request is shown in Figure 2.

Section 5.8.1 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8613#section-3.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1

If the client wants to update its access rights without changing an existing OSCORE Security
Context, it include a "req_cnf" object in its POST request to the token endpoint, with the kid
field carrying a CBOR byte string containing the OSCORE Input Material identifier (assigned as
discussed in Section 3.2). This identifier, together with other information such as audience (see

), can be used by the AS to determine the shared secret bound to the
proof-of-possession token; therefore, it identify a symmetric key that was previously
generated by the AS as a shared secret for the communication between the client and the RS. The
AS verify that the received value identifies a proof-of-possession key that has previously
been issued to the requesting client. If that is not the case, the client-to-AS request be
declined with the error code invalid_request as defined in .

An example of such a request is shown in Figure 3.

Figure 2: Example C-to-AS POST /token Request for an Access Token Bound to a Symmetric Key

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "audience" : "tempSensor4711",
 "scope" : "read"
 }

MUST

Section 5.8.1 of [RFC9200]
MUST

MUST
MUST

Section 5.8.3 of [RFC9200]

Figure 3: Example C-to-AS POST /token Request for Updating Rights to an Access Token Bound to a
Symmetric Key

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "audience" : "tempSensor4711",
 "scope" : "write",
 "req_cnf" : {
 "kid" : h'01'
 }

3.2. AS-to-C: Access Token
After verifying the POST request to the token endpoint and that the client is authorized to obtain
an access token corresponding to its access token request, the AS responds as defined in

. If the client request was invalid, or not authorized, the AS returns an error
response as described in .

Section
5.8.2 of [RFC9200]

Section 5.8.3 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3

The AS can signal that the use of OSCORE is for a specific access token by including the
ace_profile parameter with the value "coap_oscore" in the access token response. This means
that the client use OSCORE towards all resource servers for which this access token is valid,
and follow Section 4.3 to derive the security context to run OSCORE. Usually, it is assumed that
constrained devices will be preconfigured with the necessary profile, so that this kind of profile
signaling can be omitted.

Moreover, the AS send the following data:

a Master Secret
an identifier of the OSCORE Input Material

Additionally, the AS send the following data, in the same response.

a context identifier
an AEAD algorithm
an HMAC-based key derivation function (HKDF) algorithm ; see

a salt
the OSCORE version number

This data is transported in the OSCORE_Input_Material. The OSCORE_Input_Material is a CBOR
map object, defined in Section 3.2.1. This object is transported in the cnf parameter of the access
token response, as defined in , as the value of a field named "osc", which is
registered in Sections 9.5 and 9.6.

The AS assign an identifier to the context (context identifier). This identifier is used as ID
Context in the OSCORE context as described in . If assigned, these
parameters be communicated as the contextId field in the OSCORE_Input_Material. The
application needs to consider that this identifier is sent in the clear and may reveal information
about the endpoints, as mentioned in .

The Master Secret and the identifier of the OSCORE_Input_Material be communicated as
the ms and id field in the osc field in the cnf parameter of the access token response. If included,
the following are sent: the AEAD algorithm in the alg parameter in the OSCORE_Input_Material;
the HKDF algorithm in the hkdf parameter of the OSCORE_Input_Material; a salt in the salt
parameter of the OSCORE_Input_Material; and the OSCORE version in the version parameter of
the OSCORE_Input_Material.

The same parameters be included in the claims associated with the access token. The
OSCORE Master Secret be encrypted by the authorization server so that only the resource
server can decrypt it (see). The use of a CBOR Web Token (CWT) protected
with COSE_Encrypt/COSE_Encrypt0 as specified in is in this profile. If
the token is a CWT, the same OSCORE_Input_Material structure defined above be placed in
the osc field of the cnf claim of this token.

REQUIRED

MUST

MUST

•
•

MAY

•
•
• [RFC5869] Section 3.1 of

[RFC9053]
•
•

Section 3.2 of [RFC9201]

MAY
Section 3.1 of [RFC8613]

MUST

Section 12.8 of [RFC8613]

MUST

MUST
MUST

Section 6.1 of [RFC9200]
[RFC8392] RECOMMENDED

MUST

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9053#section-3.1
https://www.rfc-editor.org/rfc/rfc9201#section-3.2
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc8613#section-12.8
https://www.rfc-editor.org/rfc/rfc9200#section-6.1

The AS send a different OSCORE_Input_Material (and therefore different access tokens) to
different authorized clients, in order for the RS to differentiate between clients.

Figure 4 shows an example of an AS response. The access token has been truncated for
readability.

Figure 5 shows an example CWT Claims Set, including the relevant OSCORE parameters in the cnf
claim.

The same CWT Claims Set as in Figure 5, using the value abbreviations defined in and
 and encoded in CBOR, is shown in Figure 6. The bytes in hexadecimal are reported in

the first column, while their corresponding CBOR meaning is reported after the # sign on the
second column, for readability.

MUST

Figure 4: Example AS-to-C Access Token Response with an OSCORE Profile

 Header: Created (Code=2.01)
 Content-Type: "application/ace+cbor"
 Payload:
 {
 "access_token" : h'8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)',
 "ace_profile" : "coap_oscore",
 "expires_in" : "3600",
 "cnf" : {
 "osc" : {
 "id" : h'01',
 "ms" : h'f9af838368e353e78888e1426bd94e6f'
 }
 }
 }

Figure 5: Example CWT Claims Set with OSCORE Parameters

{
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "scope" : "temperature_g firmware_p",
 "cnf" : {
 "osc" : {
 "ms" : h'f9af838368e353e78888e1426bd94e6f',
 "id" : h'01'
 }
 }
}

[RFC9200]
[RFC8747]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 9

If the client has requested an update to its access rights using the same OSCORE Security Context,
which is valid and authorized, the AS omit the cnf parameter in the response and
carry the OSCORE Input Material identifier in the kid field in the cnf claim of the token. This
identifier needs to be included in the token in order for the RS to identify the correct OSCORE
Input Material.

Figure 7 shows an example of such an AS response. The access token has been truncated for
readability.

Figure 6: Example CWT Claims Set with OSCORE Parameters Using CBOR Encoding

A5 # map(5)
 63 # text(3)
 617564 # "aud"
 76 # text(22)
 74656D7053656E736F72496E4C6976696E67526F6F6D
 # "tempSensorInLivingRoom"
 63 # text(3)
 696174 # "iat"
 6A # text(10)
 31333630313839323234 # "1360189224"
 63 # text(3)
 657870 # "exp"
 6A # text(10)
 31333630323839323234 # "1360289224"
 65 # text(5)
 73636F7065 # "scope"
 78 18 # text(24)
 74656D70657261747572655F67206669726D776172655F70
 # "temperature_g firmware_p"
 63 # text(3)
 636E66 # "cnf"
 A1 # map(1)
 63 # text(3)
 6F7363 # "osc"
 A2 # map(2)
 62 # text(2)
 6D73 # "ms"
 50 # bytes(16)
 F9AF838368E353E78888E1426BD94E6F
 # "\xF9\xAF\x83\x83h\xE3S\xE7
 \x88\x88\xE1Bk\xD9No"
 62 # text(2)
 6964 # "id"
 41 # bytes(1)
 01 # "\x01"

MUST MUST

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 10

Figure 8 shows an example CWT Claims Set that contains the necessary OSCORE parameters in
the cnf claim for the update of access rights.

Figure 7: Example AS-to-C Access Token Response with an OSCORE Profile for the Update of Access
Rights

 Header: Created (Code=2.01)
 Content-Type: "application/ace+cbor"
 Payload:
 {
 "access_token" : h'8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)',
 "ace_profile" : "coap_oscore",
 "expires_in" : "3600"
 }

Figure 8: Example CWT Claims Set with OSCORE Parameters for the Update of Access Rights

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "scope" : "temperature_h",
 "cnf" : {
 "kid" : h'01'
 }
 }

3.2.1. The OSCORE_Input_Material

An OSCORE_Input_Material is an object that represents the input material to derive an OSCORE
Security Context, i.e., the local set of information elements necessary to carry out the
cryptographic operations in OSCORE (). In particular, the
OSCORE_Input_Material is defined to be serialized and transported between nodes, as specified
by this document, but it can also be used by other specifications if needed. The
OSCORE_Input_Material can be encoded as either a JSON object or a CBOR map. The set of
common parameters that can appear in an OSCORE_Input_Material can be found in the IANA
"OSCORE Security Context Parameters" registry (Section 9.4), defined for extensibility, and the
initial set of parameters defined in this document is specified below. All parameters are optional.
Table 1 provides a summary of the OSCORE_Input_Material parameters defined in this section.

Section 3.1 of [RFC8613]

name CBOR
label

CBOR type registry description

id 0 byte string OSCORE Input
Material identifier

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc8613#section-3.1

id:

version:

ms:

hkdf:

This parameter identifies the OSCORE_Input_Material and is encoded as a byte string. In
JSON, the "id" value is a base64-encoded byte string. In CBOR, the "id" type is a byte string, and
it has label 0.

This parameter identifies the OSCORE version number, which is an unsigned integer.
For more information about this field, see . In JSON, the "version" value
is an integer. In CBOR, the "version" type is an integer, and it has label 1.

This parameter identifies the OSCORE Master Secret value, which is a byte string. For more
information about this field, see . In JSON, the "ms" value is a base64-
encoded byte string. In CBOR, the "ms" type is byte string, and it has label 2.

This parameter identifies the OSCORE HKDF Algorithm. For more information about this
field, see . The values used be registered in the IANA "COSE
Algorithms" registry (see) and be HMAC-based HKDF algorithms (see

). The value can be either the integer or the text-string value of the
HMAC-based HKDF algorithm in the "COSE Algorithms" registry. In JSON, the "hkdf" value is a
case-sensitive ASCII string or an integer. In CBOR, the "hkdf" type is a text string or integer, and
it has label 3.

name CBOR
label

CBOR type registry description

version 1 unsigned
integer

OSCORE version

ms 2 byte string OSCORE Master Secret
value

hkdf 3 text string /
integer

 values
(HMAC-based)

OSCORE HKDF value

alg 4 text string /
integer

 values
(AEAD)

OSCORE AEAD
Algorithm value

salt 5 byte string an input to OSCORE
Master Salt value

contextId 6 byte string OSCORE ID Context
value

Table 1: OSCORE_Input_Material Parameters

[COSE.Algorithms]

[COSE.Algorithms]

Section 5.4 of [RFC8613]

Section 3.1 of [RFC8613]

Section 3.1 of [RFC8613] MUST
[COSE.Algorithms] MUST

Section 3.1 of [RFC9053]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8613#section-5.4
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc9053#section-3.1

alg:

salt:

contextId:

This parameter identifies the OSCORE AEAD Algorithm. For more information about this
field, see . The values used be registered in the IANA "COSE
Algorithms" registry (see) and be AEAD algorithms. The value can be
either the integer or the text-string value of the HMAC-based HKDF algorithm in the "COSE
Algorithms" registry. In JSON, the "alg" value is a case-sensitive ASCII string or an integer. In
CBOR, the "alg" type is a text string or integer, and it has label 4.

This parameter identifies an input to the OSCORE Master Salt value, which is a byte string.
For more information about this field, see . In JSON, the "salt" value is a
base64-encoded byte string. In CBOR, the "salt" type is a byte string, and it has label 5.

This parameter identifies the security context as a byte string. This identifier is used
as OSCORE ID Context. For more information about this field, see . In
JSON, the "contextID" value is a base64-encoded byte string. In CBOR, the "contextID" type is a
byte string, and it has label 6.

An example of JSON OSCORE_Input_Material is given in Figure 9.

The CDDL grammar describing the CBOR OSCORE_Input_Material is:

Section 3.1 of [RFC8613] MUST
[COSE.Algorithms] MUST

Section 3.1 of [RFC8613]

Section 3.1 of [RFC8613]

Figure 9: Example JSON OSCORE_Input_Material

 "osc" : {
 "alg" : "AES-CCM-16-64-128",
 "id" : b64'AQ=='
 "ms" : b64'+a+Dg2jjU+eIiOFCa9lObw'
 }

OSCORE_Input_Material = {
 ? 0 => bstr, ; id
 ? 1 => int, ; version
 ? 2 => bstr, ; ms
 ? 3 => tstr / int, ; hkdf
 ? 4 => tstr / int, ; alg
 ? 5 => bstr, ; salt
 ? 6 => bstr, ; contextId
 * int / tstr => any
}

4. Client-RS Communication
The following subsections describe the details of the POST request and response to the authz-info
endpoint between the client and RS. The client generates a nonce N1 and an identifier ID1 that is
unique in the sets of its own Recipient IDs and posts them together with the token that includes
the materials (e.g., OSCORE parameters) received from the AS to the RS. The RS then generates a
nonce N2 and an identifier ID2 that is unique in the sets of its own Recipient IDs and uses

 to derive a security context based on a shared Master Secret, the two exchanged
nonces, and the two identifiers, established between the client and server. The exchanged nonces

Section
3.2 of [RFC8613]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc8613#section-3.1
https://www.rfc-editor.org/rfc/rfc8613#section-3.2
https://www.rfc-editor.org/rfc/rfc8613#section-3.2

and identifiers are encoded as a CBOR byte string if CBOR is used and as a base64 string if JSON is
used. This security context is used to protect all future communication between the client and RS
using OSCORE, as long as the access token is valid.

Note that the RS and client authenticate each other by generating the shared OSCORE Security
Context using the PoP key as the Master Secret. An attacker posting a valid token to the RS will
not be able to generate a valid OSCORE Security Context and thus will not be able to prove
possession of the PoP key. Additionally, the mutual authentication is only achieved after the client
has successfully verified a response from the RS protected with the generated OSCORE Security
Context.

4.1. C-to-RS: POST to authz-info Endpoint
The client generate a nonce value N1 that is very unlikely to have been previously used with
the same input keying material. The use of a 64-bit long random number as the nonce's value is

 in this profile. The client store the nonce N1 as long as the response from
the RS is not received and the access token related to it is still valid (to the best of the client's
knowledge).

The client generates its own Recipient ID, ID1, for the OSCORE Security Context that it is
establishing with the RS. By generating its own Recipient ID, the client makes sure that it does not
collide with any of its Recipient IDs, nor with any other identifier ID1 if the client is executing this
exchange with a different RS at the same time.

The client use CoAP and the authorization information resource as described in
 to transport the token, N1, and ID1 to the RS.

Note that the use of the payload and the Content-Format is different from what is described in
, which only transports the token without any CBOR wrapping. In this

profile, the client wrap the token, N1, and ID1 in a CBOR map. The client use the
Content-Format "application/ace+cbor" defined in . The client
include the access token using the access_token parameter; N1 using the nonce1 parameter
defined in Section 4.1.1; and ID1 using the ace_client_recipientid parameter defined in
Section 4.1.2.

The communication with the authz-info endpoint does not have to be protected, except for the
update of access rights case described below.

Note that a client may be required to re-POST the access token in order to complete a request,
since an RS may delete a stored access token (and associated Security Context) at any time, for
example, due to all storage space being consumed. This situation is detected by the client when it
receives an AS Request Creation Hints response. Reposting the same access token will result in
deriving a new OSCORE Security Context to be used with the RS, as different exchanged nonces
will be used.

MUST

RECOMMENDED MUST

MUST Section
5.8.1 of [RFC9200]

Section 5.8.1 of [RFC9200]
MUST MUST

Section 8.14 of [RFC9200] MUST

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9200#section-8.14

The client may also choose to re-POST the access token in order to update its OSCORE Security
Context. In that case, the client and the RS will exchange newly generated nonces, renegotiate
identifiers, and derive new keying material. The client and RS might decide to keep the same
identifiers or renew them during the renegotiation.

Figure 10 shows an example of the request sent from the client to the RS. The access token has
been truncated for readability.

If the client has already posted a valid token, has already established a security association with
the RS, and wants to update its access rights, the client can do so by posting the new token
(retrieved from the AS and containing the update of access rights) to the /authz-info endpoint. The
client protect the request using the OSCORE Security Context established during the first
token exchange. The client only send the access_token field in the CBOR map in the
payload; no nonce or identifier is sent. After proper verification (see Section 4.2), the RS will
replace the old token with the new one, maintaining the same Security Context.

Figure 10: Example C-to-RS POST /authz-info Request Using CWT

 Header: POST (Code=0.02)
 Uri-Host: "rs.example.com"
 Uri-Path: "authz-info"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "access_token": h'8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)',
 "nonce1": h'018a278f7faab55a',
 "ace_client_recipientid" : h'1645'
 }

MUST
MUST

4.1.1. The Nonce 1 Parameter

The nonce 1 parameter be sent from the client to the RS, together with the access token, if
the ACE profile used is "coap_oscore", and the message is not an update of access rights, protected
with an existing OSCORE Security Context. The parameter is encoded as a byte string for CBOR-
based interactions and as a string (base64-encoded binary) for JSON-based interactions. This
parameter is registered in Section 9.2.

MUST

4.1.2. The ace_client_recipientid Parameter

The ace_client_recipientid parameter be sent from the client to the RS, together with
the access token, if the ACE profile used is "coap_oscore", and the message is not an update of
access rights, protected with an existing OSCORE Security Context. The parameter is encoded as a
byte string for CBOR-based interactions and as a string (base64-encoded binary) for JSON-based
interactions. This parameter is registered in Section 9.2.

MUST

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 15

4.2. RS-to-C: 2.01 (Created)
The RS follow the procedures defined in : the RS must verify the
validity of the token. If the token is valid, the RS must respond to the POST request with 2.01
(Created). If the token is valid but is associated to claims that the RS cannot process (e.g., an
unknown scope), or if any of the expected parameters are missing (e.g., any of the mandatory
parameters from the AS or the identifier ID1), or if any parameters received in the osc field are
unrecognized, the RS must respond with an error response code equivalent to the CoAP code 4.00
(Bad Request). In the latter two cases, the RS may provide additional information in the error
response, in order to clarify what went wrong. The RS may make an introspection request (see

) to validate the token before responding to the POST request to the
authz-info endpoint.

Additionally, the RS generate a nonce N2 that is very unlikely to have been previously used
with the same input keying material and its own Recipient ID, ID2. The RS makes sure that ID2
does not collide with any of its Recipient IDs. The RS ensure that ID2 is different from the
value received in the ace_client_recipientid parameter. The RS sends N2 and ID2 within the
2.01 (Created) response. The payload of the 2.01 (Created) response be a CBOR map
containing the nonce2 parameter defined in Section 4.2.1, set to N2, and the
ace_server_recipientid parameter defined in Section 4.2.2, set to ID2. The use of a 64-bit long
random number as the nonce's value is in this profile. The RS use the
Content-Format "application/ace+cbor" defined in .

Figure 11 shows an example of the response sent from the RS to the client.

As specified in , the RS must notify the client with an error response with
code 4.01 (Unauthorized) for any long running request before terminating the session, when the
access token expires.

MUST Section 5.8.1 of [RFC9200]

Section 5.9.1 of [RFC9200]

MUST

MUST

MUST

RECOMMENDED MUST
Section 8.14 of [RFC9200]

Figure 11: Example RS-to-C 2.01 (Created) Response

 Header: Created (Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "nonce2": h'25a8991cd700ac01',
 "ace_server_recipientid" : h'0000'
 }

Section 5.8.3 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.9.1
https://www.rfc-editor.org/rfc/rfc9200#section-8.14
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3

If the RS receives the token in an OSCORE-protected message, it means that the client is
requesting an update of access rights. The RS ignore any nonce and identifiers in the
request, if any were sent. The RS check that the "kid" of the cnf claim of the new access
token matches the identifier of the OSCORE Input Material of the context used to protect the
message. If that is the case, the RS overwrite the old token and associate the new token to
the Security Context identified by the "kid" value in the cnf claim. The RS respond with a
2.01 (Created) response protected with the same Security Context, with no payload. If any
verification fails, the RS respond with a 4.01 (Unauthorized) error response.

As specified in , when receiving an updated access token with updated
authorization information from the client (see Section 3.1), it is recommended that the RS
overwrites the previous token; that is, only the latest authorization information in the token
received by the RS is valid. This simplifies the process needed by the RS to keep track of
authorization information for a given client.

MUST
MUST

MUST
MUST

MUST

Section 5.8.1 of [RFC9200]

4.2.1. The Nonce 2 Parameter

The nonce 2 parameter be sent from the RS to the client if the ACE profile used is
"coap_oscore" and the message is not a response to an update of access rights, protected with an
existing OSCORE Security Context. The parameter is encoded as a byte string for CBOR-based
interactions and as a string (base64-encoded binary) for JSON-based interactions. This parameter
is registered in Section 9.2

MUST

4.2.2. The ace_server_recipientid Parameter

The ace_server_recipientid parameter be sent from the RS to the client if the ACE
profile used is "coap_oscore" and the message is not a response to an update of access rights,
protected with an existing OSCORE Security Context. The parameter is encoded as a byte string
for CBOR-based interactions and as a string (base64-encoded binary) for JSON-based
interactions. This parameter is registered in Section 9.2

MUST

4.3. OSCORE Setup
Once the 2.01 (Created) response is received from the RS, following the POST request to authz-info
endpoint, the client extract the bstr nonce N2 from the nonce2 parameter in the CBOR map
in the payload of the response. Then, the client set the Master Salt of the Security Context
created to communicate with the RS to the concatenation of salt, N1, and N2 in this order: Master
Salt = salt | N1 | N2, where | denotes byte string concatenation, salt is the CBOR byte string
received from the AS in Section 3.2, and N1 and N2 are the two nonces encoded as CBOR byte
strings. An example of Master Salt construction using CBOR encoding is given in Figure 12.

MUST
MUST

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.1

If JSON is used instead of CBOR, the Master Salt of the Security Context is the base64 encoding of
the concatenation of the same parameters, each of them prefixed by their size, encoded in 1 byte.
When using JSON, the nonces and input salt have a maximum size of 255 bytes. An example of
Master Salt construction using base64 encoding is given in Figure 13.

The client set the Sender ID to the ace_server_recipientid received in Section 4.2 and
set the Recipient ID to the ace_client_recipientid sent in Section 4.1. The client set the
Master Secret from the parameter received from the AS in Section 3.2. The client set the
AEAD algorithm, ID Context, HKDF, and OSCORE version from the parameters received from the
AS in Section 3.2, if present. In case an optional parameter is omitted, the default value be
used as described in Sections 3.2 and 5.4 of . After that, the client derive the
complete Security Context following . From this point on, the client

 use this Security Context to communicate with the RS when accessing the resources as
specified by the authorization information.

If any of the expected parameters are missing (e.g., any of the mandatory parameters from the AS
or the RS), or if ace_client_recipientid equals ace_server_recipientid (and as a
consequence, the Sender and Recipient Keys derived would be equal; see),
then the client stop the exchange and derive the Security Context. The client
restart the exchange, to get the correct security material.

The client then uses this Security Context to send requests to the RS using OSCORE.

Figure 12: Example of Master Salt Construction Using CBOR Encoding

N1, N2 and input salt expressed in CBOR diagnostic notation:
 nonce1 = h'018a278f7faab55a'
 nonce2 = h'25a8991cd700ac01'
 input salt = h'f9af838368e353e78888e1426bd94e6f'

N1, N2 and input salt as CBOR encoded byte strings:
 nonce1 = 0x48018a278f7faab55a
 nonce2 = 0x4825a8991cd700ac01
 input salt = 0x50f9af838368e353e78888e1426bd94e6f

Master Salt = 0x50 f9af838368e353e78888e1426bd94e6f
 48 018a278f7faab55a 48 25a8991cd700ac01

Figure 13: Example of Master Salt Construction Using Base64 Encoding

N1, N2 and input salt values:
 nonce1 = 0x018a278f7faab55a (8 bytes)
 nonce2 = 0x25a8991cd700ac01 (8 bytes)
 input salt = 0xf9af838368e353e78888e1426bd94e6f (16 bytes)

Input to Base64 encoding: 0x10 f9af838368e353e78888e1426bd94e6f
 08 018a278f7faab55a 08 25a8991cd700ac01

Master Salt = b64'EPmvg4No41PniIjhQmvZTm8IAYonj3+qtVoIJaiZHNcArAE='

MUST
MUST

MUST

SHALL
[RFC8613] MUST

Section 3.2.1 of [RFC8613]
MUST

Section 3.3 of [RFC8613]
MUST MUST NOT MAY

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc8613#section-3.2
https://www.rfc-editor.org/rfc/rfc8613#section-5.4
https://www.rfc-editor.org/rfc/rfc8613#section-3.2.1
https://www.rfc-editor.org/rfc/rfc8613#section-3.3

After sending the 2.01 (Created) response, the RS set the Master Salt of the Security Context
created to communicate with the client to the concatenation of salt, N1, and N2 in the same way
described above. An example of Master Salt construction using CBOR encoding is given in Figure
12 and using base64 encoding is given in Figure 13. The RS set the Sender ID from the
ace_client_recipientid received in Section 4.1 and set the Recipient ID from the
ace_server_recipientid sent in Section 4.2. The RS set the Master Secret from the
parameter received from the AS and forwarded by the client in the access token in Section 4.1
after validation of the token as specified in Section 4.2. The RS set the AEAD algorithm, ID
Context, HKDF, and OSCORE version from the parameters received from the AS and forwarded by
the client in the access token in Section 4.1 after validation of the token as specified in Section 4.2,
if present. In case an optional parameter is omitted, the default value be used as described
in Sections 3.2 and 5.4 of . After that, the RS derive the complete Security Context
following and associate this Security Context with the
authorization information from the access token.

The RS then uses this Security Context to verify requests and send responses to the client using
OSCORE. If OSCORE verification fails, error responses are used, as specified in

. Additionally, if OSCORE verification succeeds, the verification of access rights is
performed as described in Section 4.4. The RS use the Security Context after the related
token has expired and respond with an unprotected 4.01 (Unauthorized) error message to
requests received that correspond to a Security Context with an expired token.

Note that the ID Context can be assigned by the AS, communicated and set in both the RS and
client after the exchange specified in this profile is executed. Subsequently, the client and RS can
update their ID Context by running a mechanism such as the one defined in

 if they both support it and are configured to do so. In that case, the ID Context in the
OSCORE Security Context will not match the contextId parameter of the corresponding
OSCORE_Input_Material. Running Appendix B.2 results in the keying material being updated in
the Security Contexts of the client and RS; this same result can also be achieved by the client
reposting the access token to the unprotected /authz-info endpoint at the RS, as described in
Section 4.1, but without updating the ID Context.

MUST

MUST

MUST

MUST

SHALL
[RFC8613] MUST

Section 3.2.1 of [RFC8613] MUST

Section 8 of
[RFC8613]

MUST NOT
MUST

Appendix B.2 of
[RFC8613]

4.4. Access Rights Verification
The RS follow the procedures defined in : if an RS receives an
OSCORE-protected request from a client, then the RS processes it according to . If
OSCORE verification succeeds, and the target resource requires authorization, the RS retrieves the
authorization information using the access token associated to the Security Context. The RS then
must verify that the authorization information covers the resource and the action requested.

MUST Section 5.8.2 of [RFC9200]
[RFC8613]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc8613#section-3.2
https://www.rfc-editor.org/rfc/rfc8613#section-5.4
https://www.rfc-editor.org/rfc/rfc8613#section-3.2.1
https://www.rfc-editor.org/rfc/rfc8613#section-8
https://www.rfc-editor.org/rfc/rfc8613#appendix-B.2
https://www.rfc-editor.org/rfc/rfc8613#appendix-B.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2

5. Secure Communication with AS
As specified in the ACE framework (), the requesting entity (RS and/or
client) and the AS communicates via the introspection or token endpoint. The use of CoAP and
OSCORE for this communication is in this profile; other protocols
fulfilling the security requirements defined in (such as HTTP and DTLS or
TLS) be used instead.

If OSCORE is used, the requesting entity and the AS are expected to have preestablished security
contexts in place. How these security contexts are established is out of scope for this profile.
Furthermore, the requesting entity and the AS communicate through the introspection endpoint
as specified in and through the token endpoint as specified in

.

Section 5.9 of [RFC9200]

[RFC8613] RECOMMENDED
Section 5 of [RFC9200]

MAY

Section 5.9 of [RFC9200] Section 5.8
of [RFC9200]

6. Discarding the Security Context
There are a number of scenarios where a client or RS needs to discard the OSCORE security
context and acquire a new one.

The client discard the current Security Context associated with an RS when any of the
following occurs:

the sequence number space ends.
the access token associated with the context becomes invalid due to, for example, expiration.
the client receives a number of 4.01 Unauthorized responses to OSCORE requests using the
same Security Context. The exact number needs to be specified by the application.
the client receives a new nonce in the 2.01 (Created) response (see Section 4.2) to a POST
request to the authz-info endpoint, when reposting a (non-expired) token associated to the
existing context.

The RS discard the current Security Context associated with a client when any of the
following occurs:

the sequence number space ends.
the access token associated with the context expires.
the client has successfully replaced the current security context with a newer one by posting
an access token to the unprotected /authz-info endpoint at the RS, e.g., by reposting the same
token, as specified in Section 4.1.

Whenever one more access token is successfully posted to the RS, and a new Security Context is
derived between the client and RS, messages in transit that were protected with the previous
Security Context might not pass verification, as the old context is discarded. That means that
messages sent shortly before the client posts one more access tokens to the RS might not
successfully reach the destination. Analogously, implementations may want to cancel CoAP

MUST

•
•
•

•

MUST

•
•
•

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc9200#section-5.9
https://www.rfc-editor.org/rfc/rfc9200#section-5
https://www.rfc-editor.org/rfc/rfc9200#section-5.9
https://www.rfc-editor.org/rfc/rfc9200#section-5.8

observations at the RS registered before the Security Context is replaced, or conversely, they will
need to implement a mechanism to ensure that those observations are to be protected with the
newly derived Security Context.

7. Security Considerations
This document specifies a profile for the ACE framework . Thus, the general security
considerations from the framework also apply to this profile.

Furthermore, the general security considerations of OSCORE also apply to this specific
use of the OSCORE protocol.

As previously stated, the proof of possession in this profile is performed by both parties verifying
that they have established the same Security Context, as specified in Section 4.3, which means that
both the OSCORE request and the OSCORE response passes verification. RS authentication
requires both that the client trusts the AS and that the OSCORE response from the RS passes
verification.

OSCORE is designed to secure point-to-point communication, providing a secure binding between
the request and the response(s). Thus, the basic OSCORE protocol is not intended for use in point-
to-multipoint communication (e.g., multicast, publish-subscribe). Implementers of this profile
should make sure that their use case corresponds to the expected use of OSCORE, to prevent
weakening the security assurances provided by OSCORE.

Since the use of nonces N1 and N2 during the exchange guarantees uniqueness of AEAD keys and
nonces, it is that the exchanged nonces are not reused with the same input keying
material even in case of reboots. The exchange of 64-bit random nonces is in this
document. Considering the birthday paradox, the average collision for each nonce will happen
after 232 messages, which is considerably more token provisionings than would be expected for
intended applications. If applications use something else, such as a counter, they need to
guarantee that reboot and loss of state on either node does not provoke reuse. If that is not
guaranteed, nodes are susceptible to reuse of AEAD (nonce, key) pairs, especially since an on-path
attacker can cause the use of a previously exchanged client nonce N1 for Security Context
establishment by replaying the corresponding client-to-server message.

In this profile, it is that the RS maintains a single access token for each client. The
use of multiple access tokens for a single client increases the strain on the resource server as it
must consider every access token and calculate the actual permissions of the client. Also, tokens
indicating different or disjoint permissions from each other may lead the server to enforce wrong
permissions. If one of the access tokens expires earlier than others, the resulting permissions may
offer insufficient protection. Developers avoid using multiple access tokens for the same
client.

If a single OSCORE Input Material is used with multiple RSs, the RSs can impersonate the client to
one of the other RSs and impersonate another RS to the client. If a Master Secret is used with
several clients, the clients can impersonate RS to one of the other clients. Similarly, if symmetric

[RFC9200]

[RFC8613]

REQUIRED
RECOMMENDED

RECOMMENDED

SHOULD

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 21

Name:
Description:

CBOR Value:
Reference:

8. Privacy Considerations
This document specifies a profile for the ACE framework . Thus, the general privacy
considerations from the framework also apply to this profile.

As this document uses OSCORE, the privacy considerations from apply here as well.

An unprotected response to an unauthorized request may disclose information about the
resource server and/or its existing relationship with the client. It is advisable to include as little
information as possible in an unencrypted response. When an OSCORE Security Context already
exists between the client and the resource server, more detailed information may be included.

The token is sent in the clear to the authz-info endpoint, so if a client uses the same single token
from multiple locations with multiple resource servers, it can risk being tracked by the token's
value even when the access token is encrypted.

The nonces exchanged in the request and response to the authz-info endpoint are also sent in the
clear, so using random nonces is best for privacy (as opposed to, e.g., a counter, which might leak
some information about the client).

The identifiers used in OSCORE, negotiated between the client and RS, are privacy sensitive (see
) and could reveal information about the client, or they may be used for

correlating requests from one client.

Note that some information might still leak after OSCORE is established, due to observable
message sizes, the source, and the destination addresses.

9. IANA Considerations

9.1. ACE Profile Registry
The following registration has been made in the "ACE Profiles" registry following the procedure
specified in :

coap_oscore
Profile for using OSCORE to secure communication between constrained nodes

using the Authentication and Authorization for Constrained Environments framework.
2

RFC 9203

keys are used to integrity protect the token between AS and RS and the token can be used with
multiple RSs, the RSs can impersonate AS to one of the other RSs. If the token key is used for any
other communication between the RSs and AS, the RSs can impersonate each other to the AS.

[RFC9200]

[RFC8613]

Section 12.8 of [RFC8613]

Section 8.8 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 22

https://www.rfc-editor.org/rfc/rfc8613#section-12.8
https://www.rfc-editor.org/rfc/rfc9200#section-8.8

Name:
CBOR Key:
Value Type:
Reference:
Original Specification:

Name:
CBOR Key:
Value Type:
Reference:
Original Specification:

9.3. OAuth Parameters CBOR Mappings Registry
The following registrations have been made in the "OAuth Parameters CBOR Mappings" registry
following the procedure specified in :

nonce1
40
bstr

RFC 9203
RFC 9203

nonce2
42
bstr

RFC 9203
RFC 9203

Parameter name:
Parameter usage location:
Change Controller:
Specification Document(s):

Parameter name:
Parameter usage location:
Change Controller:
Specification Document(s):

Parameter name:
Parameter usage location:
Change Controller:
Specification Document(s):

Parameter name:
Parameter usage location:
Change Controller:
Specification Document(s):

9.2. OAuth Parameters Registry
The following registrations have been made in the "OAuth Parameters" registry

 following the procedure specified in :

nonce1
client-rs request

IETF
RFC 9203

nonce2
rs-client response

IETF
RFC 9203

ace_client_recipientid
client-rs request

IETF
RFC 9203

ace_server_recipientid
rs-client response

IETF
RFC 9203

[IANA.OAuthParameters] Section 11.2 of [RFC6749]

Section 8.10 of [RFC9200]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc6749#section-11.2
https://www.rfc-editor.org/rfc/rfc9200#section-8.10

Name:
CBOR Key:
Value Type:
Reference:
Original Specification:

Name:
CBOR Key:
Value Type:
Reference:
Original Specification:

ace_client_recipientid
43
bstr

RFC 9203
RFC 9203

ace_server_recipientid
44
bstr

RFC 9203
RFC 9203

Name:

CBOR Label:

CBOR Type:

Registry:

Description:

Reference:

9.4. OSCORE Security Context Parameters Registry
IANA has created a new registry entitled "OSCORE Security Context Parameters". The registration
procedure is Expert Review . Guidelines for the experts are provided in Section 9.7. It
should be noted that in addition to the Expert Review, some portions of the registry require a
specification, potentially on the Standards Track, be supplied as well.

The columns of the registry are:

The JSON name requested (e.g., "ms"). Because a core goal of this document is for the
resulting representations to be compact, it is that the name be short. This
name is case sensitive. Names may not match other registered names in a case-insensitive
manner unless the designated experts determine that there is a compelling reason to allow an
exception. The name is not used in the CBOR encoding.

The value to be used to identify this algorithm. Map key labels be unique. The
label can be a positive integer, a negative integer, or a string. Integer values between -256 and
255 and strings of length 1 are designated as Standards Track document required. Integer
values from -65536 to -257 and from 256 to 65535 and strings of length 2 are designated as
Specification Required. Integer values greater than 65535 and strings of length greater than 2
are designated as Expert Review. Integer values less than -65536 are marked as Private Use.

This field contains the CBOR type for the field.

This field denotes the registry that values may come from, if one exists.

This field contains a brief description for the field.

This contains a pointer to the public specification for the field, if one exists.

This registry has been initially populated by the values in Table 1. The Reference column for all of
these entries is this document and .

[RFC8126]

RECOMMENDED

MUST

[RFC8613]

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 24

Confirmation Method Name:
Confirmation Method Description:

JWT Confirmation Method Name:
Confirmation Key:
Confirmation Value Type(s):
Change Controller:
Specification Document(s):

9.5. CWT Confirmation Methods Registry
The following registration has been made in the "CWT Confirmation Methods" registry

 following the procedure specified in :

"osc"
OSCORE_Input_Material carrying the parameters for using

OSCORE per-message security with implicit key confirmation
osc

4
map

IETF
Section 3.2.1 of RFC 9203

[IANA.CWTConfirmationMethods] Section 7.2.1 of [RFC8747]

Confirmation Method Value:
Confirmation Method Description:

Change Controller:
Specification Document(s):

9.6. JWT Confirmation Methods Registry
The following registration has been made in the "JWT Confirmation Methods" registry

 following the procedure specified in :

"osc"
OSCORE_Input_Material carrying the parameters for using

OSCORE per-message security with implicit key confirmation
IETF

Section 3.2.1 of RFC 9203

[IANA.JWTConfirmationMethods] Section 6.2.1 of [RFC7800]

9.7. Expert Review Instructions
The IANA registry established in this document is defined to use the Expert Review registration
policy. This section gives some general guidelines for what the experts should be looking for, but
they are being designated as experts for a reason, so they should be given substantial latitude.

Expert reviewers should take into consideration the following points:

Point squatting should be discouraged. Reviewers are encouraged to get sufficient
information for registration requests to ensure that the usage is not going to duplicate one
that is already registered and that the point is likely to be used in deployments. The zones
tagged as Private Use are intended for testing purposes and closed environments. Code points
in other ranges should not be assigned for testing.
Specifications are required for the Standards Track range of point assignment. Specifications
should exist for specification required ranges, but early assignment before a specification is
available is considered to be permissible. Specifications are needed for the First Come First
Served range if they are expected to be used outside of closed environments in an
interoperable way. When specifications are not provided, the description provided needs to
have sufficient information to identify what the point is being used for.

•

•

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc8747#section-7.2.1
https://www.rfc-editor.org/rfc/rfc7800#section-6.2.1

[COSE.Algorithms]

[IANA.CWTConfirmationMethods]

[IANA.JWTConfirmationMethods]

[IANA.OAuthParameters]

[RFC2119]

[RFC5869]

[RFC7252]

[RFC8174]

[RFC8392]

[RFC8610]

[RFC8613]

10. References

10.1. Normative References

, , .

, ,
.

, ,
.

, ,
.

, , ,
, , March 1997,
.

 and ,
, , , May 2010,

.

, , and ,
, , , June 2014,

.

, , ,
, , May 2017,
.

, , , and ,
, , , May 2018,

.

, , and ,

, ,
, June 2019, .

, , , and ,
, , ,

July 2019, .

Experts should take into account the expected usage of fields when approving point
assignment. The fact that there is a range for Standards Track documents does not mean that
a Standards Track document cannot have points assigned outside of that range. The length of
the encoded value should be weighed against how many code points of that length are left, the
size of device it will be used on, and the number of code points left that encode to that size.

•

IANA "COSE Algorithms" <https://www.iana.org/assignments/cose>

IANA "CWT Confirmation Methods" <https://
www.iana.org/assignments/cwt>

IANA "JWT Confirmation Methods" <https://www.iana.org/
assignments/jwt>

IANA "OAuth Parameters" <https://www.iana.org/assignments/
oauth-parameters>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-editor.org/
info/rfc7252>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token
(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/
info/rfc8392>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Selander, G. Mattsson, J. Palombini, F. L. Seitz "Object Security for
Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/RFC8613

<https://www.rfc-editor.org/info/rfc8613>

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 26

https://www.iana.org/assignments/cose
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8613

[RFC8949]

[RFC9052]

[RFC9053]

[RFC9200]

[RFC9201]

[RFC4949]

[RFC6749]

[RFC7231]

[RFC7800]

[RFC8126]

[RFC8446]

[RFC8747]

 and , ,
, , , December 2020,

.

, ,
, , March 2022,
.

, ,
, , March 2022,

.

, , , , and ,

, , ,
September 2021, .

,
, , , September

2021, .

10.2. Informative References

, , , ,
, August 2007, .

, , ,
, October 2012, .

 and ,
, , , June 2014,

.

, , and ,
, , , April 2016,

.

, , and ,
, , , , June

2017, .

, , ,
, August 2018, .

, , , , and ,
, ,

, March 2020, .

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and Process"
RFC 9052 DOI 10.17487/RFC9052 <https://www.rfc-editor.org/info/
rfc9052>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Initial Algorithms" RFC
9053 DOI 10.17487/RFC9053 <https://www.rfc-editor.org/info/
rfc9053>

Seitz, L. Selander, G. Wahlstroem, E. Erdtman, S. H. Tschofenig
"Authentication and Authorization for Constrained Environments (ACE) Using
the OAuth 2.0 Framework (ACE-OAuth)" RFC 9200 DOI 10.17487/RFC9200

<https://www.rfc-editor.org/info/rfc9200>

Seitz, L. "Additional OAuth Parameters for Authentication and Authorization for
Constrained Environments (ACE)" RFC 9201 DOI 10.17487/RFC9201

<https://www.rfc-editor.org/info/rfc9201>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI 10.17487/
RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI 10.17487/
RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

Jones, M. Bradley, J. H. Tschofenig "Proof-of-Possession Key Semantics for
JSON Web Tokens (JWTs)" RFC 7800 DOI 10.17487/RFC7800 <https://
www.rfc-editor.org/info/rfc7800>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Jones, M. Seitz, L. Selander, G. Erdtman, S. H. Tschofenig "Proof-of-
Possession Key Semantics for CBOR Web Tokens (CWTs)" RFC 8747 DOI 10.17487/
RFC8747 <https://www.rfc-editor.org/info/rfc8747>

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 27

https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9053
https://www.rfc-editor.org/info/rfc9053
https://www.rfc-editor.org/info/rfc9200
https://www.rfc-editor.org/info/rfc9201
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8747

[RFC9147] , , and ,
, , , March

2022, .

Appendix A. Profile Requirements
This section lists the specifications of this profile based on the requirements of the framework, as
requested in .

Optionally, define new methods for the client to discover the necessary permissions and AS
for accessing a resource, different from the one proposed in: Not specified
Optionally, specify new grant types: Not specified
Optionally, define the use of client certificates as client credential type: Not specified
Specify the communication protocol the client and RS must use: CoAP
Specify the security protocol the client and RS must use to protect their communication:
OSCORE
Specify how the client and the RS mutually authenticate: Implicitly by possession of a
common OSCORE security context. Note that the mutual authentication is not completed
before the client has verified an OSCORE response using this security context.
Specify the proof-of-possession protocol(s) and how to select one, if several are available.
Also specify which key types (e.g., symmetric/asymmetric) are supported by a specific proof-
of- possession protocol: OSCORE algorithms; preestablished symmetric keys
Specify a unique ace_profile identifier: coap_oscore
If introspection is supported, specify the communication and security protocol for
introspection: HTTP/CoAP (+ TLS/DTLS/OSCORE)
Specify the communication and security protocol for interactions between client and AS:
HTTP/CoAP (+ TLS/DTLS/OSCORE)
Specify if/how the authz-info endpoint is protected, including how error responses are
protected: Not protected
Optionally, define methods of token transport other than the authz-info endpoint: Not
defined

Acknowledgments
The authors wish to thank and for the substantial input to this
document, as well as , , , , ,

, and for their reviews and feedback. Special thanks to
the responsible area director for his extensive review and contributed text.

 worked on this document as part of the CelticNext projects CyberWI and CRITISEC
with funding from Vinnova. The work on this document has been partly supported also by the
H2020 project SIFIS-Home (Grant agreement 952652).

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Appendix C of [RFC9200]

•

•
•
•
•

•

•

•
•

•

•

•

Jim Schaad Marco Tiloca
Elwyn Davies Linda Dunbar Roman Danyliw Martin Duke Lars Eggert

Murray Kucherawy Zaheduzzaman Sarker
Benjamin Kaduk

Ludwig Seitz

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 28

https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/rfc/rfc9200#appendix-C

Authors' Addresses
Francesca Palombini
Ericsson AB

 francesca.palombini@ericsson.com Email:

Ludwig Seitz
Combitech
Djäknegatan 31
SE- 211 35 Malmö
Sweden

 ludwig.seitz@combitech.com Email:

Göran Selander
Ericsson AB

 goran.selander@ericsson.com Email:

Martin Gunnarsson
RISE
Scheelevagen 17
SE- 22370 Lund
Sweden

 martin.gunnarsson@ri.se Email:

RFC 9203 OSCORE Profile of ACE March 2022

Palombini, et al. Standards Track Page 29

mailto:francesca.palombini@ericsson.com
mailto:ludwig.seitz@combitech.com
mailto:goran.selander@ericsson.com
mailto:martin.gunnarsson@ri.se

	RFC 9203
	The Object Security for Constrained RESTful Environments (OSCORE) Profile of the Authentication and Authorization for Constrained Environments (ACE) Framework
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Client-AS Communication
	3.1. C-to-AS: POST to Token Endpoint
	3.2. AS-to-C: Access Token
	3.2.1. The OSCORE_Input_Material

	4. Client-RS Communication
	4.1. C-to-RS: POST to authz-info Endpoint
	4.1.1. The Nonce 1 Parameter
	4.1.2. The ace_client_recipientid Parameter

	4.2. RS-to-C: 2.01 (Created)
	4.2.1. The Nonce 2 Parameter
	4.2.2. The ace_server_recipientid Parameter

	4.3. OSCORE Setup
	4.4. Access Rights Verification

	5. Secure Communication with AS
	6. Discarding the Security Context
	7. Security Considerations
	8. Privacy Considerations
	9. IANA Considerations
	9.1. ACE Profile Registry
	9.2. OAuth Parameters Registry
	9.3. OAuth Parameters CBOR Mappings Registry
	9.4. OSCORE Security Context Parameters Registry
	9.5. CWT Confirmation Methods Registry
	9.6. JWT Confirmation Methods Registry
	9.7. Expert Review Instructions

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Profile Requirements
	Acknowledgments
	Authors' Addresses

