Now that you've seen how IP addresses are composed, you may be wondering how they are used on an Ethernet or Token Ring network to address different hosts. After all, these protocols have their own addresses to identify hosts that have absolutely nothing in common with an IP address, don't they? Right.
A mechanism is needed to map IP addresses onto the addresses of the underlying network. The mechanism used is the Address Resolution Protocol (ARP). In fact, ARP is not confined to Ethernet or Token Ring, but is used on other types of networks, such as the amateur radio AX.25 protocol. The idea underlying ARP is exactly what most people do when they have to find Mr. X in a throng of 150 people: the person who wants him calls out loudly enough that everyone in the room can hear them, expecting him to respond if he is there. When he responds, we know which person he is.
When ARP wants to find the Ethernet address corresponding to a given IP address, it uses an Ethernet feature called broadcasting, in which a datagram is addressed to all stations on the network simultaneously. The broadcast datagram sent by ARP contains a query for the IP address. Each receiving host compares this query to its own IP address and if it matches, returns an ARP reply to the inquiring host. The inquiring host can now extract the sender's Ethernet address from the reply.
You may wonder how a host can reach an Internet address that may be on a different network halfway around the world. The answer to this question involves routing, namely finding the physical location of a host in a network. We will discuss this issue further in the next section.
Let's talk a little more about ARP. Once a host has discovered an Ethernet address, it stores it in its ARP cache so that it doesn't have to query for it again the next time it wants to send a datagram to the host in question. However, it is unwise to keep this information forever; the remote host's Ethernet card may be replaced because of technical problems, so the ARP entry becomes invalid. Therefore, entries in the ARP cache are discarded after some time to force another query for the IP address.
Sometimes it is also necessary to find the IP address associated with a given Ethernet address. This happens when a diskless machine wants to boot from a server on the network, which is a common situation on Local Area Networks. A diskless client, however, has virtually no information about itself—except for its Ethernet address! So it broadcasts a message containing a request asking a boot server to provide it with an IP address. There's another protocol for this situation named Reverse Address Resolution Protocol (RARP). Along with the BOOTP protocol, it serves to define a procedure for bootstrapping diskless clients over the network.