
Politecnico di Torino
Master’s Degree in Computer Engineering

Protocolli e architetture di
routing

lecture notes

Main authors: Luca Ghio
Professors: Fulvio Giovanni Ottavio Risso, Mario Baldi
Academic year: 2014/2015
Version: 1.0.0.1
Date: May 9, 2016

Acknowledgements
Special thanks go to Andrea Marcelli for his contribution.

Besides the aforementioned authors, this work may include contributions from related works
on WikiAppunti and Wikibooks, therefore thanks also to all the users who have made contribu-
tions to lecture notes Protocolli e architetture di routing/en and to book Routing protocols and
architectures.

About this work
This work is published free of charge. You can download the last version of the PDF document,
along with the LATEX source code, from here: http://lucaghio.webege.com/redirs/g

This work has not been checked in any way by professors and therefore it may include
mistakes. If you find any of them, you are invited to directly fix them by yourself by making
a commit to the public Git repository or by editing lecture notes Protocolli e architetture di
routing/en on WikiAppunti, or alternatively you can contact the main author by sending an
e-mail to artghio@tiscali.it.

License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
(pictures, unless otherwise specified, are licensed under this license too).

You are free to:

• share: copy and redistribute the material in any medium or format;

• adapt: remix, transform, and build upon the material;

for any purpose, even commercially, under the following terms:

• Attribution: you must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use;

• ShareAlike: if you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

2

http://appunti.shoutwiki.com/wiki/Pagina_principale
https://www.wikibooks.org/
http://appunti.shoutwiki.com/wiki/Protocolli_e_architetture_di_routing/en
https://en.wikibooks.org/wiki/Routing_protocols_and_architectures
https://en.wikibooks.org/wiki/Routing_protocols_and_architectures
http://lucaghio.webege.com/redirs/g
http://lucaghio.webege.com/redirs/h
http://appunti.shoutwiki.com/wiki/Protocolli_e_architetture_di_routing/en
http://appunti.shoutwiki.com/wiki/Protocolli_e_architetture_di_routing/en
mailto:artghio@tiscali.it
http://creativecommons.org/licenses/by-sa/4.0/

Contents

I Routing algorithms 7

1 Forwarding and routing 8
1.1 Forwarding algorithms . 9

1.1.1 Routing by network address . 9
1.1.2 ‘Coloured path’ technique . 9
1.1.3 Label swapping . 10
1.1.4 Source routing . 11
1.1.5 Comparison . 11

2 Routing algorithms 13
2.1 Metric . 14
2.2 Transients . 15

2.2.1 Black holes . 15
2.2.2 Routing loops . 16
2.2.3 Backup route . 16

2.3 Multipath routing . 16
2.3.1 Unequal-cost multipath routing . 16
2.3.2 Equal-cost multipath routing . 17

2.4 Non-adaptive algorithms . 19
2.4.1 Static routing . 19
2.4.2 Random walk . 19
2.4.3 Flooding . 19
2.4.4 Selective flooding . 20

2.5 Adaptive algorithms . 20
2.5.1 Centralized routing . 20
2.5.2 Isolated routing . 21
2.5.3 Distributed routing . 21

3 The Distance Vector algorithm 23
3.1 Basic algorithm . 23
3.2 Triggered updates . 24
3.3 Count to infinity . 24

3.3.1 Threshold for infinity . 25
3.3.2 Route poisoning . 25
3.3.3 Split horizon . 26
3.3.4 Path hold down . 26

3.4 DUAL . 26
3.4.1 Selection of a feasible successor . 27
3.4.2 Diffusing process . 27

3.5 Advantages and disadvantages . 28
3.6 The Path Vector algorithm . 28

3

4 The Link State algorithm 30
4.1 Components . 30

4.1.1 Neighbor Greetings . 30
4.1.2 Link States . 31
4.1.3 Flooding algorithm . 31
4.1.4 Dijkstra’s algorithm . 31
4.1.5 Adjacency bring-up . 32

4.2 Behaviour over broadcast data-link-layer networks 32
4.3 Advantages . 33

5 Hierarchical routing 34
5.1 Partitioned domains . 35
5.2 Redistribution . 36

5.2.1 Costs . 36

6 Inter-domain routing 38
6.1 Autonomous Systems . 38
6.2 EGP protocol class . 39

6.2.1 EGP protocols . 39
6.3 Redistribution . 40

7 Multicast routing 42
7.1 Distance-Vector multicast routing . 43

7.1.1 Reverse path forwarding . 43
7.1.2 Reverse path broadcasting . 43
7.1.3 Truncated reverse path broadcasting . 43
7.1.4 Reverse path multicasting . 44

7.2 Link-State multicast routing . 44
7.3 Multicast routing with core-based tree algorithm 45
7.4 Hierarchical multicast routing . 46

II Routing protocols 47

8 Routing Information Protocol 48
8.1 Packet format . 48
8.2 Timers . 49

8.2.1 Routing update timer . 49
8.2.2 Route invalid timer . 49
8.2.3 Route flush timer . 50
8.2.4 Hold down timer . 50

8.3 Limitations . 50
8.3.1 Netmask . 50
8.3.2 Hop count limit . 51
8.3.3 Lack of ‘age’ field . 51

8.4 RIP version 2 . 51
8.4.1 Authentication . 52
8.4.2 Multicast . 53

8.5 Advantages . 53

9 IGRP and EIGRP 54
9.1 Metrics . 54
9.2 Multipath routing . 55
9.3 EIGRP . 55

4

10 Open Shortest Path First 57
10.1 Areas . 57

10.1.1 Stub areas . 59
10.1.2 Virtual Link . 59

10.2 Metrics and costs . 60
10.3 Router ID . 61
10.4 LSAs . 61

10.4.1 Router LSA . 61
10.5 OSPF packets . 62

10.5.1 Hello protocol . 62
10.5.2 Exchange protocol . 63

11 Inter-domain routing: peering and transit in the Internet 64
11.1 Commercial agreements among ASes . 64

11.1.1 Transit . 65
11.1.2 Peering . 65

11.2 Routing policies . 65
11.2.1 Economic requirements . 66
11.2.2 Administrative requirements . 66
11.2.3 Security requirements . 67

11.3 Internet Exchange Point . 67
11.4 Network neutrality . 68

12 Border Gateway Protocol 70
12.1 Routing information . 70

12.1.1 Path Vector algorithm . 70
12.1.2 Route aggregation . 71

12.2 Peering sessions . 71
12.2.1 TCP . 71
12.2.2 I-BGP e E-BGP . 72
12.2.3 Routing loops . 73

12.3 Path attributes . 75
12.3.1 Well-known attributes . 76
12.3.2 Optional attributes . 77

12.4 Decision process . 77

13 IPv6 routing 79
13.1 Routing tables . 79

13.1.1 Next hop . 79
13.2 Routing protocols . 80

13.2.1 RIPng . 81
13.2.2 OSPFv3 . 81
13.2.3 IS-IS . 81
13.2.4 MP-BGP4 . 81

14 Multicast routing 82
14.1 DVMRP . 82
14.2 MOSPF . 83
14.3 PIM . 83

14.3.1 PIM-SM . 83

5

15 Content Delivery Networks 85
15.1 DNS-based CDNs . 86

15.1.1 DNS-based routing . 86
15.1.2 Akamai approach . 87

15.2 URL-based CDNs . 87
15.2.1 Server load balancing . 87
15.2.2 Content routing . 88

III Network processing 90

16 Hints on the architecture of network devices 91
16.1 First generation . 91
16.2 Second generation . 92
16.3 Third generation . 93
16.4 Multi-chassis routers . 94
16.5 Service cards . 94
16.6 Major current issues . 95

17 Software-based packet filtering 96
17.1 Typical architecture of a packet filtering system 96
17.2 Main packet filtering systems . 97

17.2.1 CSPF . 97
17.2.2 BPF/libpcap . 98
17.2.3 NPF/WinPcap . 98

17.3 Performance optimizations . 99
17.3.1 Interrupts . 100
17.3.2 Timestamping . 100
17.3.3 User buffer copy . 100
17.3.4 Kernel buffer copy . 101
17.3.5 Context switch . 101
17.3.6 Smart NICs . 102
17.3.7 Parallelization in user space . 102

18 Introduction to Software-Defined Networks 103
18.1 OpenFlow . 104
18.2 Data plane . 105

18.2.1 Service Function Chaining without SDN 105
18.2.2 Service Function Chaining with SDN . 106
18.2.3 Network Function Virtualization . 107

18.3 OpenStack . 108

6

Part I

Routing algorithms

7

Chapter 1

Forwarding and routing

Routing is the process which determines the ‘best’ path for a packet and sends it out toward
the destination:

• routing algorithm: it is in charge of deciding the paths to take for incoming packets:

1. it determines the destinations reachable by each node;
2. it computes the best paths (according to certain criteria) in a cooperative way with

the other nodes;
3. it stores local information in each node;

• forwarding algorithm: it is in charge of taking the path decided for each incoming packet:

1. it performs a lookup in the local information computed and stored by the routing
algorithm;

2. it sends the outgoing packet along the best path.

Routing protocols differentiate into two classes:

• Interior Gateway Protocol (IGP): it includes the protocols used in intra-domain
routing (e.g. RIP, IGRP, OSPF) to propagate routing information inside an Autonomous
System1;

• Exterior Gateway Protocol (EGP): it includes the protocols used in inter-domain
routing (e.g. BGP) to propagate routing information between Autonomous Systems
(please refer to section 6.2).

According to the OSI model, routing is a feature proper to the network layer, but it can be
implemented at different layers:

• routing is implemented altogether at the network layer by protocols such as IP, X.25 and
OSI/Decnet;

• some of the routing algorithms are implemented at the data-link layer by protocols such
as Frame Relay and ATM and by bridges in switched LANs.

Modern routers implement two tables:

• Routing Information Base (RIB): it is the classical routing table listing all the desti-
nations reachable within the network;

• Forwarding Information Base (FIB): it is a routing table optimized to speed up packet
forwarding:

1An Autonomous System (AS) is generally the network under the control of an ISP (please refer to section 6.1).

8

– dedicated hardware: TCAMs are able to store bits whose possible values are 0, 1 and
‘don’t care’ ⇒ the netmask is integrated in the network address itself: each bit in the
aggregated part has value ‘don’t care’;

– cache: the FIB only includes the last used destination addresses;
– additional information: output port, destination MAC address.

1.1 Forwarding algorithms
1.1.1 Routing by network address

• Each node is identified by a network address.

• Each packet contains the address of the destination node.

• Each node contains the list of the reachable destination addresses with their corresponding
next hops.

When a packet comes, the node uses the destination address included in it as the ‘key’ in
the forwarding table to find the next hop.

Advantage It is a simple and efficient algorithm because it is stateless: packet forwarding takes
place regardless of the forwarding of other packets, that is the node once a packet is forwarded
will forget about it.

Disadvantage It is not possible to select different routes for the same destination based on
the kind of traffic for quality of service.

Adoption Connectionless protocols (such as IP) typically use this forwarding algorithm.

1.1.2 ‘Coloured path’ technique
• Each path between two nodes is identified by a PathID (‘color’).

• Each path contains a label corresponding to the PathID of the path to follow.

• Each node contains the lists of PathIDs with their corresponding output ports.

When a packet comes, the node uses the label included in it as the ‘key’ in the forwarding
table to find the output port.

Advantage Several paths towards the same destination are possible ⇒ it is possible to choose
the best path based on the kind of traffic for quality of service.

Disadvantage The PathID is global:

• path ‘colouring’ must be coherent on all the nodes over the network;

• scalability: the number of possible paths between all the node pairs in the network is very
big ⇒ a lot of bits are needed to encode each PathID, and it is hard to find an identifier
which has not been used yet.

9

Figure 1.1: Label swapping in an MPLS network.

1.1.3 Label swapping
The forwarding table in each node contains the mapping between the labels of the input ports
and the labels of the output ports, including entries like:

<input port> <input label> <output port> <output label>
When a packet comes, the node uses the label included in it and the input port as the ‘key’

in the forwarding table to find the output port, and it replaces the current label in the packet
with the output label.

Advantages

• scalability: the PathID of the path to follow is not global, but the label is decided locally
node by node, and it must be coherent only between the nodes to the link endpoints:

– labels are made up of less bits because they have to encode less paths;
– each node must know only the labels of the paths crossing it ⇒ the forwarding table

is smaller;

• efficiency: label swapping is fast with respect to forwarding algorithms such as ‘longest
prefix matching’ in IP.

Adoption Label swapping is used by:

• telecommunication-derived network technologies (e.g. X.25, Frame Relay, ATM): label
swapping allows quality of service, a feature considered as important by the world of phone
operators;

• MPLS: in the backbone paths are in a fairly limited number and quite stable because they
are created not end-to-end but in the MPLS cloud, where the network topology changes
less frequently and traffic is more regular with respect to edges.

Path setup

When a host wants to generate and send the first packet toward a destination, how does it ask
for setup of a new path and which label should it use?

10

Manual setup Paths and their corresponding labels are manually set by the network admin-
istrator.

Disadvantages

• high risk of human configuration mistakes;

• no automatic re-routing in case of faults;

• not suitable for highly dynamic networks where users frequently ask for new paths.

On-demand setup A signaling phase for path setup, that is for preparing labels in every
node, is required, after which the host learns the label to use and it can send the first packet
toward the destination.

Advantages Quality of service is simpler:

• it is possible to set up different paths based on the source asking for its setup (e.g. the
rector can have a path privileged compared to the researcher);

• it is possible to include inside the signaling packet a piece of information specifying how
much bandwidth to reserve for the path.

Disadvantages

• complexity: signaling is achieved through another forwarding technique (e.g. routing by
network address) over a dedicated circuit ⇒ complexity increases because the network
must now manage two different forwarding techniques;

• scalability: if the path is long and the number of nodes to cross is high, the signaling
phase may last too long, especially if the communication sessions are quite short like in the
network world.

1.1.4 Source routing
The sender host writes into the packet itself the whole path which must follow to arrive at the
destination.

Advantage Internal routers in the network are extremely simple.

Disadvantage The sender host must know the network topology and must interact directly
with the other hosts in order to be able to compute paths⇒ this breaks the paradigm according
to which end users should just send packets and the network is in charge of forwarding packets
toward their destinations.

Adoption IPv4 and IPv6 contemplate an option affecting the path of packets.

1.1.5 Comparison
Routing by network address

+ simplicity: no setup, no state

+ scalability (forwarding): no ‘per-session’ state (stateless)

− efficiency: big packet header

11

− scalability (routing): very big routing table

− reliability: difficult to guarantee the service

− multipath: it does not support multiple paths between two entities

Label swapping

+ scalability (routing): reduced routing table

+ efficiency: small packet header

+ guarantee of service: possibility to guarantee the service (path booking)

+ multipath: multiple paths allowed between two entities

− scalability (setup): processing of the packets for path setup (critical with ‘short’ sessions)

− scalability (forwarding): ‘per-session’ state (needed for quality of service)

− complexity: path setup (path setup process, ad-hoc forwarding for path setup packets)

Source routing

+ efficiency (routers): intermediate systems are extremely simple

− efficiency (sources): end systems should worry about computing paths

12

Chapter 2

Routing algorithms1

A routing algorithm is a process of collaborative type in charge of deciding, in every interme-
diate node, the directions which must be used to reach destinations:

1. it determines the destinations reachable by each node:

• it generates information about the reachability of local networks: the router informs
its neighbor routers that the local network exists and it is reachable through it;

• it receives information about the reachability of remote networks: a neighbor router
informs the router that the remote network exists and it is reachable through it;

• it propagates information about the reachability of remote networks: the router in-
forms the other neighbor routers that the remote network exists and it is reachable
through it;

2. it computes optimal paths (next hops), in a cooperative way with the other nodes, ac-
cording to certain criteria:

• a metric has to be established: a path may be the best one based on a metric but not
based on another metric;

• criteria must be coherent among all the nodes in the network to avoid loops, black
holes, etc.;

• the algorithm must operate automatically to avoid human errors in manual configu-
ration and to favor scalability;

3. it stores local information in the routing table of each node: a routing algorithm is not
required to know the entire topology of the network, but it is only interested in building
the correct routing table.

Characteristics of an ideal routing algorithm

• simple to implement: less bugs, easy to understand, etc.;

• lightweight to execute: routers should spend as less resources as possible in running the
algorithm because they have limited CPU and memory;

• optimal: the computed paths should be optimal according to the chosen metrics;

• stable: it should switch to another path just when there is a topology or a cost change
to avoid route flapping, that is the frequent change of preferred routes with consequent
excess of transient periods;

1Routing algorithms presented in the following assume they work on a network based on routing by network
address.

13

• fair: it should not favour any particular node or path;

• robust: it should be able to automatically adapt to topology or cost changes:

– fault detection: it should not rely on external components to detect a fault (e.g. a
fault can not be detected at the physical layer if it occurs beyond a hub);

– auto-stabilization: in case of variations in the network it should converge to a solu-
tion without any external intervention (e.g. explicit manual configuration);

– byzantine robustness: it should recognize and isolate a neighbor node which is
sending fake information, due to a fault or a malicious attack.
Internet does not implement byzantine robustness, but it is based on confidence ⇒
faults and malicious behaviours require human intervention.

Classification of routing algorithms
• non-adaptive algorithms (static): they take decisions independently of how the network

is (section 2.4):

– static routing (or fixed directory routing)
– random walk
– flooding, selective flooding

• adaptive algorithms (dynamic): they learn information about the network to better take
decisions (section 2.5):

– centralized routing
– isolated routing: hot potato, backward learning
– distributed routing: Distance Vector, Link State

• hierarchical algorithms: they allow routing algorithms to scale up on wide infrastruc-
tures (chapter 5).

2.1 Metric
A metric is the measure of how good a path is, obtained by transforming a physical quantity
(e.g. distance, transmission speed), or a combination of them, in numerical form (cost), in order
to choose the least-cost path as the best path.

A best metric does not exist for all the kinds of traffic: for example bandwidth is suitable
for file-transfer traffic, while transmission delay is suitable for real-time traffic. The choice of the
metric can be determined from the ‘Type of Service’ (TOS) field in the IP packet.

Issues
• (non-)optimization: the primary task of routers is to forward users’ traffic, not to spend

time in computing paths ⇒ it is better to prefer solutions which, even if they are not
fully optimized, do not compromise the primary functionality of the network and do not
manifest problems which can be perceived by the end user:

– complexity: the more criteria are combined, the more complex the algorithm becomes
and the more computational resources at run-time it requires;

– stability: a metric based on the available bandwidth on the link is too unstable, because
it depends on the instantaneous traffic load which is very variable in time, and may
lead to route flapping;

• inconsistency: metrics adopted by nodes in the network must be coherent (for every packet)
to avoid the risk of loops, that is packet ‘bouncing’ between two routers using different
conflicting metrics.

14

2.2 Transients
Modern routing algorithms are always ‘active’: they exchange service messages all the time to
detect faults autonomously. However, they do not change the routing table unless a status
change is detected:

• topology changes: link fault, addition of a new destination;

• cost changes: for example a 100-Mbps link goes up to 1 Gbps.

Status changes result in transient phases: all the nodes in a distributed system can not be
updated at the same time, because a variation is propagated throughout the network at a finite
speed ⇒ during the transient, status information in the network may not be coherent: some
nodes already have new information (e.g. the router detecting the fault), while other ones still
have old information.

Not all status changes have the same impact on data traffic:

• positive status changes: the effect of the transient is limited because the network may just
work temporarily in a sub-optimal condition:

– a path gets a better cost: some packets may keep following the old path now become
less convenient;

– a new destination is added: the destination may appear unreachable due to black holes
along the path towards it;

• negative status changes: the effect of the transient manifests itself more severely to the user
because it interferes also with the traffic that should not be affected by the fault:

– a link fault occurs: not all routers have learnt that the old path is no longer available
⇒ the packet may start ‘bouncing’ back and forth saturating the alternative link
(routing loop);

– a path worsens its cost: not all routers have learnt that the old path is no longer
convenient ⇒ analogous to the case of fault (routing loop).

In general, two common problems affect routing algorithms during the transient: black holes
and routing loops.

2.2.1 Black holes

Figure 2.1: Black hole.

A black hole is defined as a router which, even if at least a path exists through which it could
reach a certain destination, does not know any of them (yet).

Effect The effect on data traffic is limited to packets directed toward the concerned destination,
which are dropped until the node updates its routing table and acquires information about how
to reach it. Traffic directed to other destinations is not affected by the black hole at all.

15

2.2.2 Routing loops

Figure 2.2: Routing loop.

A routing loop is defined as a cyclic path from the routing point of view: a router sends a packet
on a link but, because of an inconsistency in routing tables, the router at the other endpoint of
the link sends it back.

Effect Packets directed toward the concerned destination start ‘bouncing’ back and forth
(bouncing effect)⇒ the link gets saturated⇒ also traffic directed to other destinations crossing
that link is affected.

2.2.3 Backup route
Backup route is a concept mostly used in telephone networks based on a hierarchical organiza-
tion: every exchange is connected to an upper-level exchange by a primary route, and to another
upper-level exchange by a backup route ⇒ if a fault occurs in the primary route, the backup
route is ready to come into operation without any transient period.

A data network is instead based on a meshed topology, where routers are interconnected in
various ways⇒ it is impossible to foresee all possible failures of the network to prearrange backup
paths, but when a failure occurs a routing algorithm is preferable automatically computing on
the fly an alternative path (even if the computational step requires a transient period).

Backup route in modern networks can still have applications:

• a company connected to the Internet via ADSL can keep its connectivity when the ADSL
line drops by switching to a backup route via HiperLAN technology (wireless);

• the internet backbone is by now in the hands of telephone companies, which have modeled
it according to criteria of telephone networks ⇒ its organization is hierarchical enough to
allow backup routes to be prearranged.

2.3 Multipath routing
With routing by network address, all the packets toward a destination follow the same path,
even if alternative paths are available ⇒ it would be preferable to make part of traffic follow an
alternative path, even if more costly, not to saturate the path chosen by the algorithm.

Multipath routing, also known as ‘load sharing’, is a traffic engineering feature aiming at
distributing traffic toward the same destination over multiple paths (when available), allowing
multiple entries for each destination in the routing table, for a more efficient usage of network
resources.

2.3.1 Unequal-cost multipath routing
An alternative path is used only if it has cost csec not too greater than cost cprim of the least-cost
primary path:

given K ≥ 1, csec ≥ cprim : sec used⇔ csec ≤ K · cprim

16

Traffic is distributed inversely proportionally to the cost of the routes. For example in this
case: {

cprim = 10
csec = 20

⇒

{
prim = 66% traffic
sec = 33% traffic

the router may decide to send the packet with 66% probability along the primary path and 33%
probability along the secondary path.

Problem Given a packet, each router autonomously decides on which path to forward it ⇒
incoherent decisions between routers may make the packet enter a routing loop, and since the
forwarding is usually session-based that packet will never exit the loop:

Figure 2.3: Routing loop caused by unequal-cost multipath routing.

2.3.2 Equal-cost multipath routing
An alternative path is used only if it has cost csec exactly equal to cost cprim of the primary path
(K = 1):

given csec ≥ cprim : sec used⇔ csec = cprim

Traffic is equally partitioned on both the paths (50%).

Problems If the first packet follows the slow path and the second packet follows the fast path,
TCP mechanisms may cause overall performance to get worse:

• TCP reordering problem: packets may arrive out of sequence: the second packet arrives
at the destination before the first packet ⇒ the process for sequence number reordering
keeps busy the computational resources of the receiver;

• transmission rate decrease: if the acknowledgment packet (ACK) of the first packet
arrives too late, the source thinks that the first packet went lost ⇒ when 3 duplicate
(cumulative) ACKs have arrived and the timeout expires, TCP sliding-window mechanisms
get into the action:2

– fast retransmit: the source unnecessarily transmits again the packet⇒ the packet gets
duplicate;

– fast recovery: the source thinks that the network is congested⇒ it slows down packet
sending by limiting the transmission window: it sets the threshold value to half of
the current value of the congestion window, and makes the congestion window restart
from value 1 (that is only one packet at a time is sent and its ACK is awaited before
sending the next packet).

2Please refer to section Uso dei protocolli a finestra in chapter Livello Trasporto: Protocolli TCP-UDP in
lecture notes ‘Reti di calcolatori’.

17

(a) TCP reordering problem. (b) Transmission rate decrease.

Figure 2.4: Problems caused by equal-cost multipath routing.

Criteria

Real multipath routing implementations split traffic so that traffic toward a same destination
follows the same path:

• flow-based: every transport-layer session is identified by the quintuple:

1. <source IP address>

2. <destination IP address>

3. <transport-layer protocol type> (e.g. TCP)
4. <source port>

5. <destination port>

and the router stores a table mapping session identifiers with output ports:

– extracting the fields forming the session ID from the packet is onerous, due to the
variety of supported packet formats (VLAN, MPLS. . .);

– information about transport-layer ports is unavailable in case of fragmented IP pack-
ets;

– searching the session ID table for the quintuple is onerous;
– often TCP connection shutdown is not ‘graceful leaving’, that is FIN and ACK packets

are not sent⇒ entries in the session ID tables are not cleared⇒ it is required a thread
performing sometimes a cleanup of old entries by looking at their timestamps;

• packet-based: the router sends the packets having even (either destination or source or
both) IP address to a path, and odd IP address to the other path⇒ the hashing operation
is very fast.

Problem Traffic toward a same destination can not use both the paths at the same time ⇒
there are troubles in case of very big traffic toward a certain destination (e.g. a nightly backup
between two servers).

18

2.4 Non-adaptive algorithms
2.4.1 Static routing
The network administrator manually configures on each router its routing table.

Disadvantage If a change in the network occurs, routing tables need to be manually updated.

Application Static routing is mainly used on routers at the network edges:

• edge routers are not allowed to propagate routing information toward the backbone: the
core router stops all the advertisements coming from the edge, otherwise a user could
advertise a network with the same address as an existing network (e.g. google.com) and
redirect towards him a part of traffic directed to that network.
Since users can not advertise their own networks, how can they be reachable from outside?
The ISP, which knows which addresses are used by the networks it sold to users, must
configure the core router so that it advertises those networks to other routers even if they
are not locally connected;

• edge routers are not allowed to receive routing information from the backbone: an edge
router is typically connected by a single link to a core router ⇒ a global default route is
enough to reach the entire Internet.

2.4.2 Random walk
When a packet arrives, the router chooses a port randomly (but the one from which it was
received) and sends it out on that port.

Applications It is useful when the probability that the packet reaches the destination is high:

• peer-to-peer (P2P) networks: for contents lookup;

• sensor network: sending messages should be a low-power operation.

2.4.3 Flooding
When a packet arrives, the router sends it out on all the ports (but the one from which it was
received).

Packets may have a ‘hop count’ field to limit flooding to a network portion.

19

Applications

• military applications: in case of attack the network could be damaged ⇒ it is critical that
the packet arrives at destination, even at the cost of having a huge amount of duplicate
traffic;

• Link State algorithm: each router when receiving the network map by a neighbor has to
propagate it to the other neighbors (please refer to section 4.1.3).

2.4.4 Selective flooding
When a packet arrives, the router first checks if it has already received and flooded it in the past:

• old packet: it discards it;

• new packet: it stores and sends it out on all the ports (but the one from which it was
received).

Each packet is recognized through the sender identifier (e.g. the source IP address) and the
sequence number:

• if the sender disconnects from the network or shutdowns, when it connects again the se-
quence number will restart from the beginning ⇒ the router sees all the received packets
as old packets;

• sequence numbers are encoded on a limited number of bits ⇒ the sequence number space
should be chosen so as to minimize new packets wrongly recognized as old packets.

Sequence number spaces

Linear space It can be tolerable if selective flooding is used for few control messages:

• when the sequence number reaches the maximum possible value, an overflow error occurs;

• old packet: the sequence number is lower than the current one;

• new packet: the sequence number is greater than the current one.

Circular space It solves the sequence number space exhaustion problem, but it fails if a packet
arrives with sequence number too far away from the current one:

• when the sequence number reaches the maximum possible value, the sequence number
restarts from the minimum value;

• old packet: the sequence number is in the half preceding the current one;

• old packet: the sequence number is in the half following the current one.

Lollipop space The first half of the space is linear, the second half is circular.

2.5 Adaptive algorithms
2.5.1 Centralized routing
All routers are connected to a centralized control core called Routing Control Center (RCC):
every router tells the RCC which its neighbors are, and the RCC uses this information to create
the map of the network, compute routing tables and communicate them to all routers.

20

Advantages

• performance: routers have not to have a high computational capacity, all focused on a single
device;

• debugging: the network administrator can get the map of the whole network from a single
device to check its correctness;

• maintenance: intelligence is focused on the control center ⇒ to update the algorithm just
the control center has to be updated.

Disadvantages

• fault tolerance: the control center is a single point of failure⇒ a malfunction of the control
center impacts on all the network;

• scalability: the more routers the network is made up of, the more the work for the control
center increases ⇒ it is not suitable for wide networks such as Internet.

Application Similar principles are used in telephone networks.

2.5.2 Isolated routing
There is no control center, but all nodes are peer: each node decides its paths autonomously
without exchanging information with other routers.

Advantages and disadvantages They are practically the opposite of the ones of the central-
ized routing.

Backward learning

Each node learns network information based on packet source addresses:3

• it works well only with ‘loquacious’ nodes;

• it is not easy to realize the need of switching to an alternative path when the best path
becomes no longer available;

• it is not easy to detect the destinations become unreachable ⇒ a special timer is required
to delete old entries.

2.5.3 Distributed routing
Distributed routing uses a ‘peer’ model: it takes the advantages of centralized routing and the
ones of isolated routing:

• centralized routing: routers participate in exchange of information regarding connectivity;

• isolated routing: routers are equivalent and there is not a ‘better’ router.

Applications Modern routing protocols use two main distributed routing algorithms:

• Distance Vector: each node tells all its neighbors what it knows about the network (chap-
ter 3);

• Link State: each node tells all the network what it knows about its neighbors (chapter 4).
3Please refer to section Transparent bridge in chapter Repeaters and bridges in lecture notes ‘Progetto di reti

locali’.

21

Comparison

Neighbors

• LS: needs the ‘hello’ protocol;

• DV: knows its neighbors through the DV itself.

Routing table DV and LS create the same routing table, just computed in different ways and
with different duration (and behavior) of the transient:

• LS: routers cooperate to keep the map of the network up to date, then each of them
computes its own spanning tree: each router knows the topology of the network, and knows
the precise path to reach a destination;

• DV: routers cooperate to compute the routing table: each router knows only its neighbors,
and it trusts them for determining the path towards the destination.

Simplicity

• DV: single algorithm easy to implement;

• LS: incorporates many different components.

Debug Better in LS: each node has the map of the network.

Memory consumption (in each node) They may be considered equivalent:

• LS: each of the N LSs has A adjacencies (Dijkstra: ∼ N ·A);

• DV: each of the A DVs has N destinations (Bellman-Ford: ∼ A ·N).

Traffic Better in LS: Neighbor Greeting packets are much smaller than DVs.

Convergence Better in LS: fault detection is faster because it is based on Neighbor Greeting
packets sent with a high frequency.

22

Chapter 3

The Distance Vector algorithm

The Distance Vector (DV) algorithm is based on distribution of information about the whole
network within the neighborhood of the router.

Every router periodically generates a DV, that is a set of destination-cost pairs:

• destination: all the destinations known by the generating router (in real IP networks they
are network addresses with netmask);

• cost: the cost of the path from the generating router to the destination.

The receiving router learns from each DV:

• reachable destinations: they are added to the ones already known locally;

• direction: those destinations are reachable through the generating router;

• cost: the one reported by the generating router plus the cost of the link between the
receiving router and the generating router.

Each node stores all the DVs coming from its neighbors, and integrates them by selecting the
best costs for every destination in order to build its routing table and its DV:

Figure 3.1: Process generating the routing table and the new DV for node A.

3.1 Basic algorithm
• main process:

1. the DV is announced to adjacent routers;

23

2. it waits for timeout;
3. it comes back to step 1;

• upon receiving a new DV:

1. the DV is saved into memory;
2. the DV is merged with stored DVs;

• upon failure of a link (detected at the physical layer):

1. all the DVs coming from that link are deleted;
2. remaining DVs are merged;

• when a DV has not been received within timeout:

1. the missing DV is deleted;
2. remaining DVs are merged.

Remarks

• reliability: timeouts avoid the use of link-up signals that may not be always available (e.g.
if the failure occurs beyond a hub);

• efficiency: on a link failure, the router gets its new routing table without exchanging any
DVs with its adjacent nodes;

• convergence speed: when a router changes its DV, it does not announce it until the next
timeout of the main process (no triggered updates).

3.2 Triggered updates
A router can send its updated DV as soon as it updates its routing table, without waiting for
the default timeout, to improve convergence time. It can announce either the entire DV or, like
it is more frequent in real implementations, just the changed routes.

The triggered update does not reset the timeout of the main process, to avoid that routers
start generating DVs at the same time (synchronization).

3.3 Count to infinity

Figure 3.2: Example of count to infinity.

A count to infinity is triggered when the cost to reach a destination, which is no longer
reachable, is progressively increased to the infinity.

24

Example In figure 3.2, a failure on the link between A and B triggers a count to infinity:

1. B detects the failure at the physical layer and deletes the DV from A, but C is not able to
detect the failure at the physical layer;

2. C announces to B it can reach A through a path of cost 2, which really was the old one
crossing B;

3. B updates the DV from C, appearing that A became reachable through an alternative path
at cost 3 crossing C;

4. B in turn sends its DV to C, which updates it and increase the cost to 4, and so on.

Effect B thinks it can reach A through C, while C thinks it can reach A through B⇒ a packet
which is directed to A starts bouncing between B and C (bouncing effect) saturating the link
between B and C until its TTL goes down to 0.

Cause Unlike black hole and routing loop, count to infinity is a specific problem of the DV
algorithm, due to the fact that the information included in the DV does not consider the network
topology.

Possible solutions

• threshold for infinity: upper bound to count to infinity;

• additional algorithms: they prevent count to infinity, but they make the protocol heavier
and tend to reduce its reliability because they can not foresee all the possible failures:

– route poisoning: bad news is better than no news;
– split horizon: if C reaches destination A through B, it does not make sense for B to

try to reach A through C;
– path hold down: let the rumors calm down waiting for the truth.

3.3.1 Threshold for infinity
A threshold value can be defined: when the cost reaches the threshold value, the destination is
considered no longer reachable.

For example RIP has a threshold value equal to 16: more than 15 routers in a cascade can
not be connected.

Protocols with complex metrics (e.g. IGRP) require a very high threshold value to consider
differentiated costs: for example a metric based on bandwidth may result in a wide range of cost
values.

If the bouncing effect takes place on a low-cost link, it is required too much time to increase
costs up to the threshold value ⇒ two metrics at the same time can be used:

• a metric for path costs (e.g. based on link bandwidth);

• a metric for count to infinity (e.g. based on hop count).

When the metric used for count to infinity returns ‘infinity’, the destination is considered
unreachable whatever the path cost is.

3.3.2 Route poisoning
The router which detected the failure propagates the destinations no longer reachable with cost
equal to infinity⇒ the other routers hear about the failure and in turn propagate the ‘poisoned’
information.

25

3.3.3 Split horizon
Every router differentiates DVs sent to its neighbors: in each DV it omits the destinations which
are reachable through a path crossing the neighbor to which it is sending it ⇒ it does not
trigger ‘ghost’ paths to appear toward a destination no longer reachable after sending obsolete
information in the DV.

Characteristics

• it avoids count to infinity between two nodes (except in case of particular loops);

• it improves convergence time of the DV algorithm;

• routers have to compute a different DV for each link.

Split horizon with poisoned reverse

In real implementations, the DV may be fragmented into multiple packets ⇒ if some entries in
the DV are omitted, the receiving node does not know whether those entries were intentionally
omitted by the split horizon mechanism or the packets where they were included went lost.

In split horizon with poisoned reverse, destinations instead of being omitted are transmitted
anyway but ‘poisoned’ with infinite cost, so the receiving node is sure it has received all the
packets composing the DV ⇒ this increases convergence time.

3.3.4 Path hold down
If the path toward a destination increases its cost, it is likely to trigger a count to infinity⇒ that
entry is ‘frozen’ for a specific period of time waiting for the rest of the network to find a possible
alternative path, whereupon if no one is still announcing that destination it will be considered
unreachable and its entry will be deleted.

3.4 DUAL
Diffusing Update Algorithm (DUAL) is an additional algorithm that aims at improving the
scalability of the DV algorithm by guaranteeing the absence of routing loops even during the
transient:

• positive status change: if any neighbor node announces an alternative path with a lower
cost, it is immediately accepted because definitely it will not cause a routing loop;

• negative status change: if

– either the current next hop announces the increase of the current route (worsening
announces by other neighbor nodes are ignored),

– or the router detects at the physical layer a fault on the link belonging to the current
route

then the DUAL algorithm must be activated:

1. selection of a feasible successor: another neighbor is selected only if it guarantees
that the alternative path across it will not cause routing loops;

2. diffusing process: if no feasible successors can be found, the node enters a sort of
‘panic mode’ and asks its neighbors for help, waiting for someone to report a feasible
path toward that destination.

26

3.4.1 Selection of a feasible successor
If the current route is no longer available due to a negative status change, an alternative path is
selected only if it can be proved that the new path does not create loops, that is if it is certain
that the new next hop does not use the node itself to reach the destination.

A neighbor node K is a feasible successor for router R if and only if its distance toward
destination D is smaller than the distance that router R had before the status change:

d (K, D) < d (R, D)

This guarantees that neighbor K can reach destination D by using a path that does not go
through router R: if path K → D passed across R, its cost could not be lower than the one of
sub-path R→ D.

In case more than one feasible successor exists, neighbor X is selected offering the least-cost
path toward destination D:

min {L (R, X) + d (X, D)}

where:

• L (R, X) is the cost of the link between router R and its neighbor X;

• d (X, D) is the distance between neighbor X and destination D.

The selected feasible successor is not guaranteed to be the neighbor which the best possible
path toward the destination goes across. If the mechanism does not select the best neighbor, the
latter will keep announcing the path which is really the best one without changing its cost ⇒
the router will recognize the existence of a new, better path which was not selected and adopt
the new path (positive status change).

3.4.2 Diffusing process
If router R can not find any feasible successor for the destination:

1. it temporarily freezes the entry in its routing table related to the destination ⇒ packets
keep taking the old path, which definitely is free of loops and at most is no longer able to
lead to the destination;

2. it enters an active state:

(a) it sends to each of its neighbors, but the next hop of the old path, a query message
asking if it is able to find a path which is better than its old path and which is definitely
free of loops;

(b) it waits for a reply message to be received from each of its neighbor;
(c) it chooses the best path exiting from the active state.

Each neighbor router X receiving the query message from router R sends back a reply message
containing its DV related to a path across it:

• if router R is not its next hop toward the destination, and therefore the cost of its path
toward the destination has not been changed, then router X reports that router R can use
that path;

• if router R is its next hop toward the destination, then router X should in turn set out to
search for a new path, by either selecting a feasible successor or entering the active state
too.

27

3.5 Advantages and disadvantages
Advantages

• very easy to implement, and protocols based on the DV algorithm are simple to configure;

• it requires limited processing resources ⇒ cheap hardware in routers;

• suitable for small and stable networks with not too frequent negative status changes;

• the DUAL algorithm guarantees loop-free networks: no routing loops can occur, even in
the transient (even though black holes are still tolerated).

Disadvantages
• the algorithm has an exponential worst case and it has a normal behavior between O

(
n2)

and O
(
n3);

• convergence may be rather slow, proportional to the slowest link and the slowest router in
the network;

• difficult to understand and predict its behavior in big and complex networks: no node has
a map of the network ⇒ it is difficult to detect possible routing loops;

• it may trigger routing loops due to particular changes in topology;

• additional techniques for improving its behavior make the protocol more complex, and they
do not solve completely the problem of the missing topology knowledge anyway;

• the threshold ‘infinity’ limits the usage of this algorithm only to small networks (e.g. with
few hops).

3.6 The Path Vector algorithm
The Path Vector (PV) algorithm adds information about the announced routes: also the path,
that is the list of crossed nodes along it, is announced:

Figure 3.3: Process generating the routing table and the new PV for node A.

The list of crossed nodes allows to avoid the appearance of routing loops: the receiving node
is able to detect that the announced route crosses it by observing the presence of its identifier
in the list, discarding it instead of propagating it ⇒ paths crossing twice the same node can not
form.

Path Vector is an intermediate algorithm between Distance Vector and Link State: it adds
the strictly needed information about announced paths without having the complexity related
to Link State where the whole network topology needs to be known.

28

Application The PV algorithm is used in inter-domain routing by the BGP protocol (please
refer to section 12.1.1).

29

Chapter 4

The Link State algorithm

The Link State (LS) algorithm is based on distribution of information about the neighborhood
of the router over the whole network. Each node can create the map of the network (the same
for all nodes), from which the routing table has to be obtained.

4.1 Components
• Neighbor Greetings (section 4.1.1)

• Link States (section 4.1.2)

• flooding algorithm (section 4.1.3)

• Dijkstra’s algorithm (section 4.1.4)

• adjacency bring-up (section 4.1.5)

4.1.1 Neighbor Greetings
Neighbor Greetings are messages periodically exchanged between adjacent nodes to collect in-
formation about adjacencies. Each node:

• sends Neighbor Greetings to report its existence to its neighbors;

• receives Neighbor Greetings to learn which are its neighbors and the costs to reach them.

Neighbor Greetings implement fault detection based on a maximum number of consecutive
Neighbor Greetings not received:

• fast: Neighbor Greetings can be sent with a high frequency (e.g. every 2 seconds) to recog-
nize variations on adjacencies in a very short time:

– once they are received, they are not propagated but stop on the first hop ⇒ they do
not saturate the network;

– they are packets of small size because they do not include information about nodes
other than the generating node;

– they require a low overhead for routers, which are not forced to compute again their
routing table whenever they receive one of them;

• reliable: it does not rely on the ‘link-up’ signal, unavailable in presence of hubs.

30

4.1.2 Link States
Each router generates a LS, which is a set of adjacency-cost pairs:

• adjacency: all the neighbors of the generating node;

• cost: the cost of the link between the generating router and its neighbor.

Each node stores all the LSs coming from all nodes in the network into the Link State
Database, then it scans the list of all adjacencies and builds a graph by merging nodes (routers)
with edges (links) in order to build the map of the network.

LS generation is mainly event-based: a LS is generated following a change in the local
topology (= in the neighborhood of the router):

• the router has got a new neighbor;

• the cost to reach a neighbor has changed;

• the router has lost its connectivity to a neighbor previously reachable.

Event-based generation:

• allows a better utilization of the network: it does not consume bandwidth;

• it requires the ‘hello’ component, based on Neighbor Greetings, as the router can no longer
use the periodic generation for detecting faults toward its neighbors.

In addition, routers implement also a periodic generation, with a very low frequency (in the
order of tens of minutes):

• this increases reliability: if a LS for some reason goes lost, it can be sent again without
having to wait for the next event;

• this allows to include an ‘age’ field: the entry related to a disappeared destination remains
in the routing table and packets keep being sent to that destination until the piece of
information, if not refreshed, ages enough that it can be deleted.

4.1.3 Flooding algorithm
Each LS must be sent in ‘broadcast’ to all the routers in the network, which must receive it
unchanged ⇒ real protocols implement a sort of selective flooding, representing the only way
to reach all routers with the same data and with minimum overhead. Broadcast is limited only
to LSs, to avoid saturating the network.

LS propagation takes place at a high speed: unlike DVs, each router can immediately propa-
gate the received LS and in a later time process it locally.

Real protocols implement a reliable mechanism for LS propagation: every LS must be con-
firmed ‘hop by hop’ by an acknowledgment, because the router must be sure that the LS sent to
its neighbors has been received, also considering that LSs are generated with a low frequency.

4.1.4 Dijkstra’s algorithm
After building the map of the network from its adjacency lists, each router is able to compute
the spanning tree of the graph, that is the tree with least-cost paths having the node as a root,
thanks to the Dijkstra algorithm: on every iteration all the links are considered connecting nodes
already selected with nodes not yet selected, and the closest adjacent node is selected.1

All nodes have the same Link State Database, but each node has a different routing tree
to the destinations, because the obtained spanning tree changes as the chosen node as a root
changes:

1Please refer to section Algoritmo di Dijkstra in chapter I cammini minimi in lecture notes ‘Algoritmi e
programmazione’.

31

• better distribution of the traffic: reasonably there are no unused links (unlike Spanning
Tree Protocol);

• obviously the routing tree must be consistent among the various nodes.

4.1.5 Adjacency bring-up
Bringing up adjacencies is required to synchronize Link State Databases of routers when a new
adjacency is detected:

• a new node connects to the network: the adjacent node communicates to it all the LSs
related to the network, to populate its Link State Database from which it will be able to
compute its routing table;

• two partitioned subnetworks (e.g. due to a failure) are re-connected together: each of the
two nodes at the link endpoints communicates to the other node all the LSs related to its
subnetwork.

Procedure

1. a new adjacency is detected by the ‘hello’ protocol, which keeps adjacencies under control;

2. synchronization is a point-to-point process, that is it affects only the two routers at the
endpoints of the new link;

3. the LSs which had previously been unknown are sent to other nodes in the network in
flooding.

4.2 Behaviour over broadcast data-link-layer networks
The LS algorithms models the network as a set of point-to-point links ⇒ it suffers in presence
of broadcast2 data-link-layer networks (such as Ethernet), where any entity has direct access to
any other entity on the same data link (shared bus), hence creating a full-mesh set of adjacencies
(N nodes → N(N−1)

2 point-to-point links).
The high number of adjacencies has a severe impact on the LS algorithm:

• computation problems: the convergence of the Dijkstra’s algorithm depends on the number
of links (L · log N), but the number of links explodes on broadcast networks;

• unnecessary overhead when propagating LSs: whenever a router needs to send its LS on
the broadcast network, it has to generate N − 1 LSs, one for every neighbor, even if it
would be enough to send it only once over the shared channel to reach all its neighbors,
then each neighbor will in turn propagate multiple times the received LS (∼ N2);

• unnecessary overhead when bringing up adjacencies: whenever a new router is added to
the broadcast network, it has to start N − 1 bring-up phases, one for every neighbor, even
if it would be enough to re-align the database just with one of them.

The solution is to transform the broadcast topology in a star topology, by adding a pseudo-
node (NET): the network is considered an active component that will start advertising its adja-
cencies, becoming the center of a virtual star topology:

• one of the routers is ‘promoted’ which will be in charge of sending also those additional
LSs on behalf of the broadcast network;

• all the other routers advertise an adjacency to that node only.
2To be precise, on all the data-link-layer networks with multiple access (e.g. also on Non-Broadcast Multiple

Access [NBMA]).

32

The virtual star topology is valid only for LS propagation and adjacency bring-up, while
normal data traffic still uses the real broadcast topology:

• LS propagation: the generating node sends a LS to the pseudo-node, which sends it to the
other nodes (∼ N);

• adjacency bring-up: the new node activates a bring-up phase only with the pseudo-node.

4.3 Advantages
• fast convergence:

– LSs are quickly propagated without any intermediate processing;
– every node has certain information because coming directly from the source;

• short duration of routing loops: they may happen during transient for a limited amount of
time;

• debug simplicity: each node has a map of the network, and all nodes have identical databases
⇒ it is enough to query a single router to have the full map of the network in case of need;

• good scalability, although it is better not to have large domains (e.g. OSPF suggests not
to have more than 200 routers in a single area).

33

Chapter 5

Hierarchical routing

Hierarchical routing allows to partition the network into autonomous routing domains. A
routing domain is the portion of the network which is handled by the same instance of a
routing protocol.

(a) View from domain A. (b) View from domain B.

Figure 5.1: Example: forwarding of a packet from node A to node H.

Routers belonging to a domain do not know the exact topology of another domain, but they
only know the list of destinations included in it with their related costs (sometimes fictitious)
⇒ a good choice to reach them is to take the best exit path toward the target domain across a
border router.

Every border router has visibility on both the domains which it interconnects:

• it is called egress router when the packet is exiting the domain;

• it is called ingress router when the packet is entering the domain.

Hierarchical routing introduces a new rule for handling the routes related to destinations
which are outside the current domain:

• internal destinations: if the destination is inside the same routing domain, the routing
information generated by the “internal” routing protocol has to be used;

• external destinations: if the destination is inside another routing domain, traffic has to
be forwarded toward the closest egress router out from the current domain to the target
domain, and then the latter will be in charge of delivering the packet to the destination by
using its internal routing information.

The sub-path from the source to the closest egress router and the sub-path from here to the
final destination taken individually are optimal, but the overall path which is their concatenation
is not optimal: given a destination, the first part of the path (source-border router) is the same
for all the destinations in the remote domain.

34

Motivations

• interoperability: domains handled by different routing protocols can be interconnected;

• visibility: an ISP does not want to let a competitor know details about its network;

• scalability: a too wide portion of network can not be handled by a single instance of a
routing protocol, but needs to be partitioned:

– memory: it excludes information about the precise topology of remote domains, re-
ducing the amount of information which every router needs to keep in memory;

– summarization: it allows to announce a ‘virtual’ destination (with a conventional cost)
grouping together several ‘real’ destinations (e.g. in IP networks multiple network
addresses can be aggregated into a network address with a longer netmask);

– isolation: if inside a certain domain a failure occurs or a new link is added, route
changes do not perturb other domains, that is routing tables in routers of remote
domains stay unchanged⇒ less transients, more stable network, quicker convergence.

Implementations Hierarchical routing can be implemented in two ways (not mutually exclu-
sive):

• automatic: some protocols (such as OSPF, IS-IS) automatically partition the network into
routing domains (called ‘areas’ in OSPF, please refer to chapter 10);

• manual: the redistribution process can be enabled on a border router to interconnect do-
mains handled by even different routing protocols (section 5.2).

5.1 Partitioned domains
A domain becomes partitioned if starting from a border router it is no longer possible to reach
all its internal destinations through paths always remaining within the domain itself.

Figure 5.2: Example of partitioned domains.

In the example in figure 5.2, the packet sent by node A exits routing domain A as soon
as possible, but once it has entered domain B it can not reach final destination H due to the
link failure between the border router and node I. Really an alternative path exists leading to
destination H across the other border router, but it can not be taken because the packet would
be required to exit domain B and cross domain A.

Moreover, paths can be asymmetrical: the reply packet may take a path other than the one
taken by the query packet, by going across a different border router ⇒ data may be received,
but ACKs confirming they have been received may go lost.

35

Solutions
• links inside every domain can be redounded to make it strongly connected, to avoid that a

link failure could cause a domain to be partitioned;

• the OSPF protocol allows the manual configuration of a sort of virtual tunnel between two
border routers called Virtual Link (please refer to section 10.1.2).

5.2 Redistribution
Redistribution is the software process, running on a border router, which allows to transfer
routing information from a routing domain to another one.

Figure 5.3: Example of redistribution.

In the example in figure 5.3, destinations learnt in a RIP domain can be injected into an
OSPF domain and vice versa.

Remarks
• The command for redistribution is unidirectional ⇒ it is possible to do a selective re-

distribution in one direction only (for example the ISP does not accept untrusted routes
announced by the customer).

• Redistribution can be performed also among domains handled by instances of the same
protocol.

• Routes learnt by the redistribution process can be marked as ‘external routes’ by the routing
protocol.

5.2.1 Costs
Routers in a domain will know a broader set of destinations, even if some of them may have a
‘wrong’ (simplified) topology: in fact the redistribution process can

• either keep the cost of the original route, at most fixed by a coefficient,

• or set the cost to a conventional value when:

– the two protocols use different metrics: for example a cost learnt in ‘hop count’ can
not be converted to another one using ‘delays’;

– multiple destinations with different costs are aggregated into a summarized route.

When a destination is announced as reachable by both the domains, handled by routing
protocols with different metrics, how can the border router compare costs to determine the best
route toward that destination? Each routing protocol has an intrinsic cost pre-assigned by the
device manufacturer⇒ the router always chooses the protocol with the lowest intrinsic cost (even
if the selected route could be not the best one).

36

Route source Administrative distance
connected interface 0

static route 1

dynamic route

external BGP 20
internal EIGRP 90

IGRP 100
OSPF 110
RIP 120

Table 5.1: Main default administrative distances in Cisco routers.

37

Chapter 6

Inter-domain routing

Inter-domain routing is in charge of deciding and propagating information about external
routes among multiple interconnected ASes over the network.

6.1 Autonomous Systems
An Autonomous System (AS) is a set of IP networks that are under control of a set of entities
that agree to present themselves as a unique entity, everyone adopting the same set of routing
policies.

From the inter-domain routing point of view, Internet is organized into ASes: an AS represents
an homogeneous administrative entity, generally an ISP, at the highest hierarchical level on the
network. Each AS is uniquely identified by a 32-bit number (it was 16-bit in the past) assigned
by IANA.

Each AS is completely independent: it can decide internal routing according to its own pref-
erences, and IP packets are routed inside it according to internal rules. Each AS can have one or
more internal routing domains served by IGP protocols: each domain can adopt its favourite IGP
protocol, and thanks to redistribution it can exchange routing information with other domains.

A network being AS can keep under its control incoming and outgoing traffic thanks to
routing policies, but is subject to a greater responsibility: routing is more difficult to configure,
and possible configuration mistakes may affect traffic of other ASes.

For network portions who are going to become ASes, in the past some additional rules were
enforced which nowadays have been relaxed:

• all the network has to be on the same administrative domain:

nowadays the administrative entity of an AS does not necessarily coincides with the
organization actually managing internally the network: for example, the network at
the Politecnico di Torino, although being owned by the university and being under the
control of bodies inside it, is one of the subnetworks inside the AS administered by the
GARR research body, which is in charge of deciding long-distance interconnections
toward other ASes;

• the network has to be of at least a given size:

in recent years content providers have needed to have some ASes spread around the
world of very small size: for example, Google owns some web servers in Italy which
distribute custom content for the Italian audience (e.g. advertisements) and which,
being closer to users, return more quickly search results acting as a cache (please
refer to chapter 15) ⇒ if those web servers constitute themselves an AS, Google has
control over the distribution of its content to Italian ISPs, and can make commercial
agreements with the latter favouring some of them at the expense of other ones;

38

• the AS has to be connected with at least two other ASes to guarantee, at least technically,
transit across it for traffic from an AS to another one:

a local ISP of small size (Tier 3) may buy by a national ISP of big size (Tier 2) the
whole connectivity toward the Internet (please refer to section 11.1).

6.2 EGP protocol class
A single border router put between ASes belonging to different ISPs arises some issues:

• who owns it? who configures it?

• who is responsible in case of failure?

• how to prevent an ISP from collecting information about a competitor’s network?

The solution is to use two border routers, each one administered by either of the two ISPs,
separated by a sort of intermediate ‘free zone’ handled by a third routing protocol instance of
type Exterior Gateway Protocol (EGP).

Through an EGP protocol, every border router at the border of an AS exchanges external
routing information with other border routers:

• it propagates to other ASes information about destinations which are inside its AS;

• it propagates to other ASes information about destinations which are inside other ASes
but can be reached through its AS.

EGP protocols differentiate from IGP protocols especially for support to routing policies
reflecting commercial agreements among ASes (please refer to section 11.2).

6.2.1 EGP protocols
• static routing: configuration of routers by hand:

+ this is the best “algorithm” to implement complex policies and to have the complete
control over network paths;

+ no control traffic is needed: information about destinations is avoided to be exchanged;
− it does not react to topological changes;
− it is easy to introduce inconsistencies;

• Exterior Gateway Protocol (EGP)1: it was the first protocol completely dedicated to
routing among domains, but currently nobody uses it because it provides just information
about reachability and not about distance:

– if the reachability of a destination is advertised across multiple paths, the least-cost
best path can not be chosen;

– if the reachability of a destination is advertised across multiple paths, all routers are
not guaranteed that will choose a coherent path ⇒ this can be used only in networks
without closed paths where no loop can form;

• Border Gateway Protocol (BGP): it is the only EGP protocol which has been adopted
in the whole Internet at the expense of other EGP protocols: all border routers in the
whole network of interconnected ASes must adopt the same EGP protocol for exchanging
external routes, because if two ASes would choose to use different EGP protocols, their
border routers could not communicate one with each other (please refer to chapter 12);

1The EGP protocol is one of the protocols belonging to the EGP protocol class.

39

• Inter-Domain Routing Protocol (IDRP): it was created as an evolution to BGP in
order to support OSI addressing, but currently nobody uses it because:

– it is made up of rather complex parts;
– since then improvements introduced by IDRP have been ported to the next versions

of BGP;
– it is not compatible with BGP ⇒ its adoption by an AS would break interoperability

with the rest of the network which is still using BGP.

6.3 Redistribution
On every border router a redistribution process is running from the IGP protocol inside the AS
to the EGP protocol outside the AS and vice versa ⇒ routes are redistributed first from an AS
to the intermediate area and then from here to the other AS:

Figure 6.1: Example of redistribution between ASes belonging to different ISPs.

• the IGP protocol learns external routes toward destinations which are in other ASes,
and propagates them into the AS as internal routes;

• the EGP protocol learns internal routes toward destinations which are in the AS, and
propagates them to other ASes as external routes.

Figure 6.2: Routes are redistributed both between hierarchical domains inside the AS, and between
the AS itself and the external world.

Redistribution defines:

• which internal networks must be known to the outside world: private networks for example
must not be propagated to other ASes;

40

• which external networks must be known inside the AS: the amount of announced routing
information can be reduced by avoiding to include full details about external networks:

– announced addresses can be ‘collapsed’ into aggregate routes when they share part of
their network prefixes;

– a single default route can be announced when the AS has a single exit point.

Redistribution must not introduce incoherences in routing:

• a routing loop may form if, for example, a route learnt in IGP and exported in EGP is
then re-imported in IGP appearing as an external route;

• if a certain AS is reachable across multiple border routers of the same AS, these border
routers need to agree in order to internally redistribute a single exit point for that route.

Often redistribution on a border router at the border of an AS is enabled in one way only
from the IGP protocol to the EGP protocol: internal routes are exported to the external world,
while external routes are replaced by a default route.

41

Chapter 7

Multicast routing

Multicast is the capability to transmit the same information to multiple end users without
being forced to address the latter singly and without having, hence, the need to duplicate for
each of them the information to spread.

Multicast routing is in charge of deciding and propagating information needed to for-
ward multicast packets outside Local Area Networks among multiple interconnected multicast
routers (mrouter) over the network:

1. determining the existence of receivers on a particular LAN segment: in case no receivers
exist, it does not make sense to forward those packets to the LAN ⇒ the networks which
have no receivers are cut away from the tree (pruning);

2. propagating the existence and location of receivers over the whole IP network: multicast
routing should keep track of locations of the various receivers, creating a ‘spanning tree’,
called distribution tree, so as to minimize costs and deliver packets to everyone;

3. transmitting and forwarding data: transmitters generate packets with a particular multicast
destination address, and mrouters forward them along the distribution tree up to receivers.

Multicast routing algorithms use two types of distribution tree:

• source-specific tree (RPB, TRPB, RPM, Link State): there is one tree for every sender
⇒ paths are optimal, but updates are more complex;

• shared tree (CBT): there is one tree for every multicast group, valid for all senders ⇒
updates are simpler, but paths are not optimal.

Multicast routing algorithms

• selective flooding (sect. 2.4.4)

• Distance Vector (sect. 7.1):

– reverse path forwarding (RPF)
– reverse path broadcasting (RPB)
– truncated reverse path broadcasting (TRPB)
– reverse path multicasting (RPM)

• Link State (sect. 7.2)

• core-based tree (CBT) (sect. 7.3)

• hierarchical (sect. 7.4)

42

7.1 Distance-Vector multicast routing
7.1.1 Reverse path forwarding
When a router receives a multicast packet, it sends it on all the other interfaces, provided that
the one from which it has arrived is on the shortest path between the router and the source.

Problems

• traffic: it loads the network unacceptably:

– no routing trees: on a LAN multiple copies of the same packet can transit if two
routers attached to the LAN have the same minimum distance from the source;

– no pruning: the packet is always distributed on all links, without considering the fact
that there could be no listeners;

• symmetric network: it considers the cost of the reverse path from the router to the source,
which could be different from the cost of the path from the source to the router due to the
presence of unidirectional links.

7.1.2 Reverse path broadcasting
A source (root node)-based distribution spanning tree is built, and packets reach all destinations
going along branches of this tree:

• parent interface: the interface at the minimum distance toward the source, from which
packets are received from upper levels;

• child interfaces: the other interfaces of the router, to which packets are sent toward subtrees
(possible received packets are always discarded).

On a LAN a single copy of the same packet transits: among routers having child interfaces on
the LAN, the router which has the lowest distance toward the source is elected as the designated
router for that link (in case of equal cost, the interface with the lowest IP address is taken).

Problems

• traffic: it loads the network unacceptably:

– no pruning: the packet is always distributed on all links, without considering the fact
that there could be no listeners;

• symmetric network: it considers the cost of the reverse path from the router to the source,
which could be different from the cost of the path from the source to the router due to the
presence of unidirectional links.

7.1.3 Truncated reverse path broadcasting
Interested hosts send membership reports to subscribe to the multicast group ⇒ routers will
send multicast packets only to interested hosts, and will delete from the tree the branches on
which no membership reports have been received (pruning).

Unfortunately the distribution tree depends, besides on the source, even on the multicast
group, resulting in reporting bandwidth and router memory requirements in the order of the
total number of groups times the total number of possible sources ⇒ to reduce bandwidth and
memory requirements, only leaf LANs which have no listeners are deleted from the tree: a leaf
LAN is a network not used by any other router to reach the multicast source.

43

How to determine whether a certain LAN is a leaf LAN? In split horizon with poisoned
reverse1, the destinations reached through the link on which the announcement has been sent
are put with distance equal to infinite: if at least a downstream router propagates the entry
related to the concerned source with infinite distance, then that router is using that link as its
shortest path to reach the source ⇒ that link is not a leaf, and then there could be further
downstream leaf LANs with listeners.

Problem It is not possible to perform pruning of whole subtrees, but only leaf LANs are
deleted ⇒ useless traffic travels on internal nodes in the tree.

7.1.4 Reverse path multicasting
It is possible to perform pruning of a whole subtree:

1. the first packet sent by the source is propagated according to the TRPB algorithm;

2. if the first packet reaches a router attached only to leaf LANs devoid of listeners for that
group, the router sends a non-membership report (NMR) message to its parent router;

3. if the parent router receives NMR messages from all its children, it in turn generates a
NMR message toward its parent.

NMR messages have limited validity: when the timeout expires, the TRPB algorithms is
adopted again. When in a pruned branch a listener is added to that group, the router sends to
its parent node a membership report message to quickly enable the branch of the tree without
waiting for the timeout.

Problems

• periodic broadcast storms: they are due to the TRPB algorithm on every timeout expira-
tion;

• scalability: it is critical, because each router should keep a lot of information for every
(source, group) pair.

7.2 Link-State multicast routing
Thanks to the full map of the network built by a LS-like (unicast) routing protocol, each router
is able to compute the distribution tree from every source toward every potential receiver.

‘Flood and prune’ is no longer needed, but every router is able to autonomously determine
whether it is along the distribution tree:

1. in a leaf LAN devoid of listeners, a host communicates to be interested in the group;

2. the attached router sends in flooding a LS packet which announces the existence of a LAN
with listeners and its location inside the network;

3. the other nodes in the network store the LS packet and in turn propagate it in flooding to
all the network;

4. when the first transmission packet arrives at a router, before being able to forward it it
needs to compute the shortest-path tree to know whether it is along the distribution tree
and, if so, on which links it should be forward the packet;

5. for the following packets this computation is no longer needed because the information will
be found in the cache.

1Please see section 3.3.3.

44

Problems

• routing the first packet in a transmission may require quite a lot of time: each router needs
to compute the shortest-path tree for the (source, group) pair;

• memory resources: each source has a distinct tree toward every destination ⇒ an entry for
every active (source, group) pair is in the routing table;

• CPU resources: running the Dijkstra’s algorithm to compute the routing tree is heavy for
routers.

7.3 Multicast routing with core-based tree algorithm
The multicast distribution tree is unique for the whole multicast group and independent of the
source (shared tree). The core router is the main router in the distribution tree.

Tree building

1. a host notifies its edge router (leaf router) which it wants to join the multicast group (as
both receiver and transmitter);

2. the edge router sends a Join Request message to the core router;

3. intermediate routers receiving the Join Request message mark the interface from which the
message has arrived as one of the interfaces to be used to forward multicast packets for
that group;

4. when the core router receives the Join Request message, also it marks that interface for
forwarding and signaling stops.
In case the message reaches a router which is already belonging to the tree, signaling stops
before reaching the core router, and a new branch is added to the previous tree.

Data forwarding

1. a group member simply sends the packet in multicast;

2. the packet is forwarded first along the branch from the source to the core router, then on
branches from the core router to other group members: every router receiving the packet,
including the core router, sends it on all the interfaces belonging to that multicast group
defined at the tree-building time (except for the one from which the packet has arrived).

Advantage scalability: few state information in routers.

Disadvantages

• usage of ‘hard states’: the core router is fixed, and no periodic refresh messages about the
status of multicast groups is sent ⇒ little suitable for highly variable situations;

• the core router is a single point of failure (even though another router can be elected);

• the location of the core router heavily affects algorithm performance: the core router may
become a bottleneck because all traffic crosses it;

• paths are not optimized: the distribution tree is not built based on the location of the
source, but all group members can be sources.

45

7.4 Hierarchical multicast routing
Hierarchical algorithms are needed for inter-domain routing: the complexity of traditional algo-
rithms (and state information to be kept) do not allow scalability to the whole Internet.

In general, routing policies come into play, and ‘hosts’ are replaced by ‘domains’:

• non-hierarchical routing: host X wants to receive groups A, B, C;

• hierarchical routing: domain Y wants to receive groups A, B, C.

46

Part II

Routing protocols

47

Chapter 8

Routing Information Protocol

Routing Information Protocol (RIP) is an intra-domain routing protocol based on the Dis-
tance Vector (DV) algorithm. RIP version 1 was defined in 1988 and was the first routing protocol
used on the Internet.

RIP, depending on the implementation, includes split horizon, route poisoning and path hold
down mechanisms to limit propagation of incorrect routing information.

RIP is suitable for small, stable and homogeneous networks:

• small: the metric is simply based on the hop count (each link has cost 1), but the 16-hop
limit can not be exceeded ⇒ more than 15 routers in a cascade within a same RIP domain
are not allowed;

• stable: status changes may trigger long-lasting transients;

• homogeneous:

– homogeneous links: costs on different links can not be differentiated based on band-
width;

– homogeneous routers: every router needs to finish processing before producing its new
DV ⇒ the transient duration is bound to performance of the slowest router.

8.1 Packet format
RIP packets have the following format:

8 16 32
Command Version (1) 0
Address Family Identifier 0

×
N

≤
25IP Address

0
0

Metric

Table 8.1: Format of a RIP packet (24 to 504 bytes).

where the most significant fields are:

• Command field (1 byte): it specifies the type of message:

– ‘Response’ value: the packet is transporting a DV containing one or more addresses;

48

– ‘Request’ value: a router newly connected to the network is notifying its neighbors of
its presence⇒ neighbors will send back their DVs without having to wait the timeout,
increasing the convergence speed;

• Address Family Identifier field (2 bytes): it specifies the network-layer protocol being used
(e.g. value 2 = IP);

• IP Address field (4 bytes): it specifies the IP address being announced (without netmask).
Up to 25 addresses can be announced in a single RIP packet;

• Metric field (4 bytes): it specifies the cost related to the announced address.

Encapsulation The RIP packet is encapsulated into an UDP packet:

• the destination UDP port is port 520, which at the time was chosen as a security mechanism
since ports lower than 1024 can be used only under administrative privileges;

• the destination IP address is the broadcast address (255.255.255.255) ⇒ all devices can
receive it, including hosts, although it is better to disable routing protocols on the host
side to protect them from malicious attacks and learn better routes by listening to possible
ICMP Redirect messages:

8.2 Timers
RIP is heavily based on timers:

• it is difficult to precisely comply with fixed timers because the CPU may be busy ⇒
uncertainties introduce further delays;

• all the routers within the network must use the same timers, otherwise routers may interact
in an uncoordinated way.

8.2.1 Routing update timer (default 30 s)

It defines how often gratuitous Response messages containing information about DVs are sent.

Router synchronization It is tried to be avoided by not resetting the routing update timer
on sending a triggered update and by sending gratuitous Response messages with a variable
delay between 25 and 35 seconds.

8.2.2 Route invalid timer (default 180 s)

It defines how long an entry can keep being valid in the routing table without being refreshed.
When the router invalid timer expires, the hop count of the entry is set to cost infinity (16),
marking the destination as unreachable.

49

Fault detection The router invalid timer is useful especially to detect a missing connectivity
toward a neighbor when the ‘link down’ signal is not available.

8.2.3 Route flush timer (default 240 s)

It defines how long an entry can stay in the routing table without being refreshed. When the
route flush timer expires, the entry is deleted from the routing table.

Route poisoning When the route invalid timer expires and the entry is marked as invalid, 60
s (with default values) are left when the router can announce the destination at cost infinity, to
inform the other routers before the entry is deleted.

8.2.4 Hold down timer (default 180 s)

It defines how long an entry is not subject to changes following a suspected start of count of
infinity. The hold down timer is a proprietary feature by Cisco.

Path hold down The hold down timer starts when the hop count is rising to a higher value,
to avoid triggering a count to infinity and allow the route to get stable.

Route poisoning Also a destination blocked by the path hold down algorithm can be propa-
gated at cost infinity.

8.3 Limitations
8.3.1 Netmask
The first version of RIP was defined when classful addressing, where the subnet mask can
be automatically obtained from the network address itself, was still in use ⇒ network addresses
announced in DVs lack information about their netmasks⇒ version 1 of RIP can be used only in
networks where each address belongs to an address class according to the old classful addressing
rules.

A stratagem can be adopted to make version 1 of RIP work in networks with variable-length
netmask addresses: given an announced network address, the router scans the network addresses
assigned to its connected interfaces:

• if at least an interface is assigned an address having a subnet mask equal to the subnet
mask of the announced address, the router assumes the netmask from the address of the
interface as a netmask for the announced address;

• if no interface is assigned an address having a subnet mask equal to the subnet mask of the
announced address, the router assumes its subnet mask as a netmask for the announced
address.

Issues A wrong netmask could be assumed if:

• no one of the interfaces of the router has the subnet mask being searched for;

• the announced address really has a netmark other than the one of the address of the selected
interface.

50

8.3.2 Hop count limit
RIP defines the hop count limit equal to 16 ⇒ destinations whose distance is larger than 15 are
considered unreachable.

Such a low maximum value was chosen to limit the well-known problem of count to infinity
of DV-based algorithms: when a route cost reaches value 16, the route is considered unreachable
and its cost can not rise even more.

This does not mean that the network can not have more than 15 routers in a cascade: the
only effect is that two routers too far away can not communicate directly one with each other.
This problem can be solved by partitioning the network into two routing domains, handled by
two different RIP protocol instances, and by enabling the redistribution process between them
so as to ‘falsify’ costs for external routes.

8.3.3 Lack of ‘age’ field
RIP does not associate an ‘age’ field to routes in DVs ⇒ the announced information could be
old, but the receiving router assumes it as new and resets its timers to zero ⇒ the more one is
far from the status change, the more the transient duration increases.

Example In a network with topology A—B—C:1

• time 0 s: a failure on link A—B occurs ⇒ node A is no longer reachable;

• time 179 s: node B announces to node C its DV, the last one including destination A;

• time 180 s: node B marks destination A as unreachable;

• time 359 s: node C marks destination A as unreachable.

8.4 RIP version 2
RIP version 2 extends the first version of RIP by exploiting some fields which were unused in
messages:

8 16 32
Command Version (2) Routing Domain
Address Family Identifier Route Tag

×
N

≤
25IP Address

Subnet Mask
Next Hop
Metric

Table 8.2: Format of a RIP packet version 2 (24 to 504 bytes).

where the new fields are:

• Routing Domain field (2 bytes): it specifies the routing domain for which this RIP message
is intended to handle multiple routing domain on the same border router:

1It is assumed: default timer values, no triggered updates, no route poisoning.

51

Figure 8.1: Router A discards messages intended for domain B.

• Route Tag field (2 bytes): it specifies if the announced address is an external route, that
is it was learnt through a redistribution process from another routing domain;

• Subnet Mask field (4 bytes): it contains the netmask associated to the announced network
address to support classless addressing;

• Next Hop field (4 bytes): it optimizes routing when multiple RIP routers belong to the same
LAN but to two different RIP domains, and therefore traffic from a domain to another one
would always cross the border router ⇒ the border router can announce to send traffic to
the next hop router in the other domain:

Figure 8.2: Border router B teaches router A to use router C as its next hop for destination D.

8.4.1 Authentication
RIP version 2 introduces a password-based authentication mechanism: a router must be
authenticated in order to be able to announce its DV to its neighbors.

If the first entry in the RIP packet has the ‘Address Family Identifier’ field equal to value
0xFFFF, then the remainder of the entry contains authentication information:

16 32
0xFFFF Authentication Type

Authentication

Table 8.3: Format of the authentication entry in a RIP packet.

where fields are:

• Authentication Type field (2 bytes): any type ‘simple password’ has been defined (value 2);

• Authentication field (16 bytes): it contains the password in clear text.

52

This authentication mechanism is quite weak because the password can be easily sniffed ⇒
it is rarely used. More complex authentication mechanisms are not possible because of the lack
of space in the RIP message.

8.4.2 Multicast
RIP version 1 sends DV in broadcast⇒ all entities, including hosts, have to process RIP messages.

RIP version 2 defines a destination multicast IP address (224.0.0.9), so that the RIP packet
is received only by entities which have subscribed to the multicast group ⇒ hosts and routers
not using the RIP protocol can discard the packet at the data-link layer.

8.5 Advantages
• it is suitable for small, stable and homogeneous networks;

• it requires few processing resources;

• it is simple to implement;

• it is simple to configure (there are no subdomains like in OSPF);

• it is available on a wide range of devices, even on cheap routers.

53

Chapter 9

IGRP and EIGRP

Interior Gateway Routing Protocol (IGRP) is an intra-domain routing protocol, proprietary
by Cisco, based on the Distance Vector (DV) algorithm.

Also in IGRP the support for classless addressing (netmask) is absent, but with respect to
RIP it has some additional ‘marketing-oriented’ features which however hide some unexpected
technical mistakes:

• more sophisticated metrics: they introduce more complexity and less route stability;

• multipath routing: unequal-cost multipath routing may originate loops;

• support for heterogeneous networks: a wide range for link costs may slow down convergence
to infinity;

• less traffic related to routing protocol: DV update happens every 90 seconds;

• greater stability: triggered updates are sent only if the cost has changed more than 10% to
avoid frequent reconfiguration of the network;

• not more than one IP fragmentation: IGRP messages also transport information about the
MTUs supported by the routers along the path ⇒ the packet can be fragmented imme-
diately based on the minimum MTU, avoiding that at a later time it will be fragmented
again by a smaller MTU.

9.1 Metrics
Cost C is obtained by the combination of 4 metrics:

C = 107

B

(
k1 + k2

256− L

)
+ k3D if k5 = 0

C =
[

107

B

(
k1 + k2

256− L

)
+ k3D

]
k5

R + k4
if k5 6= 0

B - bandwidth: it is directly proportional to the link bandwidth (values 1 to 224 with 1 = 1.2
kbit/s);

D - delay: it is inversely proportional to the link bandwidth, and it only considers transmission
delay ignoring other components such as propagation delay and queuing delay (values 1 to
224 with 1 = 10 ms);

R - reliability: it can be quite variable in time (values 1 to 255 with 255 = 100%);

L - load: it depends on instantaneous traffic (values 1 to 255 with 255 = 100%).

54

With default values for coefficients k1...5, the cost only considers delay D and bandwidth B:

k1 = k3 = 1, k2 = k4 = k5 = 0⇒ C = 107

B
+ D

IGRP commands require the specification of a class of service (TOS), but in practice routing
based on classes of service has never been implemented in this protocol, because it would require
a different routing table and a different cost function for each class of service.

Problems Such a sophisticated metric really suffers from some problems from the technical
point of view:1

• it is difficult to understand the routing choices: humans look at the network topology and
measure the distance in ‘hop count’ ⇒ it is not easy to determine which is the best path
when a more sophisticated metric is adopted;

• it is difficult to understand how to tune coefficients k1...5: what happens to the network
when parameters are changed? which values have to be given to them in order to obtain
the wanted behavior?

• some metrics (e.g. load), being not very stable, force the network to continuously adapt its
paths because the latter often change their costs ⇒ the need to frequently update routes
leads to more transients with consequent black holes and bouncing effects, more routing
traffic and more CPU resources dedicated to routing protocols;

• it is difficult to define the right threshold value for infinity: IGRP defines it to 224, but it
is required too much time when low-cost links are involved.2

9.2 Multipath routing
IGRP supports unequal-cost multipath routing: multiple routes are allowed for the same
destination, even if those routes have different costs (csec ≤ V · cprim), and load is distributed
proportionally to the cost of the route.3

Problem Traffic may enter a loop when different paths are chosen by two routers: one may
choose the primary path (optimal route) and the other one the secondary path (sub-optimal
route) ⇒ in the latest version of IGRP only equal-cost multipath routing is allowed (coefficient
V is set to 1) in order to prevent these issues.

9.3 EIGRP
Enhanced IGRP introduces several enhancements to IGRP, especially from the scalability
point of view:

• it supports classless addressing: networks are at last announces with their proper
address-netmask pairs;

• it implements Diffusing Update Algorithm (DUAL): the network is loop-free, even
during transients, and convergence is faster (no count-to-infinity phenomena);4

• it decouples the neighbor discovery functionality from the route update mechanism:
routers periodically exchange small Hello messages, while DVs are generated only when
something has changed in the network:

1Please see section 2.1.
2Please see section 3.3.1.
3Please see section 2.3.1.
4Please see section 3.4.

55

– Hello messages can be sent at high frequency, making fault detection and hence con-
vergence faster, because:

∗ they consume less bandwidth ⇒ routing traffic is reduced;
∗ they consume less CPU resources with respect to DV processing and computation;

– DVs must be sent through a reliable protocol: every DV must be confirmed by an
acknowledgment message, and must be retransmitted if it went lost.

56

Chapter 10

Open Shortest Path First

Open Shortest Path First (OSPF) is an intra-domain routing protocol based on the Link
State (LS) algorithm. The first two versions are used with IPv4, while version 3 is thought for
IPv6.

The main advantage of OSPF with respect to other intra-domain routing protocols is scala-
bility (up to some hundreds of routers):

• LS algorithm: the knowledge of network topology allows a greater stability with respect to
protocols based on the Distance Vector algorithm;

• hierarchical routing: OSPF suggests not to have more than 200 routers in a single area:

– routing information about other areas can be summarized;
– route changes in an area do not perturb other areas.

10.1 Areas

Figure 10.1: Example of OSPF network.

OSPF defines its own terminology, which is not always aligned to the one of other protocols:

Autonomous System (AS) a domain under the control of a single entity from the adminis-
trative point of view (e.g. GARR)1

1Please see section 6.1.

57

OSPF Autonomous System a domain under the control of a single entity from the technical
point of view (i.e. device configuration), and handled by a single OSPF protocol instance

Autonomous System boundary router (ASBR) a border router put between the OSPF
AS (typically area 0) and an external routing domain (EGP, or IGP if the OSPF AS lives
within the AS itself together with other routing domains with even different IGP protocols)

edge area one of the hierarchical sub-domains in which an OSPF AS is split, made up of a
physically contiguous network: each internal router can communicate with any other router
within the same area without having to exit the area itself

area 0 the backbone area, not necessarily physically contiguous2, which all traffic between one
edge area and another or between one edge area and the outside of the OSPF AS must go
across:

• no bottleneck: links should not be undersized
• robust: it should not become a partitioned area

area border router (ABR) a border router put between area 0 and an edge area

Figure 10.2: View of the network from area 1.

Every router perfectly knows the topology of the area it belongs to, but the precise topology
of other areas is unknown: the router may know the list of destinations reachable outside its
area, which can be summarized or replaced by a default route.

The database of an internal router contains three types of records:

• Link States: they are generated by other internal routers within the area and contain inter-
nal routes within the area, including topology information, which are never summarized.
An ABR knows Link States from both the areas which it connects: it has multiple databases,
one for each area, which of course originate a single routing table;

• Summary/External Records: they include external routers outside the area, excluding
topology information (just network address + netmask), which can be summarized:

– Summary Records: they are generated by the ABR and contain the external routes
inside other areas within the same OSPF AS (including area 0);

– External Records: they are generated by the ASBR and contain the external routes
outside the OSPF AS.

Routers in area 0 are usually configured in order to aggregate network addresses, so as to
propagate network summaries from one area to another one. However aggregation must be spec-
ified manually by the operator, in order not to have troubles with network summarization.

2Please refer to section 10.1.2.

58

10.1.1 Stub areas
A normal edge area, besides knowing details about topology of all internal routes within the area
itself, imports all external routes from area 0 without any further aggregation.

An area is stub when some external routes are replaced by a single default route to reduce
the routing information imported from outside:

• stub area: it keeps Summary Records, but removes External Records;

• totally stubby area: it removes both Summary Records and External Records, leaving only
Link States and the single default route toward the exit;

• not-so-stubby area: it is similar to the stub area, but it can inject into other areas the
external routes outside the OSPF AS (without importing them into the area).

Stub areas are enabled upon an explicit configuration by the network manager:

• stub area: area xx stub

• totally stubby area: area xx stub no summary

• not-so-stubby area: area xx nssa

Although OSPF does not prevent from having a stub area with more than one ABR, it
makes more sense to configure a stub area when it is connected to area 0 through only one ABR:
external routes do not need to be propagated because there is only one path which connects the
area to the rest of the network, while external routes are useful only if more than one egress
router exists.

10.1.2 Virtual Link
The Virtual Link is a sort of ‘tunnel’ between two routers, of which at least one belonging to
area 0, which logically belongs to area 0, but physically is made up of a sequence of links inside
an edge area. The purpose is to make OSPF believe that those two routers are connected by a
fictitious link in area 0.

Enabling the Virtual Link only requires the area to be crossed (only one) and Router IDs
of the two involved routers, not the IP addresses of their interfaces: OSPF will automatically
derive the correct IP addresses. OSPF routing messages are encapsulated into IP unicast packets
crossing the link ⇒ to have a bidirectional tunnel, the Virtual Link needs to be configured on
both the routers at the ends.

Partitioned areas

(a) Partitioning of an edge area. (b) Partitioning of area 0.

The problem of partitioned areas3 is handled in OSPF differently depending on the type of area:
3Please see section 5.1.

59

• edge area: the ABR does not summarize the information about all the networks present in
the edge area, but only announces the networks which it is able to reach⇒ packets toward
the partition will be sent only to ABRs for which an internal path exists to arrive at the
destination;

• area 0: OSPF is not able to automatically solve problems of partitioned areas in the back-
bone (the closest ABR is always chosen as the exit point), but in some cases the operator
can manually enable between two ABRs a Virtual Link which physically crosses an edge
area: when a packet arrives at an ABR, it goes back to the area going to the ABR at the
other end of the tunnel and then at last enters area 0 ⇒ area 0 must always be logically,
but not necessarily physically, contiguous.

Extending the backbone area

A link between two routers belonging to different edge areas normally can not be used: traffic
from one area to another one in fact must always cross area 0.

Thanks to the Virtual Link it is possible to bring into the backbone a router in an edge area
which is directly connected to a single backbone router: that internal router becomes an ABR
to access area 0, and then all links connected to it can be used for traffic.

10.2 Metrics and costs
OSPF supports more than one metric simultaneously on a single link: the best path can be,
depending on packets, for example

• the shortest path;

• the path with the best bandwidth capacity;

• the path with the lowest delay.

OSPF allows to define metrics depending on the ‘Type of Service’ (ToS) field in the IP packet
⇒ in theory, 64 types of service and then 64 different routing trees are possible, but in practice
this feature is almost unused because the processing load required by the LS algorithm on each
router would be duplicated for every ToS.

OSPF adopts equal-cost multipath routing. Differently from IGRP, OSPF does not define an
unambiguous way to compute the cost of a link: the cost is assigned by the manufacturer of the
network device⇒ each manufacturer has its own default values, creating possible inconsistencies
in multi-vendor networks⇒ it is better to customize the cost values on the most important links
(on both ends).

60

10.3 Router ID
Each OSPF router is uniquely identified by a Router ID, which is used as the ‘name’ for routers
in OSPF packets (e.g. as the source in the OSPF header).

OSPF does not specify how the Router ID should be determined, but just specifies that it
must be a 32-bit-long unique identifier. On Cisco devices, Router IDs can be obtained in two
ways:

• manually: the network administrator explicitly configures the value of the Router ID (in
IPv4 typically this is not done, while in IPv6 this is mandatory4);

• automatically: an algorithm gets the Router ID from the IPv4 addresses of the router:

– if at least a loopback interface exists, the Router ID is equal to the biggest address
among the ones of the loopback interfaces: loopback interfaces do not depend on the
state of the physical interfaces and are thus more stable;

– if no loopback interfaces exist, the Router ID is equal to the biggest address among
the ones of the OSPF network interfaces.

10.4 LSAs
Link State Advertisement (LSA) is the data structure, contained in Link State Update
packets, which includes OSPF routing information:

1. Router LSA: it describes an adjacency via a point-to-point link;

2. Network LSA: it lists the routers attached to a transit network, and it is generated by
the designated router of the transit network;

3. Network Summary LSA: it contains the external routes inside other areas within the
same OSPF AS (Summary Records), and it is generated by an ABR;

4. ASBR Summary LSA: it notifies the location of the ASBR if it is not in area 0 but in
an edge area;

5. AS External LSA: it contains the external routes outside the OSPF AS (External
Records), and it is generated by an ASBR.

10.4.1 Router LSA
OSPF defines two types of link:

• router link (default) (figure 10.4b): if there is a point-to-point link between two routers
(e.g. serial interface), each of routers sees it as logically split into two point-to-point links:

– a point-to-point connection to the adjacent router, identified by its own Router ID;
– a point-to-point connection to the adjacent IP network, called stub network5, that

is the one which the network interface of the router belongs to.
If a router interface is enabled but is not attached to any other router, there is only
the connection to the stub network (figure 10.4a);

• network link (figure 10.4c): if there is a broadcast network (e.g. Ethernet), called transit
network, each of the two6 or more routers attached to it sees it logically as a point-to-point
connection to the adjacent transit network.

4Please refer to section 13.2.2.
5The ‘stub network’ is not to be confused with the ‘stub area’.
6OSPF does not prevent from configuring a point-to-point link between two routers as a transit network.

61

(a) Single router. (b) Router link. (c) Network link.

Figure 10.4: Adjacencies seen from router R1.

LSA Routers can describe several types of adjacencies via point-to-point links:

1. adjacency to a router: it is generated by each of the two routers adjacent one to each other;

2. adjacency to a transit network: it is generated by each of the routers adjacent to the transit
network (including the designated router);

3. adjacency to a stub network: it is generated by the router whose interface is adjacent to
the stub network;

4. adjacency to a Virtual Link: it is generated by each of the routers at the ends of the Virtual
Link.

10.5 OSPF packets
All OSPF packets are directly encapsulated into IP (Protocol Type = 89), without any help from
an intermediate transport protocol.

An OSPF header, the same for all packets, specifies the type of transported OSPF packet:

• type 1: Hello

• type 2: Database Description

• type 3: Link State Request

• type 4: Link State Update

• type 5: Link State Acknowledgement

10.5.1 Hello protocol
The hello protocol performs the fault detection without relying on the physical layer.

Hello packets are sent every HelloInterval (default = 10 s), and the adjacency is considered
as disappeared and is no longer announced:

62

• as soon as the fault is detected at the physical layer;

• after a certain amount of lost Hello packets (default RouterDeadInterval = 40 s, equivalent
to 4 Hello packets), if the fault can not be detected at the physical layer.

The LSA however remains in the OSPF database, and if not renewed it will expire after a
period of time equal to MaxAge (default = 1 hour).

The Router ID is computed at the start of the OSPF process, and it is not modified even if
the IP addresses on the router are modified ⇒ the router may appear with a different Router
ID on reboot of the OSPF process (e.g. following a fault or a power outage) ⇒ in the topology
computed by the LS algorithm a no longer existing node remains, until its LSA will expire.

10.5.2 Exchange protocol
The exchange protocol is used to perform the adjacency bring-up, that is to synchronize the
database of two routers when they become adjacent.

The adjacency bring-up is performed only when needed, that is when a router has some not
updated information in its database. Checking the need for a database update is performed:

• after a change in the network (e.g. at boot time or when a new link becomes active);

• whenever the LSA Refresh timer expires (default = 30 minutes), to refresh the ages of still
valid LSAs before they expire.

During the adjacency bring-up, only old or missing LSAs are exchanged:

1. Database Description: the master router sends the list of sequence numbers of all the LSAs
in its database;

2. Link State Request: the slave router sends the list of sequence numbers related to old or
missing LSAs in its database;

3. Link State Update: the master router sends the requested LSAs, and the Link State Update
packet is propagated in selective flooding;

4. Link State Acknowledgement: the slave router confirms it has received the Link State
Update.

63

Chapter 11

Inter-domain routing: peering and
transit in the Internet

Traffic within the AS is almost ‘free’, excluding infrastructure costs (maintenance, administration,
electricity, etc.) ⇒ ISPs try to convince users to spend most of their time inside the AS.

However, an AS should connect to other ASes for two reasons:

• an AS must be able to reach all the destinations present in the Internet for Metcalfe’s law
(= the network must be as more extended as possible to be useful);

• an AS would like to achieve resilience in its connections toward the outside world.

ASes on the Internet are interconnected by a hierarchical organization:

• Tier 1 (e.g. Seabone, Sprint): international operator interconnecting major towns by long-
distance, broadband links and transporting big traffic flows along backbones;

• Tier 2 (e.g. Telecom Italia): national operator collecting traffic from single users through
a lot of access points thanks to its house-to-house presence throughout the territory;

• Tier 3: local operator serving a very restricted geographical area.

11.1 Commercial agreements among ASes
Interconnections between an operator and another one may not come for free: usually, the inter-
connection between two ASes is established only upon an economic agreement. Two types of
agreements are possible:

• transit: it represents the most natural choice from the economic viewpoint (section 11.1.1);

• peering: when two ASes discover that they can do better (section 11.1.2).

Inter-domain routing over the Internet is mainly driven by commercial agreements among
operators at various hierarchical levels:

• Tier 1: it can advertise, independently of the geographical coverage of its network, the
reachability of the full route (0.0.0.0/0), that is the reachability of (almost) every destina-
tion AS on the Internet, without having to buy transit from other providers or to pay some
access fee;

• Tier 2: it needs to buy transit from a Tier-1 operator in order to be able to reach the whole
Internet, and it can establish a lot of peering agreements with other Tier-2 providers;

• Tier 3: it has not any peering agreement, and simply buys transit from a Tier-2 (or Tier-1)
provider.

64

11.1.1 Transit
An agreement is transit when an ISP has to pay another ISP to connect to its AS. The ISP
receiving the money guarantees the ‘transit’, that is the right to use its network, to the traffic
coming from the other AS.

The economic agreement may establish:

• the payment method:

– fee by volume: a maximum amount of bytes of data per day or per month, plus
additional cost for traffic exceeding that amount;

– flat fee: a monthly fee for a maximum bandwidth (the bandwidth can be limited via
software on the access interface).

• which destinations are reachable through the transit:

– full route: all destinations around the world must be reachable;
– only destinations in a certain geographical area (e.g. USA): packets directed toward

other destinations are dropped.

The price may be influenced by the importance of the ISP selling the transit:

• an US ISP has control of the most important part of the network because inside its AS
there are the most visited web servers in the world;

• a very large ISP can offer a good reachability with the rest of the world thanks to its high
number of interconnections.

11.1.2 Peering
An agreement is peering when two peer ISPs agree to exchange traffic between themselves
without having to pay each other.

Two ISPs can decide to stipulate a peering agreement if they determine that the costs for
direct interconnection are lower than the costs for buying transit from each other: costs for setup
and maintenance of the direct link between the ASes are equally split by the two ISPs, which
can send data at the full speed allowed by the link.

Tier-1 operators work in a very competitive market:

• Tier-2 operators can establish new peering agreements among themselves as soon as they
become more convenient than transit;

• a Tier-2 operator can shortly move to a more convenient Tier-1 operator;

• a dominant operator may be forced by the market guarantor to offer peering connections
with minor ISPs.

11.2 Routing policies
In inter-domain routing, other requirements are more important than simple network connectiv-
ity:

• economic (who pays for the bandwidth?): sometimes longer paths may be preferred to best
paths (section 11.2.1);

• administrative (is it allowed to go?): sometimes some paths are omitted to the other party
(section 11.2.2);

• security (is that administrative domain trusted?): sometimes safer (and longer) paths may
be preferred to best paths (section 11.2.3).

65

The path chosen by the routing protocol is not necessarily the least-cost path from the techni-
cal point of view, but it is the best path among the ones which satisfy the constraints established
by routing policies configured by the network administrator, which reflect commercial agree-
ments among ASes.

The decision process on border routers is affected by routing policies:

• routing table: the choice of some cheaper routes can be favoured and the choice of other
ones across untrusted ASes can be discouraged;

• route advertisements: the routes announced toward other ASes may not correspond to the
actual network topology.

11.2.1 Economic requirements

Figure 11.1: Example of freeriding.

Sending traffic on a transit link costs ⇒ an AS can take advantage of a peering link, even if it is
not a direct link, to make the other peer AS pay the transit cost (freeriding).

In the example in figure 11.1, two Italian ASes A and B are interconnected in peering, and
each of them is connected in transit with US AS C. The best path according to the traditional
routing rules is path x because it is made up of a direct link, but A needs to pay to make traffic
go through that link. A can set a policy which prefers a cheaper path y: it deviates all the traffic
directed to C to the link toward B, which is a low-cost link for A ⇒ B will send A’s traffic to its
transit link toward C, paying instead of A.

11.2.2 Administrative requirements
An AS can set a routing policy in order not to announce connectivity with other ASes to an AS
(route hiding).

In the example in figure 11.2, B has a transit link toward C and uses it for its traffic, but
advertizes partial connectivity by omitting the information about this link in the advertisements
which it sends to A, in order to avoid that A takes advantage of the peering link to save on
the transit cost (and vice versa). A could not trust this advertisement and in turn set a policy
forcing statically all traffic toward C to be sent to B anyhow ⇒ B can defend itself by setting
an Access Control List (ACL) on its border router to discard all packets coming from A and
directed toward C.

66

Figure 11.2: Example of route hiding.

11.2.3 Security requirements

Figure 11.3: Example of untrusted operator.

A network operator can represent a security threat because for example is used to make sniffing
actions on traffic crossing its AS ⇒ an AS would like to avoid that its traffic directed to other
ASes go through that untrusted operator.

In the example in figure 11.3, A to reach C prefers a longer but safer path x because it does
not cross untrusted operator B, even if the latter is advertising low-cost path y toward C.

11.3 Internet Exchange Point
Interconnecting two ASes by direct connection, that is by a single wide-area link between
them, is not convenient:

• link cost: its installation may require digging operations;

• cost of interfaces on routers: they have to send the signal over long distances;

67

• flexibility: intervention is necessary on the physical infrastructure to create a new intercon-
nection.

An Internet Exchange Point (IXP) allows multiple border routers of different ASes (ISPs)
to exchange external routing information in a more dynamic and flexible way.

Routers are connected through an intermediate data-link-layer Local Area Network: tech-
nically all routers are directly reachable, but in practice routing policies define interconnections
according to commercial agreements among ASes ⇒ to create a new interconnection, it is suf-
ficient to configure routing policies on single routers without having to change the physical
infrastructure. An interconnection can also be active but used just as a backup (selection done
in BGP).

Usually each AS pays a monthly fee, depending on the speed of the connection to the IXP.
The IXP is in charge of the technical functioning of switches within the intermediate network:

• single location: often all routers are concentrated inside a room in a datacenter, where they
are provided with:

– high-speed data-link-layer network;
– electrical power, conditioning system;
– monitoring service;
– proximity to optical-fiber backbones;

• distributed infrastructure: multiple access points are available in the main towns over the
territory (for example, TOPIX runs across the entire Piedmont region).

The IXP is also known as Neutral Access Point (NAP): the IXP has to be neutral and
uninvolved in its customers’ business. An IXP can decide to disallow transit agreements: for
example, MIX in Milan is a nonprofit organization which only admits peering agreements to
favour internet diffusion in Italy, but this may limit the amount of traffic exchanged across the
IXP because ISPs available only for transit agreements will choose other IXPs.

11.4 Network neutrality
Network neutrality is the principle according to which all traffic should be treated equally,
without privileging or damaging a part of traffic for economic interests.

Network operators can be tempted to give ‘preferential treatment’ to portions of traffic:

• privilege some traffic: offer a better service for a certain kind of traffic (e.g. higher speed);

• damage some traffic: offer a worse service, or no service at all, for a certain kind of traffic.

A neutral network guarantees that all entities (e.g. content providers) have the same service,
without making some service be killed at the discretion of the network operator, but enforcing
‘pure’ network neutrality implies that traffic control, which may be useful in many cases, is not
possible at all; on the other end, if it is admitted that the network may not be neutral, the
network operator is given the power to privilege some traffic or content. In an open market the
ball is leaved to the user: if users do not agree that their VoIP traffic is discriminated, they can
switch to another network operator (although in practice this may not always be possible due to
cartels among network operators).

Examples of non-neutrality

• content providers: ISPs would like to have a part of revenues of content providers ⇒ an
ISP may privilege traffic directed to a content provider with which it stipulated a revenue
sharing agreement;

68

• peer-to-peer (P2P):

– end users do not care about destination of their traffic, but P2P traffic can reach
every user in every AS around the world making the ISP pay high costs ⇒ an ISP
may privilege traffic which is generated within the AS (e.g. AdunanzA by Fastweb);

– P2P traffic is more symmetric because it uses a lot the upload bandwidth, while net-
works have been sized to support asymmetric traffic ⇒ an ISP may privilege asym-
metric traffic (e.g. normal web traffic);

• quality of service (QoS): an ISP may privilege traffic with a higher priority level (e.g. VoIP
traffic);

• security: an ISP may block traffic from malicious users (e.g. DDoS attack).

69

Chapter 12

Border Gateway Protocol

Border Gateway Protocol (BGP) is the inter-domain routing protocol commonly used in the
Internet.

Overview

• it uses the Path Vector (PV) algorithm to record the sequence of ASes along the path
without the risk of routing loops (section 12.1.1);

• routers can aggregate the received routing information before propagating them
(sezione 12.1.2);

• it does not automatically discover the existence of new neighbor routers, but peering ses-
sions must be configured by hand (section 12.2);

• it exchanges routing updates by using reliable TCP connections (section 12.2.1);

• it is an extensible protocol thanks to the Type-Length-Value (TLV) format of attributes
(section 12.3);

• it supports routing policies (section 12.4).

12.1 Routing information
BGP exchanges inter-domain routing information about external routes, which are in form net-
work address/prefix length (instead of the netmask).

12.1.1 Path Vector algorithm
As routing policies are defined based on paths, BGP can not be based on the DV algorithm
because it is not enough to know their costs. BGP chooses to adopt the Path Vector (PV)
algorithm1: every AS constitutes a single node, identified by a number of 2 (or 4) bytes, and
the additional piece of information is the list of crossed ASes.

The PV algorithm is more stable because it is easy to detect loops:

• if a router receives a PV which already includes its AS number, it discards the PV without
propagating it, because a routing loop is going to start;

• otherwise, the router enters its own AS number into the PV and then it propagates it to
its neighbors.

1Please see section 3.6.

70

BGP does not support an explicit cost metric: the cost associated to each route is simply
equal to the number of crossed ASes included in the list ⇒ the least-cost route may not be the
actually optimal one:

• ASes may have different requirements, hence they may adopt different metrics one from
each other (e.g. bandwidth, transmission delay) ⇒ it is difficult to compute coherent costs
for all ASes;

• the announced cost may not match the actual network topology because an ISP may want
to hide from a competitor the actual information about its own network for economic
reasons.2

12.1.2 Route aggregation
When a border router propagates information about received routes, it can be manually con-
figured to include aggregate routes into its advertisement messages to reduce their size: two
routes can be aggregated in a route with the common part of their network prefixes.

However not all the routes which has been collapsed into an aggregate route can have the
same sequence of crossed ASes, but there could be a more specific route following another path:

• overlapping route: also the specific route, with its different list of crossed ASes, is an-
nounced along with the aggregate route⇒ information is complete, and the ‘longest prefix
matching’ algorithm will select the more specific route in the routing table;

• not precise route: only the aggregate route is announced ⇒ information is approximate,
because the list of crossed ASes does not match the path actually followed for all the
destination addresses within that address range.

12.2 Peering sessions
Two border routers exchanging BGP messages between themselves are called peers, and the
TCP-based session is called peering session.

A key difference compared to other routing protocols is the fact that peers are not able to
discover each other automatically: manual configuration by the network administrator is required,
because peers may not be connected through a direct link but other routers, for which BGP
updates are normal data packets to be forwarded to destination, may exist between them.

12.2.1 TCP
Transmission of routing information is reliable because two peers establish a peering session by
setting up a TCP connection through which all BGP messages are exchanged:

• existing components are reused instead of redefining yet another protocol-specific mecha-
nism;

• BGP does not need to deal directly with retransmissions, lost messages, etc.

Using TCP as transport protocol avoids to periodically send updates: an update is sent only
when needed, including just routes which have changed, and it is sent again only if the message
went lost ⇒ the bandwidth consumed to send routes is reduced.

Since advertisements are not periodic, routes never expire⇒ it is required to explicitly inform
that a previously announced route has become unreachable, to withdraw routes when they are
no longer valid (analogously to route poisoning in the DV algorithm3).

2Please see section 11.2.2.
3Please see section 3.3.2.

71

However TCP deprives the application of the control on timings, because control packets may
be delayed by TCP mechanisms themselves: in case of congestion TCP reduces the transmission
bit rate preventing their timely transmission ⇒ quality of service can be configured on internal
routers within the AS so as to give priority to BGP packets, considering that they are service
packets to allow the network operation.

TCP does not provide any information about whether the remote peer is still reachable ⇒
an explicit keepalive mechanism managed by BGP itself is required. Also keepalive messages
rely on TCP mechanisms ⇒ reactivity to a peer disappearance or a link fault is limited, but it
is still acceptable considering that these events are rare (e.g. links between border routers are
strongly redundant).

12.2.2 I-BGP e E-BGP
When two border routers set up a peering session between themselves, each one communicates,
through an OPEN message, its AS number to the other party to determine the type of sub-
protocol:

• Exterior BGP (E-BGP): peers are border routers belonging to two different ASes, usually
connected by a direct link;

• Interior BGP (I-BGP): peers are border routers belonging to the same AS, usually con-
nected through a series of internal routers.

The processing of BGP messages and the routes announces on peering sessions may be dif-
ferent according to which ASes the peers are belonging to:

• E-BGP: when a border router propagates a PV to an E-BGP peer, it prepends the current
AS number to each list of crossed ASes:

– external routes: they are propagated to other E-BGP peers, but peers whose AS is on
the best path toward those destinations;

– internal routes: they are propagated to other E-BGP peers;

• I-BGP: when a border router propagates a PV to an I-BGP peer, it transmits the list as
is because the AS number remains unchanged:

– external routes: they are propagated to other I-BGP peers according to various ways;
– internal routes: they are never propagated to other I-BGP peers, but every border

router learns them from an independent redistribution process.

I-BGP sessions are used to exchange external routes:

• independently of routes exchanged by the interior protocol: the direct connection between
peers avoids to bother the IGP protocol when the variation of an external route does not
require the re-computation of internal routes ⇒ no transients, less processing;

• independently of the interior protocol: if border routers when learning external routes from
E-BGP limited to redistribute them to the IGP protocol, letting the latter redistributed
them naturally to other border routers, some important information needed by BGP would
go lost⇒ specific BGP messages, called UPDATES, are required, including this information
in their attributes.

IGP-BGP synchronization

BGP routers in a transit AS learn external destinations by other BGP routers via I-BGP, but
packet forwarding across the AS (toward the egress BGP router) relies on internal routers,
whose routing tables are filled by the IGP protocol and not by BGP⇒ only after they have been

72

Figure 12.1: Example of IGP-BGP synchronization.

announced also by the IGP protocol, external destinations can be announced to border routers
in other ASes.

In the example in figure 12.1, router R4 learns destination D via E-BGP and announces it
to router R3 via I-BGP, but R3 can not in turn announce it to router R5 via E-BGP until the
destination is redistributed from the IGP protocol to R3, otherwise if R5 tried to send a packet
toward D, R3 would forward it inside the AS where internal routers would discard it.

It might be good to disable synchronization when:

• the AS is not a transit one;

• all routers in the AS use BGP.

12.2.3 Routing loops

Figure 12.2: Example of routing loop.

Lack of information about crossed border routers when they belong to the same AS can be the
cause of routing loops: a border router can no longer rely on the list of crossed ASes to detect
paths going twice through the same border router.

73

In the example in figure 12.2, a loop is created in advertising:

1. router R4 learns the external route toward destination D;

2. R4 propagates D to peer R3;

3. R3 propagates D to peer R2;

4. R2 propagates D to peer R4, which is the router which first learnt and announced D.

Thus a situation is created similar to the one which was triggering count to infinities in the
Distance Vector algorithm4: R4 can not determine whether R2 can reach D by crossing R4 itself
or an actually alternative path exists ⇒ if a link fault occurs between R4 and the border router
of the AS where D is located, R4 will believe that D is still reachable through R2.

External routes can be announced to I-BGP peers in various ways: full mesh, route reflector,
AS confederation.

Full mesh

Figure 12.3: Example of full mesh.

Each border router has an I-BGP peering session with every other border router of its AS.
When a border router learns an external route from E-BGP, it propagates it to all other ones,

which in turn propagate it to everyone, and so on.
In presence of more than 2 border routers, routing loops can form due to loops in advertising,

like in figure 12.3.
This solution is not flexible because all peering sessions must configured by hand, although

peering sessions do not change much over time because border routers are quite fixed and fault-
tolerant.

Route reflector

One of the border routers is elected as the route reflector (RR), and all other border routers
set up peering sessions only with it without creating closed paths.

When a border router learns an external route from E-BGP, it propagates it only to RR,
which is in charge of in turn propagate the route to other border routes avoiding routing loops.

Route reflector constitutes a single point of failure.

4Please see section 3.3.

74

Figure 12.4: Example of route reflector.

AS confederation

Figure 12.5: Example of AS confederation.

Border routers have a full mesh of I-BGP peering sessions (as in the first way), but the AS is
split into mini-ASes, each one with a private AS number, and when a border router propagates
the PV it prepends in the list its private AS number.

When an advertisement arrives, the border router can look whether its own private AS number
is already in the list, so as to discard the packet if a routing loop is detected.

12.3 Path attributes
BGP information about announced routes (e.g. the list of crossed ASes) is included in path
attributes inside UPDATE packets.

All attributes are encoded into the Type-Length-Value (TLV) format ⇒ BGP is an ex-
tensible protocol: extension RFCs can define new attributes without breaking compatibility
with the existing world and, if the router does not support that attribute (unrecognized type
code), it can ignore it and skip to the next one (thanks to the information about its length).

A BGP attribute can be:

75

• well-known: it must be understood by all implementations, and can never be skipped
(section 12.3.1):

– mandatory: it must be present in all messages;
– discretionary: it may not be present in all messages;

• optional: it may not be understood by all implementations, and can be skipped if not
supported (section 12.3.2):

– transitive: if the router does not support the attribute, it must propagate it anyhow
setting flag P;

– non-transitive: if the router does not support the attribute, it must not propagate it.

Each attribute has the following TLV format:

1 2 3 4 8 16 24/32
O T P E 0 Type Length Value

Table 12.1: Type-Length-Value (TLV) format of a BGP attribute.

where the fields are:

• Optional (O) flag (1 bit): it specifies if the attribute is optional or well-known;

• Transitive (T) flag (1 bit): it specifies if the attribute is transitive or non-transitive;

• Partial (P) flag (1 bit): it specifies if at least a router along the path has encountered an
optional transitive attributed which did not support;

• Extended Length (E) flag (1 bit): it specifies if the ‘Length’ field is encoded by one of two
bytes;

• Type field (1 byte): it includes the type code identifying the attribute ⇒ a router can
determine if it supports that attribute without having to parse its value;

• Length field (1 o 2 bytes): it includes the length of the attribute value ⇒ a router can skip
an unsupported attribute and skip to the next one by advancing by the number of bytes
indicated by this field;

• Value field (variable length): it includes the attribute value.

12.3.1 Well-known attributes
• ORIGIN attribute (type 1, mandatory): it defines the origin of the path information:

– IGP: the route was manually specified as a static route (bgp network command);
– EGP: the route was learnt by the EGP protocol5;
– INCOMPLETE: the route was learnt from an IGP protocol through a redistribution

process (bgp redistribute command);

• AS_PATH attribute (type 2, mandatory): it contains the list of crossed ASes split into
path segments:

– AS_ SEQUENCE: AS numbers in the path segment are in traversal order, and if
the first segment in the packet is in order a new AS number has to be added at the
beginning of that segment;

5The protocol, not the protocol class, is meant here (please see section 6.2.1).

76

– AS_ SET: AS numbers in the path segment are not in traversal order, and if the
first segment in the packet is not in order a new in-order segment, where the new AS
number has to be inserted, has to be added before that segment;

• NEXT_HOP attribute (type 3, mandatory): it optimizes routing when multiple routers
belong to the same LAN but to two different ASes, and therefore traffic from an AS to
another one would always cross the border router ⇒ the border router can announce to
send traffic to the next hop router in the other AS:

Figure 12.6: Border router B teaches border router A to use router C as its next hop for desti-
nation D.

• LOCAL_PREF attribute (type 5, discretionary): in I-BGP when the external destination
is reachable across two egress border routers, the route with highest LOCAL_PREF is
preferred;

• ATOMIC_AGGREGATE attribute (type 6, discretionary): it indicates that the an-
nounced route is a not precise aggregate route.

12.3.2 Optional attributes
• MULTI_EXIT_DISC (MED) attribute (type 4, non-transitive): in E-BGP when two

ASes are connected via multiple links, the link with lowest MED is preferred and links with
higher MEDs are considered as backup links;

• AGGREGATOR attribute (type 7, transitive): it contains the AS number and the IP
address of the router which generated the not precise route;

• COMMUNITIES attribute (type 8, transitive): it indicates which group of peers this
route has to be announced to (e.g. to the entire Internet, only within the current AS, to
no one);

• MP_UNREACH_NLRI attribute (type 15, non-transitive): it informs that a previ-
ously announced route has become unreachable (routes never expire).

12.4 Decision process
The decision process running on every border router is responsible for:

• selecting which routes are advertised to other BGP peers;

• selecting which routes are used locally by the border router;

• aggregating routes to reduce information.

Databases which BGP has to deal with are:

• Routing Information Base (RIB): it consists of three distinct parts:

77

Figure 12.7: The decision process selects routes from the input Adj-RIBs-Ins and writes them
into the output Loc-RIB and Adj-RIBs-Outs.

– Adjacent RIB Incoming (Adj-RIB-In): it contains all the routes learnt from the
advertisements received from a certain peer;

– Local RIB (Loc-RIB): it contains the routes selected by the decision process with
their degree of preference;

– Adjacent RIB Outgoing (Adj-RIB-Out): it contains the routes which will be prop-
agated in advertisements to a certain peer;

• Policy Information Base (PIB): it contains the routing policies defined by manual con-
figuration;

• routing table: it contains the routes used by the packet forwarding process.

Very complex routing policies can be imposed to affect the decision process:

1. a certain function returning, by applying the policies defined on attributes, the degree of
preference for that route is applied to each route in the Adj-RIBs-In.
Policies are defined only based on the attributes of the current route: the computation
of the degree of preference is never affected by the existence, the non-existence, or the
attributes of other routes;

2. for each destination, the route with the greatest degree of preference is selected and inserted
into the Loc-RIB;

3. other policies determine which routes are selected from the Loc-RIB to be inserted into the
Adj-RIBs-Out.

78

Chapter 13

IPv6 routing

Nowadays routers are mostly ready for IPv6, even though performance in IPv6 is still worse
than the one in IPv4 because of lack of experience and lower traffic demand. Often IPv6 routing
is turned off by default even if the device supports IPv6 (on Cisco routers this is enabled by
command ipv6 unicast-routing).

Two aspects have to be considered:

• routing tables: how to handle the forwarding of data packets? (sect. 13.1)

• routing protocols: how to distribute routes across the network? (sect. 13.2)

13.1 Routing tables
Routing in IPv6 is performed in the same way as IPv4 but it requires two distinct routing tables,
one for IPv4 routes and another for IPv6 routes. IPv6 routing tables can store several types of
entries, including:

• indirect entries (O/S codes): they specify the addresses, typically link local, of the interfaces
of the next-hop routers to which to send packets addressed towards remote links;

• direct entries: they specify the interfaces of the router itself through which to send packets
addressed towards local links:

– connected networks (C code): they specify the prefixes of the local links;
– interface addresses (L code): they specify the interface identifiers in the local links.

13.1.1 Next hop
As the next hop in computed dynamic routes, routing protocols always use link local addresses,
even if a global address is configured on the neighbor interface, for the sake of simplicity: link
local addresses always exist, while global addresses may not be used in some portions of the
network.

However the usage of link local addresses makes difficult the task of determining the location
of that address: the network address of a global address at least allows to identify the network
in which the host should be present and thus determine the output interface, but a link local
address that begins with FE80:: can be everywhere⇒ next to the next hop address, routers also
print the output local interface to solve ambiguities, such as:

2001:1::/64 via FE80::1, FastEthernet0/0
For static routes, the choice is left to the network manager, who can use the address he

prefers as the next hop:
ipv6 route address/netmask [local interface] [next hop] [distance]

79

• broadcast interface (e.g. Ethernet): the address of the next hop needs to be specified:

– global address: the local interface does not need to be specified because it can be
determined from the network prefix:

ipv6 route 2001:1::/64 2001::1

– link local address: the local interface needs to be specified too to identify the scope
of the link local address:

ipv6 route 2001:1::/64 FastEthernet0/0 fe80::1

• point-to-point interface (e.g. serial): the address of the next hop does not need to be
specified because it is uniquely identified by the local interface:

ipv6 route 2001:1::/64 serial 0

Since static routes can not adapt to network changes, it is strongly recommended to use
global addresses as the next hop for static routes. This avoids that a route becomes invalid if the
next hop changes: for example, if the network card on the next hop router is replaced because
of a hardware fault:

• link local address: it depends on the MAC address of the card ⇒ the route needs to be
changed;

• global address: the new interface should just be assigned the same global address.

13.2 Routing protocols
Routing protocols supporting IPv6 can adopt two approaches:

• integrated routing (IS-IS, MP-BGP4): the protocol allows to exchange both IPv4 and
IPv6 routing information at the same time:

+ efficiency: IPv4 and IPv6 addresses belonging to the same destination can be trans-
ported via a single message;

− flexibility: a single protocol transports multiple address families;
+ reactivity: if a fault or a network change occurs, the protocol discovers it for both

address families;
− bugs: a problem in the protocol affects IPv4 and IPv6 networks in the same way;
− migration: if the protocol uses IPv4 to transport Hello packets, IPv4 can not be

abolished in the network;

• ships in the night (RIPng, EIGRP, OSPFv3): the protocol allows to exchange only IPv6
routing information:

− efficiency: given a destination, a message needs to be exchanged for its IPv4 address
and another message for its IPv6 address, and the messages are completely indepen-
dent of each other;

+ flexibility: two different protocols can be used, one for IPv4 routing information and
another for IPv6 routing information;

− reactivity: if a fault or a network change occurs, both protocols have to discover it,
each one with its timings and duplicate messages;

+ bugs: a problem in the protocol does not affect routing in the other one;
+ migration: each routing protocol generates messages of the address family it belongs

to.

80

13.2.1 RIPng
RIPng adopts the ‘ships in the night’ approach, and makes improvements to RIP mainly in
Cisco command-line interface:

• support for multiple instances: the tag field allows to specify the protocol instance;1

• per-interface configuration: new commands have been introduced:

– ipv6 rip <tag> enable: it replaces the network command and automatically con-
figures RIP on that interface without having to specify an address;

– ipv6 rip <tag> default-information originate: it originates the default route
(::/0), that is the rest of the world can be reached via this interface.

13.2.2 OSPFv3
OSPFv3 adopts the ‘ships in the night’ approach, and differs from OSPF mainly for three
aspects:

• per-interface configuration: the ipv6 ospf <process ID> area <area ID> has been in-
troduced which specifies that all the networks and the addresses configured on this interface
will be advertized as belonging to the specified area;

• Router ID: unfortunately OSPFv3 still uses a 32-bit-long Router ID, which it is not even
able to automatically set when no IPv4 addresses is available ⇒ the ipv6 router-id
<number> command becomes compulsory when the router is IPv6-only or is in an IPv6-
only network;

• tunnel: a IPv6-on-IPv4 tunnel can be configured to connect together IPv6 islands through
an IPv4 network.

13.2.3 IS-IS
IS-IS for IPv6 adopts the ‘integrated routing’ approach: in fact it uses its own layer-3 protocol
to transport protocol-specific packets, independently of the underlying IP protocol version.

13.2.4 MP-BGP4
MP-BGP4 can adopt both approaches depending on configuration: TCP packets can be en-
veloped into IPv4 or IPv6 as needed.

The most common deployment follows the ‘integrated routing’ approach, because of the
need to use the AS number (which is the same for both IPv4 and IPv6) for the BGP process.
Integration also reflects to policies: IPv4 addresses and IPv6 addresses can be mixed at will.

1Support for multiple instances was already present in RIPv2, but was not configurable on Cisco routers.

81

Chapter 14

Multicast routing

Multicast routing protocols
• DVMRP: DV (TRPB, RPM), unicast-protocol-independent, source-specific tree

(sect. 14.1);

• MOSPF: LS, works on OSPF protocol, source-specific tree (sect. 14.2);

• PIM-DM: DV (RPM), unicast-protocol-independent, source-specific tree;

• PIM-SM: CBT, unicast-protocol-independent, hybrid between shared and source-specific
tree (sect. 14.3.1);

• BGMP (Border Gateway Multicast Protocol): BGP-based inter-domain multicast routing
protocol.

14.1 DVMRP
Distance Vector Multicast Routing Protocol (DVMRP) was the first multicast routing
protocol, and was used at the origins in Multicast backbone (Mbone), a virtual network born
in 1992 in the IETF scope which relies for transmission on the same physical structure as the
Internet to provide users with the possibility to exploit multicast for multimedia communications.

DVMRP is based on the DV algorithm:

• version 1: it adopts TRPB1;

• version 3: it adopts RPM2.

The DVMRP protocol instance is run in parallel with the unicast protocol instance: DVMRP
ignores routing information from other protocols, and computes routes which can differ from the
ones used for unicast traffic.

It uses a metric based on the hop count, that is the number of mrouters which speak DVMRP.
In DVMRP tunnels can be manually configured: the path connecting two DVMRP neighbors
can include routers not supporting DVMRP (or on which DVMRP is disabled):

• local end-point: it specifies the mrouter at the beginning of the tunnel;

• remote end-point: it specifies the mrouter at the other end of the tunnel;

• metric: it specifies the cost measure of the tunnel;

• threshold: it specifies the minimum TTL value which a packet needs to have in order to be
routed through the tunnel ⇒ it allows to define the packet visibility: packets which must
not exit the corporate network are generated with a TTL equal to the threshold.

1Please see section 7.1.3.
2Please see section 7.1.4.

82

14.2 MOSPF
Multicast OSPF (MOSPF) is a multicast routing protocol based on the LS algorithm3 which
extends OSPF, enabling single routers to have a full knowledge of the network topology and
costs related to single links.

MOSPF is backward-compatible with OSPF: MOSPF routers can be mixed with OSPF-only
routers, although multicast packets are forwarded only among MOSPF routers and the paths
chosen for multicast packets do not cross OSPF-only routers.

MOSPF adds LSA type 6:

• MOSPF internal routers produce LSAs type 6 to inform the other routers within their area
of multicast groups being active on their networks;

• MOSPF ABRs produce LSAs type 6 to inform the other routers within area 0 of multicast
groups being active on their edge areas (even by aggregation).

14.3 PIM
Protocol Independent Multicast (PIM) directly uses tables containing routing information
independently of the underlying unicast protocol (DV or LS) which has built them.

It exists in two versions, incompatible among them, dealing with different issues related to
spatiality of receivers:

• Dense Mode (DM):

– it is suitable for small networks (LAN/MAN) with a lot of concentrated receivers;
– it is greedy in terms of bandwidth: packets can be forwarded to areas not interested

in the particular multicast group;
– it adopts the DV-based RPM algorithm (like DVMRPv3);
– Implicit Join Protocol: in the absence of explicit Prune messages, packets are for-

warded to a certain network;
– Prune messages should be generated to stop multicast traffic (like DVMRP);

• Sparse Mode (SM):

– it is suitable for wide networks (WAN) with few scattered receivers;
– it limits as much as possible the bandwidth overhead: it never uses flooding;
– it is an evolution to the CBT algorithm4: it always starts from a shared tree, which

becomes a source-specific tree when advantageous;
– Explicit Join Protocol: in the absence of explicit Join messages, packets are not for-

warded to a certain network (routing information however goes to all routers, not only
the ones which will receive traffic);

– Join messages should be generated to start multicast traffic (like MOSPF).

14.3.1 PIM-SM
PIM-SM handles two kinds of distribution trees:

• RP-Tree (RPT): it is the shared tree used at the beginning for all the packets of the
multicast group, but is not optimized based on the source ⇒ the first packets of the
transmission can be delivered in a short time to receivers without having to wait for the
tree computation:

3Please see section 7.2.
4Please see section 7.3.

83

– no shortest paths are used;
– traffic is centralized;
– one tree is corresponding to each multicast group;

• Shortest-Path Tree (SPT): it is the source-specific tree built at a later time if routers
believe it is convenient (it is not mandatory):

– shortest paths are used;
– traffic is distributed;
– one tree is corresponding to each (group, source) pair.

PIM-SM defines three special nodes:

• rendez-vous point (RP): it is the core router, elected based on an algorithmic formula
starting from a list called RP-set, which is in charge of:

– receiving Join messages by DRs;
– receiving registration requests by sources;
– receiving and sending to DRs the first multicast data packets transmitted by a source;

• designated router (DR): it is the router, elected based on the shortest path toward the
RP (or on the higher IP address if there is a tie), which is in charge of:

– receiving subscription requests by hosts in a certain LAN;
– sending the Join message to the RP to join the RPT;
– sending the Join message to the source to join the SPT;
– sending the Join message periodically to adapt to group changes;

• bootstrap router (BSR): it is the router, elected based on the best administrative cost
(or on the higher IP address if there is a tie), which is in charge of distributing the RP-set
to the whole PIM-SM domain.

Algorithm

RPT

1. subscription of DRs as receivers: each DR sends a Join message to the RP;

2. registration of the source as a transmitter: the source sends a registration request to the
RP;

3. registration of the RP as a receiver: the RP sends a Join message to the source;

4. transmission along the RPT: the source sends in multicast the first data packets, forwarded
by intermediate routers up to the RP;

5. propagation along the RPT: the RP propagates in multicast the received data packets,
forwarded by intermediate routers up to the DRs.

SPT

1. subscription of DRs as receivers: each DR sends a Join message to the source;

2. transmission along the SPT: the source sends in multicast data packets, forwarded by
intermediate routers to each DR (besides the RP);

3. detachment from the RPT: each DR sends a Prune message to the RP;

4. joining to the SPT: another DR sends a Join message to the RP, then sends a Join message
to the source.

84

Chapter 15

Content Delivery Networks

A web cache is a device that stores a local copy of most recently required content (e.g. HTTP
resources) and reacts as a proxy server to clients’ requests:

• the web cache is closer to the user with respect to the web server:

+ performance: the reply is faster when the requested resource is already in cache;
+ bandwidth: expensive long-distance links (e.g. transoceanic links) are not loaded;

− reactive solution: if the requested resource is not in cache, the user needs to wait for the
web cache to acquire (pull) it from the web server;

− no transparency: the user’s web browser needs to be manually configured to contact that
web cache.

A Content Delivery Network (CDN) is an overlay network1 of web caches scattered all
around the world but cooperating with the purpose of offering to the user a better quality of
experience2:

• proactive solution: the web server copies (push) content (generally the most popular one)
to the web cache before the users will ask for it;

• transparency: the user connects to the web cache automatically, without the need for man-
ual configuration on his own client;

• performance: the user, even if he moves, always connects to the closest web cache;

• load balancing: the user always connects to the least loaded web cache;

• scalability: the content deployment into multiple replicas allows a large number of requests
which a single web server alone would not be able to serve;

• conditional access: it is possible to customize returned content based on the user (e.g.
targeted advertisements).

CDNs are ideal for content generating large amounts of traffic (e.g. multimedia resources),
but not all content can be cached:

• dynamic web pages (e.g. stock market prices);

• customized-content web pages (e.g. user account).

CDNs can be deployed in a variety of ways:
1An overlay network is a computer network which is built on the top of another network.
2Quality of experience is a measure of a user’s experiences with a service (e.g. web browsing).

85

• DNS-based CDNs: traffic is redirected to the best replica based on host names:

– DNS-based routing (sect. 15.1.1): the hosting provider needs to enter into agreements
with DNS server managers;

– Akamai approach (sect. 15.1.2): intervention on DNS servers is not needed;

• URL-based CDNs: traffic is redirected to the best replica based on full URLs:

– server load balancing (sect. 15.2.1): the TCP connection termination point is close to
the server;

– content routing (sect. 15.2.2): the TCP connection termination point is close to the
client.

15.1 DNS-based CDNs
15.1.1 DNS-based routing

Figure 15.1: Traditional browsing.

Figure 15.2: DNS-based CDN browsing.

Selection of the best replica takes place when the host name is translated to an IP address. The
DNS reply to a query does not depend only on the host name, but also on the source: a special
DNS server computes, based on as many metrics as possible (RTT, server load, response time,
etc.), a replica routing table containing entries like:

{host name, client IP address} → replica IP address

86

The routing engine in the ‘modified’ DNS server has a standard interface to guarantee trans-
parency: the user believes that the IP address corresponding to the host name is the IP address
of the real web server, while it is the IP address of one of its replicas.

Adding a new actor, the hosting provider, constitutes a new business opportunity in the
network world:

• access provider: it provides network access to users;

• backbone provider: it provides long-range connectivity;

• hosting provider: it provides the CDN service to content providers;

• content provider: it provides content.

Issues

• metrics: metric measurement, especially the dynamic ones, is not easy, and layer-3 metrics
alone are not particularly meaningful;

• DNS caching: only the authoritative server knows all replicas and can select the best replica
based on the client location ⇒ intermediate DNS servers in the hierarchy can not cache
DNS replies;

• granularity: redirection granularity is at host-name, not single-URL, level ⇒ content of
large web sites can not be split into multiple caches, hence the same replica will be asked
for two different pages in the same web site.

15.1.2 Akamai approach
Akamai CDN exploits a proprietary automatic algorithm to redirect traffic to its replicas without
any intervention on DNS servers:

1. the user types the address of a web page with its normal domain name (e.g.
http://cnn.com/index.html);

2. the server of the content provider (e.g. CNN) returns a web page where the address of
every multimedia resource (e.g. image) has a special domain name corresponding to a spe-
cific replica on an Akamai cache (e.g. http://a128.g.akamai.net/7/23/cnn.com/a.gif
instead of http://cnn.com/a.gif);

3. the user’s web browser when parsing the page performs DNS queries to the new domain
names and gets multimedia resources from the closest replicas.

15.2 URL-based CDNs
15.2.1 Server load balancing
The real servers containing replicas are seen by clients as a single virtual server with the same
IP address.

The traffic load destined to the virtual server is balanced among the several real servers by a
Server Load Balancer (SLB):

• layer-4 switching: TCP connections are not terminated by the SLB (content-unaware):

– one of the real servers answers the three-way handshake with the client;
– all HTTP queries belonging to the same TCP session have to be always served by the

same real server;
– load balancing can be based on the source IP address, the source TCP port, etc.;

87

Figure 15.3: Content-aware SLB.

• layer-7 switching: TCP connections are terminated by the SLB (content-aware), acting
as a proxy:

– the SLB answers the three-way handshake with the client, to be able to catch URLs
requested at a later time;

– each HTTP query can be served by the currently least loaded real server, based on
SLB decisions;

– load balancing is based on the full URL.

Issues

• encrypted connections (HTTP): the SLB needs to have the private SSL cryptographic key
of the server, and needs to support the processing load for encrypting/decrypting packets
in transit;

• sticky connections: some applications require that TCP connections from the same client
are redirected to the same server (e.g. shopping cart) ⇒ cookies should be considered too;

• geographical distribution: all replicas are close to each other and to the SLB, which is far
away from the client.

15.2.2 Content routing
Content routers are routers which route traffic based on the URL toward the best replica:

• TCP: all content routers in a sequence terminate TCP connections between them ⇒ too
many delays are introduced;

• content delivery control protocol: the URL is extracted by the first content router, and is
propagated by a specific protocol.

Issues

• stateful: the first content router needs to terminate the TCP connection to be able to catch
the URL the user will query;

• complexity of devices: packet parsing for getting the URL is complex ⇒ layer-7 switches
are complex and expensive devices;

88

• complexity of protocols: proposed content delivery control protocols are really complex;

• privacy: content routers read all the URLs queried by users.

89

Part III

Network processing

90

Chapter 16

Hints on the architecture of
network devices

The architecture of routers has been evolving over time to increase more and more their packet
processing capability:

• first generation (until early 1990): lower than 500 Mbps (sect. 16.1);

• second generation (early 1990): about 5 Gbps (sect. 16.2);

• third generation (late 1990): starting from 50 Gbps (sect. 16.3);

• multi-chassis (recent trend): of the order of Tbps (sect. 16.4).

16.1 First generation

Figure 16.1: First-generation router architecture.

First-generation routers were basically modified PCs:

• network interfaces: they are normal NICs, in a greater number and in manifold kinds with
respect to the ones on a normal PC;

• memory: solid-state memory (e.g. SD card) is preferred because less subject to failures with
respect to a mechanical hard disk;

• operating system: it is optimized specifically for network traffic processing.

Advantage economy of scale: it uses components manufactured on a large scale instead of
components dedicated to networking world.

91

Disadvantages

• bottlenecks:

– shared bus:
∗ slow path: each packet transits twice over the bus;
∗ arbitrage: one NIC at a time can use the bus ⇒ multiple interfaces can not work
in parallel;

– memory access: the routing table is stored in a data structure in the generic memory
⇒ accesses are not so localized as in traditional PCs, and the cache is little used;

– processing capability: the CPU interrupts the operating system whenever a packet
arrives;

• network interfaces: traditional network cards have not many ports and only support the
most common kinds of interfaces;

• maintenance costs: using open-source components (e.g. PPP client) brings integration trou-
bles and varied configuration ways.

Currently this architecture is used for mid-low-end routers, whose performance is adequate
for small offices.

16.2 Second generation

Figure 16.2: Second-generation router architecture.

Second-generation routers try to solve the performance problem by moving the processing load
from the core CPU to edge units: NICs are replaced by line card, ‘smart’ network cards which
add forwarding modules to physical/MAC components:

• CPU: the packet processor is a dedicated processor for ‘simple’ packet processing;

• memory: each incoming packet is stored into a local memory split from the one (generally
TCAM) containing the routing table;

• routing table: sometimes the updated routing table is copied from the central unit to line
cards.

Packets can follow two ways:

92

• fast path: the packets falling in the typical case (e.g. IPv4) transit only once over the bus:
they are processed directly by the packet processor and are immediately sent to the output
interface;

• slow path: least frequent packets (e.g. IPv6, OSPF) are leaved to the core CPU for a more
sophisticated processing, at the cost of a definitely lower throughput.

The work of line cards should be coordinated by the core CPU, on which routing protocols
(e.g. OSPF) are running too, which is mounted on a card called supervisor in high-end systems.

Advantages

• core CPU: it works only for packets along the fast path ⇒ it can be less powerful;

• fast path optimization: the first packets in a connection follow the slow path, then the
central system marks the connection as eligible for the fast path and all following packets
will follow the fast path;

• flexibility: the introduction of a new protocol (e.g. IPv6) only requires updating the software
on the central system.

Disadvantage shared bus arbitrage: one line card at a time can use the bus ⇒ multiple
interfaces can not work in parallel.

16.3 Third generation

Figure 16.3: Third-generation router architecture.

Third-generation routers focus on the word parallelization problem by replacing the shared bus
with a switching fabric (or crossbar) able to handle multiple transfers: a line card is connected
to another line card by shorting the switch at the intersection of their ‘wires’ in the switching
matrix.

Two line cards can not be connected to another same line card at the same time⇒ an arbiter
is needed which drives switching points and solves contention situations without collisions.

When output interfaces are slow in sending packets with respect to the switching speed of
the switching fabric, packets can be queued in various ways:

93

• output queuing: buffers are placed on output interfaces ⇒ worst case: switching fabric N
times faster than receiving speed, with N = number of input interfaces;

• input queuing: buffers are placed on input interfaces⇒ the switching speed of the switching
fabric does not depend on the number of input interfaces, but suffers from the head-of-line
blocking problem:

1. two packets in two input queues are destined to the same output queue;
2. the arbiter lets one of the packets pass blocking the other one;
3. all the following packets in the input queue, even the ones destined to free output

queues, have to wait for the ‘head of line’;

• virtual output queuing: it solves the head-of-line blocking problems by keeping one queue
per output at each input;

• buffered fabric: buffers are placed inside the crossbar at the spot of switching nodes.

Disadvantages

• arbiter:

– it constitutes a bottleneck, especially in case of frequent decisions due to small packets
(e.g. ATM);

– scheduling policies for quality of service may make its hardware more complex;

• queue buffers: they are expensive memories because they should be fast.

16.4 Multi-chassis routers
Multi-chassis routers aim at scalability: multiple flanked racks are connected so as to appear
as a single router:

• the processing power is multiplied by the number of chassis;

• there is more physical room for network interfaces ⇒ a large number of links can be
connected to a same device;

• routing is concentrated in a single station (like in the telephone world) instead of a lot of
small routers spread over the network ⇒ the data station can serve all the users within a
wide geographical area (e.g. Piedmont).

16.5 Service cards
Another recent trend aims at flexibility: routers are no longer purely layer-3 devices, because a
lot of other features not belonging to layer 3 are being added, such as cache, firewall, network
monitor, ACL, etc. The goal is to customize the service offered by ISPs, bringing back a portion
of the business currently in the hands of content providers.

A currently common solution are service cards, line cards enriched with value-added ser-
vices pre-configured by the manufacturer. Service cards however are not so flexible: being not
programmable, a new service card should be purchased to add a service.

94

16.6 Major current issues
Throughput is no longer a current issue by now, but the current major issues are:

• purchase costs: to reduce the cost of network devices dedicated components are being
replaced by general-purpose components made on a large scale:

– mainstream CPUs have too short product life cycles and too long replacement times
⇒ Intel recently proposed embedded CPUs with longer product life cycles and shorter
replacement times with respect to mainstream CPUs;

– in dedicated systems the programmer could exploit the memory hierarchy, by storing
the RIB into a slow memory and the FIB into a fast memory (e.g. TCAMs), while
general-purpose systems autonomously decide what to put into the cache ⇒ GPUs,
having partitioned memories but limited processing versatility, should be addressed;

• operational costs: power consumption and heat dissipation may be significant;

• flexibility: it is required to move toward the separation of control features from physical
hardware (please refer to chapter 18).

95

Chapter 17

Software-based packet filtering

Software which is able to parse fields in packets finds place, running on integrated circuits or
microprocessors, in a variety of applications:

• switch: learning algorithms are based on frame source and destination MAC addresses1,
and frame forwarding is based on destination MAC addresses;

• router: packet forwarding is based on source and destination IP addresses;

• firewall: if a rule based on packet fields is matched, it throws the associated filtering action
(e.g. drop);

• NAT: it converts IP addresses between private and public and TCP/UDP ports for every
packet in transit;2

• URL filter: it blocks HTTP traffic from/to URLs of websites in a black list;

• protocol stack: the operating system delivers the packet to the proper network-layer stack
(e.g. IPv4 or IPv6), then the packet goes to the proper transport-layer stack (e.g. TCP or
UDP), at last based on the quintuple identifying the session the packet is made available
to the application through the right socket;

• packet capture: applications for traffic capture (e.g. Wireshark, tcpdump) can set a filter
to reduce the amount of captured packets.

17.1 Typical architecture of a packet filtering system
Kernel-level components

• network tap: it intercepts packets from the network card and delivers them to one or
more3 filtering stacks;

• packet filter: it allows only packets satisfying the filter specified by the capture application
to pass, increasing the capture efficiency: unwanted packets are immediately discarded, and
a smaller number of packets is copied into the kernel buffer;

• kernel buffer: it stores packets before they are delivered to the user level;

• kernel-level API: it provides the user level with the primitives, typically ioctl system
calls, needed to access underlying layers.

1Please refer to section Transparent bridge in chapter Repeaters and bridges in lecture notes ‘Progetto di reti
locali’.

2Please refer to chapter NAT in lecture notes ‘Reti di calcolatori’.
3Each capture application has its own filtering stack, but all of them share the same network tap.

96

Figure 17.1: Typical architecture of a packet filtering system.

User-level components

• user buffer: it stores packets into the address space of the user application;

• user-level library (e.g. libpcap, WinPcap): it exports functions which are mapped with
the primitives provided by the kernel-level API, and provides a high-level compiler to create
on the fly the pseudo-assembler code to be injected into the packet filter.

17.2 Main packet filtering systems
17.2.1 CSPF
CMU/Stanford Packet Filter (CSPF, 1987) was the first packet filter, and was implemented
in parallel with the other protocol stacks.

It introduced some key improvements:

• implementation at kernel level: processing is faster because the cost for context switches
between kernel space and user space is avoided, although it is easier to corrupt the entire
system;

• packet batching: the kernel buffer does not delivers immediately a packet arrived at the
application, but waits for a number to be stored and then copies them all together into the
user buffer to reduce the number of context switches;

• virtual machine: filters are no longer hard-coded, but the user-level code can instantiate
at run time a piece of code in pseudo-assembler language specifying the filtering operations
to determine if the packet can pass or must be discarded, and a virtual machine in the

97

packet filter, made up in practice of a switch case over all the possible instructions,
emulates a processor which interprets that code for each packet in transit.

17.2.2 BPF/libpcap
Berkeley Packet Filter (BPF, 1992) was the first serious implementation of a packet filter,
adopted historically by BSD systems and still used today coupled with the libpcap library in
user space.

Architecture

• network tap: it is integrated in the NIC driver, and can be called by explicit calls to capture
components;

• kernel buffer: it is split into two separate memory areas, so that kernel-level and user-level
processes can work independently (the first one writes while the second one is reading)
without the need for synchronization exploiting two CPU cores in parallel:

– the store buffer is the area where the kernel-level process writes into;
– the hold buffer is the area where the user-level process reads from.

17.2.3 NPF/WinPcap
The WinPcap library (1998), initially developed at the Politecnico di Torino, can be considered
as a porting for Windows of the entire BPF/libpcap architecture.

Architecture

• Netgroup Packet Filter (NPF): it is the kernel-level component and includes:

– network tap: it sits on top of the NIC driver, registering itself as a new network-layer
protocol next to stardard protocols (such as IPv4, IPv6);

– packet filter: the virtual machine is a just in time (JIT) compiler: instead of inter-
preting the code, it translates it into x86-processor-native instructions;

– kernel buffer: it is implemented as a circular buffer: kernel-level and user-level pro-
cesses write to the same memory area, and the kernel-level process overwrites the data
already read by the user-level process⇒ it optimizes the space where to store packets,
but:

∗ if the user-level process is too slow in reading data, the kernel-level process may
overwrite data not yet read (cache pollution) ⇒ synchronization between the
two processes is needed: the writing process needs to periodically inspect a shared
variable containing the current read position;

∗ the memory area is shared among the CPU cores ⇒ the circular buffer is less
CPU efficient;

• Packet.dll: it exports at the user level functions, independent of the operating system,
which are mapped with the primitives provided by the kernel-level API;

• Wpcap.dll: it is the dynamic-link library with which the application directly interacts:

– it offers to the programmer high-level library functions needed to access underlying
layers (e.g. pcap_open_live(), pcap_setfilter(), pcap_next_ex()/pcap_loop());

– it includes the compiler which, given a user-defined filter (e.g. string ip), creates the
pseudo-assembler code (e.g. “if field ‘EtherType’ is equal to 0x800 return true”) to be
injected into the packet filter for the JIT compiler;

– it implements the user buffer.

98

New features

• statistics mode: it records statistical data in the kernel without any context switch;

• packet injection: it sends packets through the network interface;

• remote capture: it activates a remote server which captures packets and delivers them
locally.

17.3 Performance optimizations

(a) Traditional architecture.
(b) Architecture with shared
buffer.

(c) Architecture with acceler-
ated driver.

Figure 17.2: Evolution of performance optimization techniques.

In recent years network traffic has grown faster than computer performance (memory, CPU).
Packet processing performance can be improved in various ways:

• increase capture performance: improve the capacity of delivering data to software;

• create smarter analysis components: only the most interesting data are delivered to software
(e.g. URL for a URL filter);

• optimize architecture: try to exploit application characteristics to improve performance.

Profiling data (WinPcap 3.0, 64-byte-long packets)

− [49.02%] NIC driver and operating system: when entering the NIC, the packet takes a lot
of time just to arrive at the capture stack:

1. the NIC transfers the packet into its kernel memory area via DMA (this does not use
the CPU);

2. the NIC throws an interrupt (IRQ) to the NIC driver, stopping the currently running
program;

3. the NIC driver copies the packet from the NIC memory into a kernel memory area of
the operating system (this uses the CPU);

99

4. the NIC driver invokes the operating system giving it the control;
5. the operating system calls the various registered protocol stacks, including the capture

driver;

− [17.70%] tap processing: operations performed by the capture driver at the beginning of the
capture stack (e.g. receiving packets, setting interrupts);

− [8.53%] timestamping: the packet is associated its timestamp;

+ [3.45%] packet filter: filter costs are proportionally low thanks to the JIT compiler;

− double copy into buffers: the more packets are big, the more copy costs increase:

1. [9.48%] kernel buffer copy: the packet is copied from the operating system memory to
the kernel buffer;

2. [11.50%] user buffer copy: the packet is copied from the kernel buffer to the user buffer;

+ [0.32%] context switch: it has an insignificant cost thanks to packet batching.

17.3.1 Interrupts
In all operating systems, at a certain input rate the percentage of packets arriving at the capture
application not only does no longer increase, but drastically decreases because of livelock:
interrupts are so frequent that the operating system has no time for reading packets from the
NIC memory and copying them into the kernel buffer in order to deliver them to the application
⇒ the system is alive and is doing some work, but is not doing some useful work.

Several solutions exist to cut down interrupt costs:

• interrupt mitigation (hardware-based): an interrupt is triggered only when a certain
number of packet has been received (a timeout avoids starvation if the minimum threshold
has not been achieved within a certain time);

• interrupt batching (software-based): when an interrupt arrives, the operating system
serves the arrived packet and then works in polling mode: it immediately serves the following
packets arrived in the meanwhile, until there are no more packets and the interrupt can be
enabled back on the card;

• device polling (e.g. BSD [Luigi Rizzo]): the operating system does no longer wait for
an interrupt, but autonomously checks by an infinite loop the NIC memory ⇒ since a
CPU core is perennially busy in the infinite loop, this solution is suitable when really high
performance is needed.

17.3.2 Timestamping
Two solutions exist to optimize timestamping:

• approximate timestamp: the actual time is read just sometimes, and the timestamp is based
on the number of clock cycles elapsed since the last read ⇒ the timestamp depends on the
processor clock rate, and processors are getting greater and greater clock rates;

• hardware timestamp: the timestamp is directly implemented in the network card⇒ packets
arrive at software already having their timestamps.

17.3.3 User buffer copy
The kernel memory area where there is the kernel buffer is mapped to user space (e.g. via nmap())
⇒ the copy from the kernel buffer to the user buffer is no longer needed: the application can
read the packet straight from the shared buffer.

100

Implementation This solution has been adopted in nCap by Luca Deri.

Issues

• security: the application accesses kernel memory areas ⇒ it may damage the system;

• addressing: the kernel buffer is seen through two different addressing spaces: the addresses
used in kernel space are different from the addresses used in user space;

• synchronization: the application and the operating system need to work on shared variables
(e.g. data read and write positions).

17.3.4 Kernel buffer copy
The operating system is not made to support large network traffic, but has been engineered to
run user applications with limited memory consumption. Before arriving at the capture stack,
each packet is stored into a memory area of the operating system which is dynamically allocated
as a linked list of small buffers (mbuf in BSD and skbuf in Linux) ⇒ costs for mini-buffer
allocation and freeing is too onerous with respect to a large, statically allocated buffer where to
store packets of any size.

Capture-dedicated cards are no longer seen by the operating system, but use accelerated
drivers incorporated into the capture stack: the NIC copies the packet into its kernel memory
area, and the application reads straight from that memory area without the intermediation of
the operating system.

Implementations This solution is adopted in netmap by Luigi Rizzo and DNA by Luca Deri.

Issues

• applications: the other protocol stacks (e.g. TCP/IP stack) disappeared ⇒ the machine is
completely dedicated to capture;

• operating system: an intrusive change to the operating system is required;

• NIC: the accelerated driver is strongly tied to the NIC ⇒ another NIC model can not be
used;

• performance: the bottleneck remains the bandwidth of the PCI bus;

• timestamp: it is not precise because of delays due to software.

17.3.5 Context switch
Processing is moved to kernel space, avoiding the context switch to user space.

Implementation This solution has been adopted in Intel Data Plane Development Kit
(DPDK), with the purpose of making network devices programmable via software on Intel hard-
ware.

Issues

• packet batching: the context switch cost is ridiculous thanks to packet batching;

• debug: it is easier in user space;

• security: the whole application works with kernel memory;

• programming: it is more difficult to write code in kernel space.

101

17.3.6 Smart NICs
Processing is performed directly by the NIC (e.g. Endace):

• hardware processing: it avoids the bottleneck of the PCI bus, limiting data displacement
(even though the performance improvement is limited);

• timestamp precision: there is no delay due to software and it is based on GPS ⇒ these
NICs are suitable for captures over geographically wide networks.

17.3.7 Parallelization in user space
FFPF proposed an architecture which tries to exploit the application characteristics to go faster,
by increasing parallelism in user space: the capture application is multi-thread and runs on
multi-core CPUs.

Hardware can help parallelization: the NIC can register itself to the operating system with
multiple adapters, and each of them is a distinct logical queue from which packets exit depending
on their classification, performed by hardware filters, based on their fields (e.g. MAC addresses,
IP addresses, TCP/UDP ports) ⇒ multiple pieces of software can read from distinct logical
queues in parallel.

Applications

• receive side scaling (RSS): the classification is based on the session identifier (quintuple)
⇒ all the packets belonging to the same session will go to the same queue ⇒ load on web
servers can be balanced;4

• virtualization: each virtual machine (VM) on a server has a different MAC address ⇒
packets will directly enter the right VM without being touched by the operating system
(hypervisor).5

4Please see section 15.2.1.
5Please refer to section 18.2.3.

102

Chapter 18

Introduction to Software-Defined
Networks

Figure 18.1: SDN components.

Internet is still the one which was defined 30 years ago: a very efficient pipe which transports
bits at high speed, with almost the same protocols and the same philosophy.

Network devices are monolithic: every router contains, besides specialized hardware for packet
forwarding, its own operating system and its own applications. This infrastructure is closed
to innovations: software components can not be installed by the customer but are set by the
hardware manufacturer, which is not interested in innovating if it is the market leader (i.e.
Cisco).

Software-Defined Networks (SDN) introduce the possibility to program the network, and
are based on three pillars:

• separation of control and forwarding features: software, the smart component, is split from
hardware;

• centralization of control: the whole network is coordinated by a controller, made up of
a network operating system and user-defined network applications (e.g. routing protocol,
load balancer, firewall);

• well-defined interfaces:

– northbound: the network operating system exposes APIs to network applications;
– southbound: the network operating system drives network nodes, made up of simple

packet forwarding hardware.

103

The network operating system is a software layer that offers a global, abstract view of the
network to upper applications. The view from ‘above’ the network enables for example traffic
engineering: decisions are taken by the centralized logic of the load balancer and are therefore
coherent for all network nodes:

• proactive mode: before the device starts forwarding packets, the controller fills a priori the
forwarding table with all the rules needed for all sessions;

• reactive mode: when the first packet in a session arrives, the device sends it to the controller,
which takes a decision and notifies to the device the rule needed to forward packets in that
session.

A network slicing layer can show to software even a network topology other than the actual
physical infrastructure: it can be configured so as to show to every system operating instance
different virtual topologies (e.g. a subset of actual links) ⇒ traffic policies of a certain company
affect only the network portion belonging to the company.

Issues

• controller: it may constitute a single point of failure and a bottleneck;

• versatility: a firewall needs to inspect all packets, not only the first packet in the session
⇒ a lot of traffic would be generated between the device and the controller;

• scalability: forwarding hardware can not be too simple in order to get high performance;

• economy: hardware simplification goes against economic interests of major network vendors.

18.1 OpenFlow
OpenFlow, introduced around 2008, is an implementation of the southbound interface.

It can be deployed in various ways:

• rules: typically they are flow-based, that is defined based on the (MAC addresses, IP ad-
dresses, TCP ports) tuple;

• controller: typically it is physically centralized, but it could even be physically distributed
(even though still logically centralized);

• mode: typically it is reactive, but nothing prevents from using the proactive mode.

One or more actions are associated to each rule, for example:

• forward packet to port(s);

• encapsulate and forward to controller;

• drop packet;

• send to normal processing pipeline (i.e. the classical routing table);

• modify fields (e.g. NAT: change addresses and ports).

104

OpenFlow 1.3 It introduced some interesting features:

• the forwarding table is split into various subtables (e.g. firewall, routing, etc.) and every
application accesses its subtable⇒ each packet is matched multiple times across the tables
in sequence;

• virtual switch (vSwitch, e.g. Open vSwitch): instead of being implemented in hardware,
OpenFlow is run on a switch emulated by a software process ⇒ a GRE logical tunnel
can be created between two vSwitches on two different servers across a traditional switch
network.1

Issues

• data plane: it only deals with packet forwarding ⇒ it is suitable for environments (e.g.
datacenters) where packet forwarding is a preponderant aspect with respect to the data
plane, but it does not appear to be proper for an ISP network;

• usefulness: the southbound interface is less interesting than the northbound one: it is used
by network operating system developers, not by application developers;

• hardware cost: rules can be based on a large number of fields which make entries very wide
⇒ needed TCAMs are expensive and heat a lot;

• flexibility: as opposed to Open Networking Foundation (ONF) (VMware), OpenDaylight
project (Cisco) prefers Network Configuration Protocol (NETCONF) which, instead
of make rules explicit, does not know the semantics of values read or set ⇒ it can be used
by the SDN controller to configure some advanced features on devices, such as ‘backup
routes’ in case of faults detected to be critical over an ISP network.

18.2 Data plane
It is not only important to forward packets to the right direction, but also to offer data-plane-
oriented services which process packets (e.g. firewall, NAT, network monitor).

18.2.1 Service Function Chaining without SDN

Figure 18.2: Service Function Chaining (SFC) without SDN.

Nowadays services can be added to access routers (BNG), as well as by service cards2, by con-
necting boxes called appliances: an appliance is a separate and discrete hardware device with
integrated software (firmware) dedicated to provide a specific service. Appliances are connected in
a cascade by physical wires forming a static service chain, and each packet has to be processed
throughout services before being able to exit the device.

Disadvantages

• agility in provisioning new services: the appliance should be physically connected to the
device;

1Please refer to section 18.2.3.
2Please see section 16.5.

105

• flexibility: in order to connect a new appliance the chain needs to temporarily be broken
stopping the network service;

• reliability: a faulty appliance breaks the chain stopping the network service;

• optimization: each appliance has a fixed amount of resources available, and during work
peaks it can not exploit resources possibly left free in that moment by another appliance.

18.2.2 Service Function Chaining with SDN

Figure 18.3: Service Function Chaining (SFC) with SDN.

Every appliance is connected to an output port and an input port of an OpenFlow switch, and
traffic flows cross a service chain dynamically decided through OpenFlow rules defining paths
from a switch port to another.

Advantages

• flexibility: adding a new appliance requires to change on the fly the OpenFlow rule by the
SDN controller without stopping the network service;

• reliability: an on-the-fly change to the OpenFlow rule by the SDN controller is enough to
restore the network service;

• business: paths can be differentiated based on the customer (company) ⇒ traffic goes only
across services which the customer has bought.

Disadvantages

• agility in provisioning new services: the appliance should be physically connected to the
device;

• optimization: each appliance has a fixed amount of resources available, and during work
peaks it can not exploit resources possibly left free in that moment by another appliance;

• backward compatibility: devices should be replaced with switch supporting OpenFlow.

106

Figure 18.4: Network Function Virtualization (NFV).

18.2.3 Network Function Virtualization
Services are implemented in a purely-software process: the switch is connected to OpenFlow
vSwitches emulated on multiple remote servers, and each server has a hypervisor able to run
virtual machines (VM) inside which services are running.

Scaling Performance of a service can be enhanced in three ways:

• scale up: the VM is assigned more hardware resources ⇒ this may not be enough if the
service is not able to properly exploit the available hardware (e.g. a single-thread program
does not benefit much from a multi-thread environment);

• scale out: multiple VMs are running in parallel on a same physical server⇒ a load balancer
is needed to send traffic to the least-loaded VM, and VMs need synchronization;

• multiple servers: multiple VMs are running in parallel on multiple physical servers ⇒ a
further load balancer is needed to send traffic to the least-loaded server.

Advantages

• agility in provisioning new services: a new service can be dynamically enabled by down-
loading and starting its software image;

• optimization: server hardware resources are shared among VMs;

• backward compatibility: if the switch does not support OpenFlow, the GRE tunnel between
vSwitches can be exploited without having to replace the device;

• consolidation: by night the number of VMs running in parallel can be reduced (scale in)
and the assigned hardware resources can be decreased (scale down).

107

Disadvantages

• traffic: the classical NFV model may require packets to travel from a server to another
across the switch, clogging the network which servers are spread over;

• efficiency: servers have general-purpose CPUs, not dedicated hardware (e.g. line cards),
and effective hardware-acceleration technologies are not currently available;

• migration: when the user moves, the VM instance should be moved to the closest server
and should be started as soon as possible;

• scalability: the architecture is potentially very scalable, but suffers from synchronization
and load balancing problems when multiple service instances are running in parallel.

18.3 OpenStack

Figure 18.5: OpenStack system components.

OpenStack, introduced in 2010, is an open-source distributed operating system:

• Linux:

– it handles the single local host which it is running on;
– the process is the execution unit;

• OpenStack:

– it is run on a remote server, called controller node;
– it handles multiple distributed physical servers in the cloud, called compute nodes;
– the virtual machine is the execution unit.

Each compute node includes the following components:

• traditional operating system: it handles the local hardware on the physical server;

• agent: it receives commands from the controller node, for example to launch VMs;

• vSwitch (e.g. Open vSwitch): it connects the server to the network infrastructure.

One of the tasks of the controller node is to launch VMs on the currently least-loaded
compute node.

108

	I Routing algorithms
	Forwarding and routing
	Forwarding algorithms
	Routing by network address
	`Coloured path' technique
	Label swapping
	Source routing
	Comparison

	Routing algorithms
	Metric
	Transients
	Black holes
	Routing loops
	Backup route

	Multipath routing
	Unequal-cost multipath routing
	Equal-cost multipath routing

	Non-adaptive algorithms
	Static routing
	Random walk
	Flooding
	Selective flooding

	Adaptive algorithms
	Centralized routing
	Isolated routing
	Distributed routing

	The Distance Vector algorithm
	Basic algorithm
	Triggered updates
	Count to infinity
	Threshold for infinity
	Route poisoning
	Split horizon
	Path hold down

	DUAL
	Selection of a feasible successor
	Diffusing process

	Advantages and disadvantages
	The Path Vector algorithm

	The Link State algorithm
	Components
	Neighbor Greetings
	Link States
	Flooding algorithm
	Dijkstra's algorithm
	Adjacency bring-up

	Behaviour over broadcast data-link-layer networks
	Advantages

	Hierarchical routing
	Partitioned domains
	Redistribution
	Costs

	Inter-domain routing
	Autonomous Systems
	EGP protocol class
	EGP protocols

	Redistribution

	Multicast routing
	Distance-Vector multicast routing
	Reverse path forwarding
	Reverse path broadcasting
	Truncated reverse path broadcasting
	Reverse path multicasting

	Link-State multicast routing
	Multicast routing with core-based tree algorithm
	Hierarchical multicast routing

	II Routing protocols
	Routing Information Protocol
	Packet format
	Timers
	Routing update timer
	Route invalid timer
	Route flush timer
	Hold down timer

	Limitations
	Netmask
	Hop count limit
	Lack of `age' field

	RIP version 2
	Authentication
	Multicast

	Advantages

	IGRP and EIGRP
	Metrics
	Multipath routing
	EIGRP

	Open Shortest Path First
	Areas
	Stub areas
	Virtual Link

	Metrics and costs
	Router ID
	LSAs
	Router LSA

	OSPF packets
	Hello protocol
	Exchange protocol

	Inter-domain routing: peering and transit in the Internet
	Commercial agreements among ASes
	Transit
	Peering

	Routing policies
	Economic requirements
	Administrative requirements
	Security requirements

	Internet Exchange Point
	Network neutrality

	Border Gateway Protocol
	Routing information
	Path Vector algorithm
	Route aggregation

	Peering sessions
	TCP
	I-BGP e E-BGP
	Routing loops

	Path attributes
	Well-known attributes
	Optional attributes

	Decision process

	IPv6 routing
	Routing tables
	Next hop

	Routing protocols
	RIPng
	OSPFv3
	IS-IS
	MP-BGP4

	Multicast routing
	DVMRP
	MOSPF
	PIM
	PIM-SM

	Content Delivery Networks
	DNS-based CDNs
	DNS-based routing
	Akamai approach

	URL-based CDNs
	Server load balancing
	Content routing

	III Network processing
	Hints on the architecture of network devices
	First generation
	Second generation
	Third generation
	Multi-chassis routers
	Service cards
	Major current issues

	Software-based packet filtering
	Typical architecture of a packet filtering system
	Main packet filtering systems
	CSPF
	BPF/libpcap
	NPF/WinPcap

	Performance optimizations
	Interrupts
	Timestamping
	User buffer copy
	Kernel buffer copy
	Context switch
	Smart NICs
	Parallelization in user space

	Introduction to Software-Defined Networks
	OpenFlow
	Data plane
	Service Function Chaining without SDN
	Service Function Chaining with SDN
	Network Function Virtualization

	OpenStack

