
TUGboat, Volume 30 (2009), No. 1 7

DVI specials for PDF generation

Jin-Hwan Cho

Abstract

DVIPDFM(x) manages various PDF effects by means
of DVI specials. Appropriate documentation of DVI

specials, however, is not easy to find, and exact
functionality is not simple to catch without reading
the source code of DVI drivers. This paper deals
with the DVI specials defined in DVIPDFM(x) that
are mainly used for PDF generation. We discuss the
features of those specials with some examples, many
of which are not documented elsewhere.

1 Introduction

DVI, the output file format of D. E. Knuth’s TEX,
is not widely used at present compared with PDF,
the output format of pdfTEX. It is rather old1 and
obsolete, but it has powerful aspects nonetheless:
simplicity and compactness.

These aspects make it possible to manipulate
DVI files in an easy and fast way. Many DVI utilities
were developed to convert the DVI format to other
file formats including PostScript and PDF. It is
also possible to edit DVI files directly by the use of
DVIasm [5, 6, 7].

Twenty years ago, at the time PostScript dom-
inated the printing world, nobody expected a new
format would replace PostScript. PDF is not eternal
either. In future, when a new format surpassing PDF

appears, DVI will be the first format in the TEX world
that can be converted to the new format. Notice
that LuaTEX, considered to be the next generation
of pdfTEX, still supports the DVI format.

There are two popular ways to convert DVI to
PDF. The first one is a two-way conversion, from
DVI to PostScript with DVIPS, and then from Post-
Script to PDF with a distiller. Adobe Acrobat Dis-
tiller is the oldest commercial program, and Ghost-
script is the most popular distiller in the TEX world.
Mac OS X also has its own distiller.

Adobe designed the pdfmark operator [2] for
its distiller to support PDF features that are not
expressible using the standard PostScript operators.
The pdfmark operator is given in the TEX source by
means of a DVI special command. Note that it is
not DVIPS but a distiller that processes the pdfmark
operator.

Mark A. Wicks’ DVIPDFM [11] introduced the
other way of converting DVI directly to PDF. He
also designed new DVI specials based on the pdfmark
operator to support various PDF features. The new

1 DVI was designed by David R. Fuchs in 1979.

specials, however, lacked some functionality in prac-
tical use so that not many PDF features could be
obtained compared with pdfTEX.

One of the main goal of DVIPDFMx, an ex-
tension of DVIPDFM that grew out of the CJK2

support, was to provide as many PDF features as
pdfTEX [3]. DVIPDFMx extended the functional-
ity of some special commands of DVIPDFM, and
designed new special commands having a similar
functionality of pdfTEX’s own primitives. Further-
more, DVIPDFMx has several powerful features not
available in DVIPDFM.

• Support 16-bit character sets (CJK encodings
and Unicode) with CID-keyed font technology.

• Support various font formats including Open-
Type, TrueType, etc.

• Use CFF font format for embedded Type1 Post-
Script fonts so that the size of the PDF output
is quite small compared with pdfTEX’s output.

• Support extended TEX engines, e.g., Omega,
Japanese pTEX, X ETEX (via XDVIPDFMX).3

The TODO list of DVIPDFMx had contained
one outstanding item for a long time: supporting
Till Tantau’s beamer package [9], that is widely used
for PDF presentation. In fact, this package does not
handle DVI specials in a direct way. Instead, the
graphics part comes from the same author’s PGF

package [10], and the other PDF effects come from
the hyperref package [8].

DVIPDFMx has supported full functionality of
the PGF package since June 2008.4 Nonetheless,
the navigation buttons usually shown in the lower
right corner of the presentation still did not work,
although they were displayed correctly. The source
code5 implementing the buttons was
\def\beamer@linkspace#1{\vbox to7.5pt{}\kern#1}

The code above generates an empty box that
will be surrounded by the two special commands,
‘pdf:bann’ (before) and ‘pdf:eann’ (after). Unfortu-
nately, neither DVIPDFM nor DVIPDFMx construct
any annotation in the case of an empty box. Another
special command ‘pdf:ann’ must be used instead for
this purpose. That was the exact reason why the
navigation buttons did not work.

Why did the author of the beamer package make
such a mistake? As a matter of fact, it was not his

2 Chinese, Japanese, and Korean.
3 Upcoming version of DVIPDFMx will support the DVI

output generated by LuaTEX.
4 The DVIPDFMx driver that works with the PGF package

included in TEX Live 2008 can be downloaded from http:

//project.ktug.or.kr/dvipdfmx/contrib/generic/.
5 http://mirror.ctan.org/macros/latex/contrib/

beamer/base/beamerbasenavigation.sty

8 TUGboat, Volume 30 (2009), No. 1

fault because no statement could be found about
that functionality in the manual of DVIPDFM [11].
This unhappy story led to this paper.

The author gave a presentation [4] at TUG 2005,
in which the different behaviors of DVI specials of
DVIPS, DVIPDFM, and DVIPDFMx were discussed.
DVI specials for PDF generation, however, were not
fully discussed at that time. The main objective of
this paper is to bridge this gap.

We will discuss in the following sections the
features of DVI specials defined in DVIPDFM for
PDF generation, and the extended features given by
DVIPDFMx. The author hopes this paper would be
useful for package writers who are finding appropriate
information on DVI specials.

2 Named PDF objects

There are two kinds of named objects, built-in and
user-defined PDF objects.

2.1 Built-in named objects

Built-in objects defined in DVIPDFM(x) are listed
in Table 1. We refer to [2, p. 12] and [11, p. 5] for
pdfmark and DVIPDFM built-in objects, respectively.
Notice that it is not allowed to modify the contents
of the last five built-in objects in Table 1.

@catalog catalog dictionary [1, p. 139]
@docinfo (DVIPDFMx only) document

information dictionary [1, p. 844]
@names name dictionary [1, p. 150]
@pages root page tree node [1, p. 143]
@resources resource dictionary of current

page [1, p. 154]
@thispage current page object [1, p. 145]
@prevpage reference only
@nextpage reference only
@pagen reference only
@xpos reference only
@ypos reference only

Table 1: Built-in objects defined in DVIPDFM(x)

2.2 User-defined named objects

Two special commands are provided by DVIPDFM(x)
for user-defined objects. One is to define a named ob-
ject, and the other is to add content to the previously
defined object.

• pdf:obj @name PDFobject creates a named
object that can be referenced later by ‘@name’.

All possible object types for ‘PDFobject’ are listed
in Table 2. In the case of indirect objects, the object
number must be given explicitly, so that this feature

is rarely used, especially to specify the objects in a
different PDF file.

boolean true, false
numeric 123, 34.5, -.002
string (This is a string), <901FA3>
name /Name1, /.notdef
array [3.14 false (Ralph) /Name1]
dictionary <</Key1 (Value) /Key2 3.14>>
null null
indirect 12 0 R
stream stream ... endstream

Table 2: PDF object types [1, p. 51]

It is not simple to construct a stream object with
the special command ‘pdf:obj’ because the length of
the stream object must be specified explicitly, which
is quite bothersome. Imagine that you are trying
to construct a stream object whose source comes
from a file. Is it possible with this special command?
Moreover, any stream object requires the keyword
‘stream’ followed by an end-of-line marker.6

DVIPDFMx, therefore, provides new special com-
mands for stream objects.

• pdf:stream @name (string) <<dict>>
constructs a stream object the source of which
comes from the string object ‘(string)’. The
stream dictionary ‘<<dict>>’ is optional, and
the dictionary entry ‘/Length’ is created auto-
matically.

The following two special commands, for instance,
construct the same stream object. The stream data
of the second object is represented in the ASCII base-
85 encoding. [1, p. 70]
\special{pdf:stream @name (xxxxxxxx)}

\special{pdf:stream @name (G^+IXG^+IX)

<</Filter/ASCII85Decode>>}

• pdf:fstream @name (filename) <<dict>>
constructs a stream object in the same way as
‘pdf:stream’, but the source of stream data
comes from a file ‘filename’.

The following example shows how to include a source
TEX file inside the output PDF file. (See [1, p. 637]
for more details on the file attachment annotation.)
\special{pdf:fstream @myfile (mytest.tex)}

\special{pdf:ann bbox 0 0 10 10 <<

/Subtype /FileAttachment /FS <<

/Type /Filespec /F (mytest.tex)

/EF << /F @myfile >> >>

/Name /PushPin >>}

6 An end-of-line marker consists of either a carriage return
(0x0d) and a line feed (0x0a) or just a line feed, and not by a
carriage return alone [1, pp. 60–61].

TUGboat, Volume 30 (2009), No. 1 9

2.3 Adding content to named objects

We describe the special command for adding content
to named objects. The type of the named object
must be either array or dictionary.

• pdf:put @arrayobj object1 . . . objectn

appends the n objects at the end of the array
object ‘@arrayobj’.

• pdf:put @dictobj <<dict>> merges the dic-
tionary object ‘<<dict>>’ into ‘@dictobj’. If
both the dictionaries have a common key, the
old value in ‘@dictobj’ will be replaced by the
new value in ‘<<dict>>’.

In the following example, the value of the key ‘/X’
in the dictionary object ‘@name’ is ‘@Moon2’. (See [2,
p. 15] for corresponding pdfmark operators.)
\special{pdf:put @Moon1

[(Earth to Moon) 238855 /mies]}

\special{pdf:obj @Moon2 []}

\special{pdf:put @Moon2 (Moon to Earth)}

\special{pdf:put @Moon2 238855}

\special{pdf:put @Moon2 /miles}

\special{pdf:obj @name <<>>}

\special{pdf:put @name << /X @Moon1 >>}

\special{pdf:put @name << /X @Moon2 >>}

Note that DVIPDFM does not allow adding con-
tent to a stream dictionary object, but DVIPDFMx
does.

• pdf:put @streamobj <<dict>> merges the
dictionary object ‘<<dict>>’ into the stream
dictionary of ‘@streamobj’. The dictionary en-
tries, ‘/Length’ and ‘/Filter’, in the object
‘<<dict>>’ will be ignored.

Finally, DVIPDFM(x) provides the special com-
mand pdf:close @name to prevent further modify-
ing the content of ‘@name’. After closing the named
object, it can only be referenced.

3 Annotations

An annotation is considered as an object with a
location on a page. The type of the object is given
by the value of the key ‘/Subtype’, for instance,
‘/Text’, ‘/Link’, ‘/Sound’, ‘/Movie’, etc. (See [1,
p. 615] for the list of all annotation types.) The
location is given by an array object associated to
the key ‘/Rect’. DVIPDFM(x) provides the following
special command for annotations.

• pdf:ann @name width [length] height
[length] depth [length] <<dict>>

The annotation dictionary is given by ‘<<dict>>’
and the location relative to the current posi-
tion is given by the three dimension parameters,
‘width’, ‘height’, and ‘depth’.

It is not possible to specify the location in an absolute
way. Any value of the key ‘/Rect’ in the annotation
dictionary ‘<<dict>>’ will be ignored if found. It
is not allowed to modify the annotation dictionary
with ‘pdf:put’ command, so ‘@name’ must be used
as a reference.

Note that DVIPDFMx allows the ‘bp’ unit in
the dimension parameters, but DVIPDFM does not.
Moreover, DVIPDFMx supports the following form.

• pdf:ann @name bbox [ulx] [uly] [lrx]
[lry] <<dict>>

The relative location is given by the bounding
box consisting of four numbers in ‘bp’ units.

The following example shows a movie annotation
that enables us to run the movie file ‘mymovie.avi’
inside a PDF viewer program.

\special{pdf:ann bbox 0 0 360 180 <<
/Subtype /Movie /Border [1 0 0]
/T (My Movie) /Movie <<
/F (mymovie.avi) /Aspect [720 360]
/Poster true >>

/A << /ShowControls false >> >>}

DVIPDFM(x) provides other special commands
for breakable annotations, e.g., an annotation broken
over several lines or several pages.

• pdf:bann <<dict>> begins a breakable an-
notation. Object name is not allowed for this
command.

• pdf:eann terminates the previous breakable
annotation.

These specials are mainly used for ‘/Link’ annotation
as the following example shows.
\special{pdf:bann << /Subtype /Link

/BS << /Type /Border /W 0.5 /S /S >>

/A << /S /URI

/URI (http://www.tug.org) >> >>}%

http://www.tug.org%

\special{pdf:eann}

Warning: No annotation will be constructed if the
content between ‘pdf:bann’ and ‘pdf:eann’ is an
empty box. For example:
\special{pdf:bann << /Subtype /Link ... >>}

\vbox to 7.5pt{}\kern 10pt

\sepcial{pdf:eann}

Annotations constructed by DVIPDFM(x) may
happen to be slightly bigger than the expected size.
This occurs when the annotation grow size is positive;
this value is specified in the configuration file. To
avoid this effect, either modify the configuration file
or give ‘-g 0’ on the command line when running
DVIPDFM(x).

10 TUGboat, Volume 30 (2009), No. 1

4 Outlines (or bookmarks)

The document outline consists of a tree-structured
hierarchy of outline items (sometimes called book-
marks) for which DVIPDFM(x) provides the following
special command.
• pdf:out n <<dict>> adds an outline item to

the document. The integer parameter n repre-
sents the level of the outline entry (beginning
with 1), and ‘<<dict>>’ represents the outline
item dictionary [1, p. 585].
Note that all the outline items generated by

DVIPDFM are closed.7 The ‘bookmarksopen=true’
option of the hyperref package does not work if the
PDF output is generated by DVIPDFM.
\usepackage[

dvipdfm,bookmarks=true,bookmarksopen=true

]{hyperref}

DVIPDFMx provides two solutions for this prob-
lem. The first one is to specify the option ‘-O n’
when running DVIPDFMx. Up to level n, the out-
line entries will be open. The second, and complete,
solution is to use this extended special command:
• pdf:out [-] n <<dict>> The symbol ‘[-]’

indicates that the outline item will be closed.
On the other hand, ‘[]’ without the minus sign
indicates that the outline item will be open.
The hyperref package provides a new option

‘dvipdfmx-outline-open’ that uses the extended
command above. This option enables us to control
the open level given by ‘bookmarksopenlevel’.
\usepackage[%

dvipdfmx,bookmarks=true,

bookmarksopen=true,

bookmarksopenlevel=1,

dvipdfmx-outline-open

]{hyperref}

5 External objects (or XObjects)

DVIPDFM(x) supports two types of external objects,8

an image XObject and a form XObject.

• pdf:image @name width [length] height
[length] depth [length] (imagefile)
defines an image XObject the source of which
comes from the file ‘imagefile’. See [5, p. 216]
for complete syntax provided by DVIPDFMx.

• pdf:bxobj @name width [length] height
[length] depth [length]

7 The sign of the value of the key ‘/Count’ in the out-
line item dictionary determines whether the item is open or
closed. [1, p. 586]

8 “A graphics object whose contents are defined by a self-
contained content stream, separate from the content stream
in which it is used.” [1, p. 332]

begins the definition of a form XObject. As
with the command ‘pdf:add’, DVIPDFMx al-
lows bounding box ‘bbox [ulx] [uly] [lrx]
[lry]’ for dimension parameters.

• pdf:exobj ends the previous form XObject
definition.

• pdf:uxobj @name displays the image XObject
or the form XObject previously defined and as-
sociated with ‘@name’. DVIPDFMx allows di-
mension parameters (same as ‘pdf:image’) after
‘@name’.

Typical examples showing how to use image XObjects
and form XObjects can be found in [4, pp. 15–16].

1

Figure 1: Two form XObjects with opacity 0.5; the
right one is a group XObject.

DVIPDFMx extended the command ‘pdf:eann’
to support a group XObject.9 Figure 1 shows the
difference between a normal XObject and a group
XObject.

• pdf:exobj <<dict>> merges the dictionary
object ‘<<dict>>’ into the type1 form dictio-
nary [1, p. 358] of the previous form XObject
and then close the XObject.

The following code draws the right image in Figure 1.
\special{pdf:bxobj @group bbox 0 0 50 50}

\special{pdf:code

15 w 0 0 m 50 50 l S 50 0 m 0 50 l S}

\special{pdf:exobj << /Group

<< /S /Transparency >> >>}

\special{pdf:obj @extgstate

<< /CA0.5 <</CA 0.5>> /ca0.5 <</ca 0.5>> >>}

\special{pdf:put @resources

<< /ExtGState @extgstate >>}

\special{pdf:code /CA0.5 gs /ca0.5 gs}

\special{pdf:uxobj @group}

We get the left image if \special{pdf:exobj} is
used instead of the 4th and the 5th line.

6 Raw PDF Operators

This final section deals with writing raw PDF oper-
ators in the output. DVIPDFM provides a special
command for this feature.

• pdf:content Operators adds the list of op-

9 “A special type of form XObject that can be used to
group graphical elements together as a unit for various pur-
poses.” [1, p. 360]

TUGboat, Volume 30 (2009), No. 1 11

erators “Operators” to the current page at the
current location. The operator ‘q’, saving the
current graphics state, followed by a transforma-
tion matrix moving to the current location will
be attached to the beginning of the list, and the
operator ‘Q’ restoring the saved graphics state
at the end of the list.

For instance, the special command

\special{pdf:content 10 w 0 0 m 50 50 l S}

inserts the following list of operators in the output.

... q 1 0 0 1 x y cm 10 w 0 0 m 50 50 l S Q ...

We sometimes need to insert PDF operators
without additional graphics state operators. The
author of the PGF package devised a trick:

\special{pdf:content Q ... Operators ... q}

The first operator ‘Q’ and the last operator ‘q’ nul-
lify the effects of graphics state operators that are
attached.

DVIPDFMx provides a new special command
instead of the trick above.

• pdf:literal direct Operators 10 or simply
pdf:code Operators plays the same role as

‘pdf:content, but no graphics state operator
and no transformation matrix will be added.

1
23
4 1234

Figure 2: The location of ‘23’ in the left image varies
according to the location of 1 in the current page.

Consider the following code, labelled Listing 1.
Which image in Figure 2 does this code generate?

\def\bpic{\special{pdf:content q}}

\def\epic{\special{pdf:content Q}}

\def\myop#1{\special{pdf:content Q #1 q}}

1\bpic2\myop{.5 G 10 w 0 0 m 100 100 l S}3\epic4

Listing 1: Which image in Figure 2 is the result of
this code, produced by DVIPDFM(x)?

The macro \bpic in Listing 1 nullifies the effect
of the operator ‘Q’ that will be attached after ‘q’,
and the macro \epic nullifies the effect of the list ‘q
1 0 0 1 x y cm’ that will be attached before ‘Q’.

Most people may choose the right-hand image
in Figure 2 as the result of Listing 1, if they remem-
ber the fact that special commands are considered

10 The idea of ‘pdf:literal direct’ came from the primi-
tive ‘\pdfliteral direct’ of pdfTEX.

nothing by TEX. However, the answer is the left-
hand image. The reason is that the transformation
matrix in the macro \bpic still has an effect on the
characters ‘2’ and ‘3’. The effect will be nullified by
the macro \epic.

To produce the right-hand image, DVIPDFMx
provides the following new special commands.

• pdf:bcontent starts a block that works in the
same way as ‘pdf:content’ except that all text
between this command and ‘pdf:econtent’ will
be placed in the right position.

• pdf:econtent ends the current block.
Moreover, ‘pdf:bcontent’ and ‘pdf:econtent’ can
be nested.

Finally, we can get the right-hand image in Fig-
ure 2 as the result of Listing 2 following, produced
by DVIPDFMx.

\def\bpic{\special{pdf:bcontent}}

\def\epic{\special{pdf:econtent}}

\def\myop#1{\special{pdf:code #1}}

1\bpic2\myop{.5 G 10 w 0 0 m 100 100 l S}3\epic4

Listing 2: The right-hand image in Figure 2 is the
result of this example produced by DVIPDFMx.

References

[1] Adobe Systems, Inc., PDF Reference, 6th

edition (Version 1.7, November 2006).
http://www.adobe.com/devnet/acrobat/
pdfs/pdf_reference_1-7.pdf.

[2] Adobe Systems, Inc., pdfmark Reference
(Version 8.0, November 2006). http:
//www.adobe.com/devnet/acrobat/pdfs/
pdfmark_reference.pdf.

[3] Jin-Hwan Cho, DVIPDFMx, an extension of
DVIPDFM, TUG 2003. Hawaii, United States.
http://project.ktug.or.kr/dvipdfmx/doc/
tug2003.pdf.

[4] Jin-Hwan Cho, Practical Use of Special
Commands in DVIPDFMx, TUG 2005,
International Typesetting Conference. Wuhan,
China. http://project.ktug.or.kr/
dvipdfmx/doc/tug2005.pdf.

[5] Jin-Hwan Cho, Hacking DVI files: Birth
of DVIasm, The PracTEX Journal (2007),
no. 1, and TUGboat 28:2, 2007, 210–217.
http://www.tug.org/TUGboat/Articles/
tb28-2/tb89cho.pdf.

[6] Jin-Hwan Cho, Handling Two-Byte
Characters with DVIasm, The Asian Journal
of TEX 2 (2008), no. 1, 63–68. http://ajt.
ktug.kr/assets/2008/5/1/0201cho.pdf.

12 TUGboat, Volume 30 (2009), No. 1

[7] Jin-Hwan Cho, The DVIasm Python script.
http://mirror.ctan.org/dviware/dviasm/.

[8] Heiko Oberdiek, The hyperref package
(Version 6.78f, August 2008). http:
//mirror.ctan.org/macros/latex/contrib/
hyperref/

[9] Till Tantau, The beamer package (Version
3.07, March 2007). http://mirror.ctan.
org/macros/latex/contrib/beamer/.

[10] Till Tantau, PGF, A Portable Graphics
Format for TEX (Version 2.00, February 2008).
http://mirror.ctan.org/graphics/pgf/.

[11] Mark A. Wicks, DVIPDFM User’s Manual
(Version 0.12.4, September 1999). http:
//gaspra.kettering.edu/dvipdfm/
dvipdfm-0.12.4.pdf.

� Jin-Hwan Cho
Department of Mathematics
The University of Suwon
Republic of Korea
chofchof (at) ktug dot or dot kr

