
Memoize
v1.0.0

October 10, 2023

Sašo Živanović
B saso.zivanovic@guest.arnes.si
Í spj.ff.uni-lj.si/zivanovic
� github.com/sasozivanovic

Memoize is a package for externalization of graphics and memoization of compilation results in
general, allowing the author to reuse the results of compilation-intensive code. Memoize (i) induces
very little overhead, as all externalized graphics is produced in a single compilation. It features
(ii) automatic recompilation upon the change of code or user-adjustable context, and (iii) automatic
externalization of TikZ pictures and Forest trees, easily extensible to other commands and environ-
ments. Furthermore, Memoize (iv) supports cross-referencing, TikZ overlays and Beamer, (v) works
with all major engines and formats, and (vi) is adaptable to any workflow.

The two steps of externalization of graphics in Memoize

doc.tex
�

\documentclass{article}
\usepackage{memoize}
\usepackage{tikzlings}

\begin{document}

We all love Ti\emph{k}Zlings!
\tikz\penguin; is a penguin, \tikz\koala; is a koala, and \tikz\owl; is an owl.

\end{document}

doc.pdf

We all love TikZlings! is a penguin, is a koala, and is an owl.

.pdf .pdf .pdf

Using the externalized graphics

doc.pdf

We all love TikZlings! is a penguin, is a koala, and is an owl.

This manual also documents packages Advice (v1.0.0) and CollArgs (v1.0.0). These are auxiliary packages which
were developed alongside Memoize, but are distributed as independent packages as they might be useful outside
the context of Memoize, as well. See sections 4.5.1 and 5.6.1 for Advice, and sections 4.5.2 and 5.6.3 for CollArgs.

https://ctan.org/pkg/Memoize
mailto:saso.zivanovic@guest.arnes.si
http://spj.ff.uni-lj.si/zivanovic
https://github.com/sasozivanovic
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{memoize}
\usepackage{tikzlings}
\tikzset{x=0.3cm, y=0.3cm, baseline=0.5ex}

\begin{document}

We all love Ti\emph{k}Zlings!
\tikz\penguin; is a penguin, \tikz\koala; is a koala, and \tikz\owl; is an owl.

\end{document}

Click here to open the code.

Introduction

What is externalization and why you might want it?

If you have ever worked on a long document full of TikZ pictures and maybe Forest trees,
you have probably had some compilation-enforced coffee breaks — even on modern computers,
compiling pictures, trees and such takes a lot of time. And you might have wondered, why do I
need to compile these pictures over and over again? — after all, I’m not changing them anymore!
Enter externalization, a mechanism designed to deal precisely with your issue, by saving the
produced pictures into separate PDFs and including those PDFs in subsequent compilations —
in no time at all!

Why yet another externalization package?

TikZ, the popular and all-powerful graphics language for TEX, ships including an externalization
library (described in §53 of the TikZ & PGF manual). TikZ’s library does an excellent job, but
with one caveat. Assume you’re using it for the first time (or after a clean-up) on that long
document full of TikZ pictures and Forest trees. It will take ages to produce all the externalized
graphics. Why? Because to get you up to speed, your document has to be compiled many many
times — once for each and every externalized picture. Even with TikZ’s advanced mechanism
for skipping the parts of the document irrelevant for the picture at hand, the first externalization
can be a daunting task.

How does Memoize save your time?

There is a reason why TikZ uses an entire compilation cycle to produce a single externalized
picture: TEX itself can only produce a single PDF per compilation (at least at the moment).
Memoize evades this limitation by dumping the externalized pictures right in the middle of
the document (ouch!). More precisely, an externalized picture occurs in the PDF twice, first
on a special page of its own and then on a regular page, where you intended it to be. The
daring dump obviously necessitates a second step of the procedure, when those special pages
are extracted into separate PDFs, called externs, which are then included into the document in
subsequent compilations.
This two-step procedure, illustrated on the cover page of this manual, is very fast. The first
step, which externalizes all the pictures into the document itself (the squiggly red arrow),
takes virtually no more time than a regular compilation. The time needed for the second step,
extraction (the normal red arrows), depends on the system setup, but it ranges from little to
almost none.

When should I use Memoize?

In short, whenever you are writing a document containing lots of TikZ pictures, Forest trees, or
other time-consuming constructs, and you are bored waiting for the compilation to finish.
Using Memoize on a paper containing a single picture does not make much of a difference. But
with more complex documents, the speed-up can be immense. For example, the compilation
time of my 400-page book containing about 160 Forest trees was reduced by more than half,
and the compilation time of a 260-page Beamer presentation with a hundred complex dynamic
trees went from four minutes to a mere half minute!

2

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

How much extra work does Memoize require?

In principle, none.
For one, while allowing for manual memoization of selected document chunks (§2.2), Memoize
features a system which automatically triggers memoization at each invocation of selected
commands and environments. Out of the box, Memoize automemoizes TikZ pictures and
Forest trees, but the author can easily submit (almost) any command or environment to
automemoization (§2.3). Memoize also does its best to automatically prevent memoization
of code that cannot be externalized, like TikZ pictures with remember picture, and to abort
memoization in case the memoized code yields any errors.

Why is Memoize not called Externalize?

Fundamentally, Memoize is about producing and utilizing memos — pieces of TEX code replicating
the effect of the compilation of a document chunk in a computationally less intensive manner.
Typically, each memo has an associated extern, which is where the effect of typesetting is stored,
but conceptually, memos come first. For example, the extern is included back into the document
by the memo, and a memo may be associated with any number of externs, including zero.
Memos solve several externalization-related problems in a generic fashion, allowing for a multitude
of applications. For example, they store the information about the associated externs, so that an
extern can be integrated back into the document as a box with the original orientation, width,
height and depth. They solve the problem of cross-referencing from and into the memoized code
by storing its context (§3.3) and replicating any \labels which occur in it. They are also crucial
for externalizing pictures in Beamer frames overlay by overlay.
Incidentally, the term “memoization” is used with some programming languages to refer to the
process of remembering the result of the function, along with the given arguments, so that on
subsequent invocations of the function with the same arguments, the result can be returned
from memory rather than recomputing it. I would say that, give or take the functions, what
Memoize does fits the bill.

How can I make my command (auto)memoizable?

Any command which interacts with the rest of the document, like a command which produces a
float, must receive special treatment. Some issues can be resolved from within Memoize. Other
issues require a memoization-compatible (re)implementation of the command. It is in the hope
that package writers will adapt their “difficult” commands to Memoize that this package offers
a documented interface to the memoization process, fully described in sections 3.5, 4.4 and 4.5.
An advanced user might also want to know that Memoize ships with two auxiliary packages,
which form the base of Memoize’s automemoization feature. Package Advice implements a
generic framework for extending the functionality of selected commands and environments, while
package CollArgs provides a command which can determine the argument scope of any command
whose argument structure conforms to xparse’s argument specification.

What else is out there?

Not long before submitting Memoize to CTAN, I became aware of another new externalization
package, robust-externalize, and it seems that the same happened to the author of that
package ©, who found the proof-of-concept version of Memoize, which was available at GitHub
for a while.
The key idea behind robust-externalize seems to be to extract the code submitted to
externalization into separate files, and add the necessary preamble. While a compilation from
scratch takes more time than with Memoize (but less than with TikZ library), the approach
allows for parallel compilation of externs — nice!

3

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/xparse
https://ctan.org/pkg/robust-externalize
https://github.com/sasozivanovic/memoize
https://ctan.org/pkg/robust-externalize
https://ctan.org/pkg/pgf

Contents

1 Before you start 6
1.1 Installing the extern extraction software . 6
1.2 The configuration commands . 7
1.3 The configuration file . 8

2 Your first memoized documents 9
2.1 Let’s see if it works! . 9
2.2 Memoizing by hand . 10
2.3 Memoizing automatically . 11
2.4 Working on a picture . 12
2.5 Keeping a clean house . 15
2.6 Writing a book? . 17
2.7 Writing a presentation? . 19
2.8 When stuff sticks out . 20
2.9 The verbatim mode . 22
2.10 The final version of your document . 23

3 Digging deeper 24
3.1 Good to know . 24
3.2 Extraction methods and modes . 26
3.3 From cross-references to the context . 28
3.4 More on redefinitions and stale externs . 32
3.5 Supporting Memoize in your package . 34

3.5.1 Loading Memoize? . 34
3.5.2 Memoizable design . 34

4 Under the hood 38
4.1 The entry point . 38
4.2 Memos . 41

4.2.1 Cc-memos (and extern inclusion) . 41
4.2.2 C-memos (and context) . 43
4.2.3 More on \label . 44
4.2.4 The Beamer support explained . 46

4.3 Record files . 50
4.3.1 The .mmz file . 50
4.3.2 Defining a new record type . 51

4.4 The memoization process . 53
4.4.1 The default memoization driver . 53
4.4.2 Pure memoization . 54
4.4.3 Multiple externs per memo . 56
4.4.4 Driver-based memoizable design . 58
4.4.5 Shipout . 60

4.5 Automemoization . 61
4.5.1 Using package Advice . 63
4.5.2 Using package CollArgs . 67

5 Reference 71
5.1 Loading . 71
5.2 Configuration . 73
5.3 Memoization . 75

5.3.1 Manual memoization commands . 75
5.3.2 Basic configuration . 75
5.3.3 Inside the memoization process . 79

4

5.3.4 Tracing . 84
5.3.5 Internal memo commands . 85

5.4 Location of memos and externs . 86
5.5 Extern extraction . 88

5.5.1 Perl- and Python-based extraction . 88
5.5.2 TEX-based extraction . 91
5.5.3 The clean-up scripts . 93
5.5.4 Record files . 94

5.6 Automemoization . 96
5.6.1 Package Advice . 96
5.6.2 Memoization-related additions to the advising framework 106
5.6.3 Package CollArgs . 111

6 Varia 119
6.1 Known issues . 119
6.2 Troubleshooting . 119
6.3 License . 121
6.4 Changelog . 121
6.5 Acknowledgments . 121

5

1 Before you start

1.1 Installing the extern extraction software

Good news: using Memoize can be as easy as writing \usepackage{memoize} in the preamble.
Bad news: Memoize won’t work out of the box. The culprit is the extern extraction — the process
which ships the externalized graphics from the main document into separate extern files; for details,
see the title page illustration and the “How” box in the Introduction. For the extraction to work, you
will probably have to install some additional software, and you might also have to allow your TEX to
execute the extraction script. But there’s a silver lining: once Memoize is set up, it is set up for good.

What do I have to do?
In principle, all you have to do for Memoize to work under the default configuration is install Perl
libraries PDF::API2 and Path::Class; see the Perl section below for the installation guideline.

Consult section 3.2 if you want to use an extraction method other than the default perl-based method
or adapt Memoize to your particular workflow (for example, if you’re compiling via a Makefile).
If you installed Memoize through the package manager of your TEX distribution, your system should
be already set up to allow the execution of Memoize’s extraction scripts. If this is not the case, please
contact either me or the maintainer of your distribution; until the issue is resolved, you have to either

(a) compile documents loading Memoize with command-line option -shell-escape (on TEXLive) or
--enable-write18 (on MiKTEX), or

(b) set up the restricted shell escape mode to allow for the execution of memoize-extract.pl.1

Once you have set up your system, I advise you to follow the instructions in section 2.1 to test if the
setup was successful.

Perl If you’re running GNU/Linux or macOS, Perl is most likely already installed on your system.
On Windows, you might have to install it. I tested Memoize with Strawberry Perl, available at
strawberryperl.com; see www.perl.org for other options.

cpan PDF::API2

cpan Path::Class

Once Perl is installed on your system, you will need to install two Perl
libraries as well: the PDF processing library PDF::API2, and the cross-
platform path specification manipulation library Path::Class. On some
GNU/Linux distributions, these libraries are included as packages — just use your package manager
to install them. Otherwise, install them from CPAN using cpan tool, as shown in the box.

Python Installing (Python and) the required Python library is only necessary if you decide to use
the Python-based extraction script; see section 3.2.
If you’re running GNU/Linux, install Python using your package manager. Otherwise, download the
installer from www.python.org. You can install Python even if you don’t have administrator privileges:
simply uncheck the “Install launcher for all users” when running the installer.

pip install pdfrw2Once Python is installed on your system, you will also need to install the
pdfrw2 library (or its predecessor, pdfrw, which will work just as well).
Some GNU/Linux distributions offer this library as a package; if this is not the case, and on other
operating systems, install it from The Python Package Index using pip tool (if you run pip as a
superuser, it will install the library system-wide, otherwise locally), as shown in the box.

1On TEXLive, execute tlmgr conf texmf shell_escape_commands to get the list of currently allowed commands
〈current〉, then add the script by executing tlmgr conf texmf shell_escape_commands 〈current〉,memoize-extract.pl.
On MiKTEX, you get the 〈current〉 list by initexmf --show-config-value=[Core]AllowedShellCommands[], and add
to it by initexmf --set-config-value=[Core]AllowedShellCommands[]=〈current〉;memoize-extract.pl.

6

https://metacpan.org/pod/PDF::API2
https://metacpan.org/pod/Path::Class
https://strawberryperl.com
https://www.perl.org
https://metacpan.org/pod/PDF::API2
https://metacpan.org/pod/Path::Class
https://www.cpan.org
https://metacpan.org/pod/CPAN
https://www.python.org
https://pypi.org
https://pip.pypa.io
https://pip.pypa.io

1.2 The configuration commands

Memoize can be configured using command \mmzset{〈keylist〉} (and friends). The 〈keylist〉 argument
is a comma-separated list of configuration settings, each setting having the form 〈key〉=〈value〉, or
sometimes just 〈key〉. The 〈keylist〉 argument is processed by package pgfkeys (see §88 of the TikZ
& PGF manual), so you can use all the bells and whistles of that fantastic PGF utility (like easily
defining your own styles).
Here’s some examples of \mmzset. For one, to whet your appetite to learn about the various keys in
the /mmz path, but more importantly now, to show you that white-space is irrelevant in the 〈keylist〉
argument, so you can format the keylist as you wish — as long as it does not contain an empty line.2

\mmzset{memo dir,recompile,memoize=circuitikz}

\mmzset{memo dir, recompile, memoize=circuitikz}

\mmzset{
memo dir,
recompile,
padding=2in}

\mmzset{
memo dir, readonly,
memoize=\qrcode{om},
deactivate=\label,
disable,

}

\mmzset{
memo dir,
recompile,
% comment
padding=2in

}

\mmzset{
memo dir,
recompile,

padding=2in
}

Command \mmzset can be used any time after loading the package. It is very common in the preamble,
but also useful in the document body, where its effect is local to the TEX group.3 For example, you can
use the idiom on the left below to force recompilation of a single Forest tree somewhere in the middle
of the document (in the code listings below, highlighting marks the resulting scope of the recompile
directive). However, as applying some setting to a single piece of automatically memoized code is
common, Memoize provides a special command for the occasion: the keys given as the argument of
\mmznext will be applied only at the next instance of automemoization, overriding any keys set by
\mmzset in case of a conflict. If the command is given more than once, only the final invocation takes
effect.

{
\mmzset{recompile}
\begin{forest}
[VP[V][DP]]

\end{forest}
% ...

}

% ...
\mmznext{recompile}
\begin{forest}
[VP[V][DP]]

\end{forest}
% ...

I like to follow \usepackage{memoize} by \mmzset, but if you prefer, you can also provide the
document-wide configuration as package options. Note, however, that LATEX removes spaces from
package options, so keys such as memo dir won’t work. That said, the following are equivalent — both
will force re-externalization of all the externs in the document.

\usepackage{memoize}
\mmzset{recompile}

\usepackage[recompile]{memoize}

2I like to add a comma after the final key as well, as shown in the bottom left example, because if I don’t, I often
forget to insert it when I add more keys.

3Any keys with a non-local effect are explicitly marked as such in the reference section.

7

https://ctan.org/pkg/pgfkeys
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

1.3 The configuration file

Memoize allows you to configure settings which apply to more than just one document. It does that by
attempting to load file memoize.cfg just before executing package options. Given how TEX searches
for files, the location of this file determines whether it applies system-wide, user-wide or directory-wide.
The directory-wide location is clearly the directory itself. The user-wide and system-wide location
depend on the TEX distribution and which format(s) you want to use memoize.cfg with:4

〈the relevant texmf tree root〉/tex/〈format〉/memoize/memoize.cfg
You can say generic for 〈format〉 if you want the configuration file to be accessible by all formats,
otherwise 〈format〉 should be one of the formats supported by Memoize: plain, latex or context.
The texmf root directory depends on the distribution, here’s how to figure out what it is:

The roots of TEXMF trees

TEX Live tug.org/texlive

user-wide tlmgr conf texmf TEXMFHOME or kpsewhich -var-value TEXMFHOME
the default (on Linux): /home/〈username〉/texmf

system-wide tlmgr conf texmf TEXMFLOCAL or kpsewhich -var-value TEXMFLOCAL
the default (on Linux): /usr/local/texlive/texmf-local

Don’t forget to run texhash or mktexlsr after creating memoize.cfg.

MiKTEX miktex.org

Open the MiKTEX Console, select the “Settings” page and then the “Directories” tab.
If there is a folder marked with the “Generic” purpose with attribute “User” (for a user-
wide memoize.cfg) or “Common” (for a system-wide memoize.cfg), that’s the folder
you are looking for. Otherwise, create a folder following MiKTEX’s instructions and add
it to the list.
Don’t forget to click “Refresh file name database” (in the “Tools” menu of the MiKTEX
Console) after creating memoize.cfg.

Note that a directory config file will override the user config, and the user config will in turn override
the system-wide one. This should not concern you too much, because you will probably only want to
use the user-wide config anyway,5 which might look something like this:

memoize.cfg
�

\mmzset{
memo dir, % Put the memo and extern files into a subdirectory.
extract=python, % Use the Python-based extern extraction method.
memoize=circuitikz, % Are you working on electrical circuits all the time?

}

I recommend including memo dir in your memoize.cfg, as shown in the first line. It reduces the clutter
in the document directories; see section 2.5 for details.
The extract line concludes the story on “permanently” selecting the extraction method, started in
chapter 1. As the final note, observe that key extract only makes sense as a package option or as a
\mmzset key in memoize.cfg. It will have no effect as a \mmzset key in the document, because the
extraction happens while the package is loaded.

4The memoize subfolder is not obligatory.
5If you want to have a directory-wide configuration based on (rather than overriding) the user-wide configuration,

your could write down the real user-wide config in, say, memoize.user.cfg (located user-wide), and then \input this file
by both the user-wide and the directory-wide memoize.cfg. Of course, the same logic can be used to base a user-wide
config on the system-wide one.

8

https://tug.org/texlive
https://miktex.org

\mmzset{
 memo dir, % Put the memo and extern files into a subdirectory.
 extract=python, % Use the Python-based extern extraction method.
 memoize=circuitikz, % Are you working on electrical circuits all the time?
}

Click here to open the code.

2 Your first memoized documents

2.1 Let’s see if it works!

Take example file test.tex,6 or some simple document containing a TikZ picture or a Forest tree,
add \usepackage{memoize} to the preamble,7 and compile it twice.

• The first compilation of the example should produce a three-page PDF. The first two pages are
the extern pages holding the externalized graphics, while the final page is the (sole page of the)
real document. Note that you can see each extern twice: first on a page of its own, and then
wherever it belongs to in the real document.

• At the second compilation, the extern pages should have disappeared from the PDF, meaning they
were successfully extracted into extern files, which are now embedded into the main document.

test.tex
�

\documentclass{article}
\usepackage{tikz,forest}

\usepackage{memoize}

\begin{document}

Memoize will automatically externalize\\
\begin{tikzpicture}

\node(node)
[align=center,ellipse,draw]
{TikZ\\pictures};

\end{tikzpicture}
\begin{forest}

[and Forest trees [and]
[Forest trees[Forest][trees]]]

\end{forest}

\end{document}

extern page

TikZ
pictures

extern page

and Forest trees

and Forest trees

Forest trees

document page

Memoize will automatically externalize

TikZ
pictures

and Forest trees

and Forest trees

Forest trees

You might want to play with this example a bit now. For example, if you reverse the order of the TikZ
picture and the Forest tree, you should notice that the externs don’t get recompiled. You won’t see
any extern pages again until you change the actual code of the picture or the tree — or until you add
some other picture or tree, of course.
If you don’t want to automatically memoize TikZ pictures and/or Forest trees, you can switch off their
automemoization using key deactivate . This key takes a list of command and environment names.
As you can see below, the command and the environment must be deactivated separately.

\mmzset{
deactivate={\tikz, tikzpicture}, % deactivate automemoization of all TikZ pictures
deactivate=\tikz, % deactivate only the command
deactivate=tikzpicture, % deactivate only the environment

}

6Where can you find the example files? For one, they are integrated into this manual, so if your PDF viewer supports
attachments, you can simply click on the paperclip icon on the top right of the example box (even if you’re offline).
Otherwise, visit the examples subdirectory of wherever you found this document ©. Online, the Memoize documentation
can be found at CTAN: https://ctan.org/pkg/memoize; and if your TEX installation includes the documentation, you
should also find it in directory 〈the root of your TEX installation〉/doc/generic/memoize.

Incidentally, while we present a full example document in this section, many code listings will only present the parts
of the file relevant for the discussion, for brevity. The example files, however, will remain full, compilable documents,
including the document preamble etc.

7Memoize likes to be loaded early. If you get the error Extern extraction from document 〈jobname〉.pdf was
unsuccessful, move \usepackage{memoize} up the preamble; see section 6.2 for details.

9

https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{tikz,forest}

\usepackage{memoize}

\begin{document}

Memoize will automatically externalize\\
\begin{tikzpicture}
 \node(node)
 [align=center,ellipse,draw]
 {TikZ\\pictures};
\end{tikzpicture}
\begin{forest}
 [and Forest trees [and]
 [Forest trees[Forest][trees]]]
\end{forest}

\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/memoize

2.2 Memoizing by hand

In the previous section, we have compiled our very first document which used Memoize. In that
document, we only had to load the package, as Memoize knows how to externalize TikZ pictures and
Forest trees without any help from the author. But what if you want to externalize some other code?
The manual way of doing this is by surrounding the code by a memoize environment, or by making it
the argument of the \mmz command. The only difference between the two is that the environment,
but not the command, ignores any spaces surrounding the given code.

manual.tex
�

\begin{memoize}
\begin{circuitikz}
\draw (0,0)

to[isource] (0,3) -- (2,3)
to[R] (2,0) -- (0,0);

\end{circuitikz}
\end{memoize}
% ...
\mmz{\qrcode{https://ctan.org/pkg/memoize}}

extern page

extern page

Both the memoize environment and the \mmz command take a configuration keylist as the optional
argument, so their full syntax is \begin{〈memoize〉}[〈keylist〉]〈code to be externalized〉\end{〈memoize〉}
and and \mmz[〈keylist〉]{〈code to be externalized〉}. The keys given in this optional argument take
precedence over the keys set by \mmzset. Note that \mmznext does not apply to manual memoization.
Manual memoization is great for one-shot memoizations, but you can use it within your own macros as
well. For example, assume that you don’t want to externalize TikZ pictures in general (so you have
deactivated automemoization of the \tikz command, as explained at the end of section 2.1), but
that you want to easily memoize selected pictures. You could define a memoized variant of the \tikz
command, as shown below (and similary for the environment). (Note the % comment characters in the
definition of \mmztikz. The definition was intentionally broken into several lines to remind you that
the spaces around the argument of \mmz matter.)

mmztikz.tex
�

\mmzset{deactivate=\tikz}
\newcommand{\mmztikz}[2][]{\mmz{%

\tikz[#1]{#2}%
}}
Compare \tikz{\node{this picture which \emph{won't} be externalized};} to
\mmztikz{\node{this picture which \emph{will} be externalized}}

extern page

this picture
which will be
externalized

document page

Compare this picture
which won’t be
externalized

to this picture
which will be
externalized

10

https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{circuitikz}
\usepackage{qrcode}
\usepackage{memoize}

\begin{document}
\begin{memoize}
 \begin{circuitikz}
 \draw (0,0)
 to[isource] (0,3) -- (2,3)
 to[R] (2,0) -- (0,0);
 \end{circuitikz}
\end{memoize}
\mmz{\qrcode{https://ctan.org/pkg/memoize}}
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{tikz}
\usepackage{memoize}

\tikzset{
 every node/.style={
 text width=7em, align=center,
 fill,top color=white, bottom color=blue!20,
 alias=last,
 },
 every picture/.style={baseline=(last.base)},
}

\mmzset{deactivate=\tikz}
\newcommand{\mmztikz}[2][]{\mmz{%
 \tikz[#1]{#2}%
}}
\begin{document}
Compare \tikz{\node{this picture which \emph{won't} be externalized};} to
\mmztikz{\node{this picture which \emph{will} be externalized}}
\end{document}

Click here to open the code.

2.3 Memoizing automatically

Out of the box, Memoize automatically externalizes TikZ pictures and Forest trees. Let us see how
other commands and environments can be submitted to this automemoization process.
We start with the simpler case of environments (fortunately, externalizing environments also makes
sense more often than externalizing commands). You can submit an environment to automemoization
by writing auto={〈environment name〉}{memoize} (as a key in \mmzset). The natural (but not the
only possible) location for this instruction is the preamble. Below, we automemoize environment
circuitikz of package circuitikz, used for drawing electronic circuits.8

automemoize-environment.tex
�

\mmzset{auto={circuitikz}{memoize}}
% ...
\begin{circuitikz}

\draw (0,0) to[isource] (0,3) -- (2,3)
to[R] (2,0) -- (0,0);

\end{circuitikz}

extern page

Commands are a bit harder to automemoize, because Memoize cannot possibly know how far the
arguments of a command extend (in contrast, the end of an environment is clearly marked). With
commands, we must inform Memoize about their argument structure, which we achieve using key args
in the second argument of key auto: auto=〈command〉{memoize, args={〈argument specification〉}} .
We can only leave out args if the command was defined by \NewDocumentCommand or similar; in this
case, Memoize can retrieve the argument specification on its own.
And how does the 〈argument specification〉 look like? It is a sequence of letters, each letter determining an
argument type. Memoize recognizes the same argument types and their letters as package xparse (which
defines \NewDocumentCommand and friends), so you should look at (section 1 of) the documentation of
that package for details, if and when you need them. Here, we focus on the two most commonly used
types, m and o, and add the optional star for good measure:

letter argument type example

m mandatory argument
— either surrounded with braces \foo{arg}
— or a single token \foo a

o optional argument, surrounded with brackets \foo[arg]
s optional star \foo*

Below, we write args=om because command \qrcode (of package qrcode) takes two arguments: a
bracketed optional argument, followed by a mandatory argument (in braces).

automemoize-command.tex
�

\mmzset{auto=\qrcode{memoize, args=om}}
% ...
\qrcode{https://ctan.org/pkg/memoize}
\qrcode[height=1cm]{https://ctan.org/pkg/memoize}

extern page

extern page

This should get you started with automemoization. We’ll provide some further basic information in
sections 2.4 and 2.9 of the tutorial, but only package writers will probably ever need the gory details
from section 4.5. It is my sincere hope that they will support Memoize in their packages, where
necessary, so that you don’t even have to write the auto declarations, but there is one thing you should
know if you encounter a package supporting Memoize: you should load it after Memoize!

8In section 2.1, we learned that automemoization can be switched off using key deactivate. Memoize also offers key
activate, but you probably won’t have to use it, as an auto declaration automatically activates the submitted command.

11

https://ctan.org/pkg/pgf
https://ctan.org/pkg/circuitikz

\documentclass{article}
\usepackage{circuitikz}
\usepackage{memoize}
\mmzset{auto={circuitikz}{memoize}}
\begin{document}
\begin{circuitikz}
 \draw (0,0) to[isource] (0,3) -- (2,3)
 to[R] (2,0) -- (0,0);
\end{circuitikz}
\end{document}

Click here to open the code.

https://ctan.org/pkg/xparse
https://ctan.org/pkg/qrcode

\documentclass{article}
\usepackage{qrcode}
\usepackage{memoize}
\mmzset{auto=\qrcode{memoize, args=om}}
\begin{document}
\qrcode{https://ctan.org/pkg/memoize}
\qrcode[height=1cm]{https://ctan.org/pkg/memoize}
\end{document}

Click here to open the code.

2.4 Working on a picture

Memoize automatically recompiles a picture when the code producing the picture changes. However,
sometimes we can modify a picture without changing its code, like when we modify the definition of
a command used in the code. In the example below, a predefined style emph is applied to the node,
producing a node with a red background. Let’s say we compile the document (with memoization) and
then change this style to set the yellow background. Curiously, the node will remain red.
recompile.tex (version 1)

�
\tikzset{

emph/.style={fill=red, text=blue},
}
\begin{tikzpicture}

\node[emph]{an emphasized node};
\end{tikzpicture}

document page

an emphasized node

recompile.tex (version 2)
\tikzset{
emph/.style={fill=yellow, text=blue},

}
\begin{tikzpicture}
\node[emph]{an emphasized node};

\end{tikzpicture}

document page

an emphasized node

The curious thing happens (or rather, doesn’t happen) because Memoize doesn’t keep track of how
commands and styles are defined; it just uses the extern file it created when the old style was in effect.
To get a yellow node, we must ask Memoize to reexternalize the picture. The simplest way to do
that is by using the recompile key; below, we write \mmznext{recompile} just before the picture
and compile the document again (remember from section 1.2 that whatever keys we provide through
\mmznext only apply to the instance of automemoization). After the compilation, we may (and should)
remove the recompile directive (otherwise, Memoize will produce the extern page again and again).

recompile.tex (version 3)
\tikzset{emph/.style={fill=yellow, text=blue}}
\mmznext{recompile} % for one compilation
\begin{tikzpicture}

\node[emph]{an emphasized node};
\end{tikzpicture}

document page

an emphasized node

It is also common to put (again, for the space of a single compilation) \mmzset{recompile} in the
preamble, or to use recompile as the package option. Either will remake all the externalized graphics
in the document, so you can be sure all of them use the latest version of your macros and styles.
We’ll revisit the issue of memoized code depending on macros and styles defined elsewhere in section 3.4.
In this section, we will learn how the issue can be avoided, at least to some extent. One idea is to
turn off memoization for the picture(s) we are currently working on; another idea is to let Memoize
know which definitions the picture relies on. The simplest way to achieve the former is by using key
disable ; by putting it into a TEX group, we can localize its effect to the selected pictures.

disable.tex
�

\tikz\node[draw=green]{An externalized node.};
{

\mmzset{disable}
\tikz\node[draw=red]{
This node is not externalized.};

\tikz\node[draw=red]{
And neither is this one.};

}
\tikz\node[draw=green]{

Another externalized node};

extern page

An externalized node.

extern page

Another externalized node

document page

An externalized node.

This node is not externalized.

And neither is this one.

Another externalized node

12

\documentclass{article}

\usepackage{tikz}
\usepackage{memoize}

% First compile this document twice to externalize the picture and
% extract the extern. If you then change "red" to "yellow" in the
% definition of style "emph", the emphasized node will remain red
% until you uncomment the "recompile" directive below for one
% compilation.

\tikzset{
 emph/.style={fill=red, text=blue},
}

\begin{document}

% \mmznext{recompile}
\begin{tikzpicture}
 \node[emph]{an emphasized node};
\end{tikzpicture}

\end{document}

Click here to open the code.

\documentclass{article}

\usepackage{tikz}
\usepackage{memoize}

\begin{document}
\small

\tikz\node[draw=green]{An externalized node.};
{
 \mmzset{disable}
 \tikz\node[draw=red]{
 This node is not externalized.};
 \tikz\node[draw=red]{
 And neither is this one.};
}
\tikz\node[draw=green]{
 Another externalized node};

\end{document}

Click here to open the code.

As you can imagine, key disable is complemented by enable, but it is perhaps worth mentioning
a problem that can arise if you disable memoization for a part of your document by enclosing it
in a pair of \mmzset{disable} and \mmzset{enable}. Yes, it might work at the moment, but
say you later (e.g. when you are preparing the final version of the document) decide to disable
memoization for the entire document, and say you try to do this by writing \mmzset{disable}
in the preamble. As shown below on the left, you’re in for a surprise: memoization will still
be enabled in the part of the document following \mmzset{enable}! The solution is to always
disable memoization for a part of the document by using \mmzset{disable} in a TEX group
(i.e. the braces), as shown on the right. (In the examples below, the shaded areas mark the parts
of the document where memoization is disabled.)

disable-bad.tex
�

\usepackage{memoize}
\mmzset{disable}
\begin{document}
% ...
\mmzset{disable}
% ...
% ...
\mmzset{enable}
% ...
\end{document}

The upper \mmzset{disable} does not
have the intended effect, i.e. it doesn’t
apply to the whole document!

disable-good.tex
�

\usepackage{memoize}
\mmzset{disable}
\begin{document}
% ...
{
% ...
\mmzset{disable}
% ...

}
% ...
\end{document}

The upper \mmzset{disable} applies to
the entire document, as expected.

In fact, it might be better to disable memoization using environment nomemoize or macro \nommz . I
also like these commands because it is easy to add and remove prefix no to switch manual memoization
(triggered using environment memoize or macro \mmz) off and on.
disable-nomemoize.tex

�
\begin{nomemoize}

% ...
\end{nomemoize}

Disable using the dedicated environment.

disable-nommz.tex
�

% ...
\nommz{...}
% ...

Disable using the dedicated command.

It is also possible to disable memoization for all occurrences of a selected command or environment. In
fact, we’re already familiar with the procedure from section 2.3, where we used key memoize inside
the second argument of auto to automatically memoize all instances of the command or environment
given as the first argument. All we have to do to auto-disable rather than auto-memoize, is substitute
nomemoize for memoize. Note that this prevents memoization of not only the given command or
environment, but also of any (manual or automatic) memoization which would otherwise occur during
its execution; for example, if \foo executes \tikz under the hood, autodisabling \foo prevents
memoization of the inner \tikz, even though that command is normally automemoized.
disable-auto-cmd.tex

�
\mmzset{auto=\foo{args=m, nomemoize}}
% ...
\foo{...}
% ...
\foo{...}
% ...

Autodisable within a command.

disable-auto-env.tex
�

\mmzset{auto={bar}{nomemoize}}
% ...
\begin{bar}
% ...

\end{bar}
% ...

Autodisable within an environment.

All that said, Memoize actually offers a neater way to switch off the externalization for the picture I’m
currently working on. The readonly key instructs Memoize to use whatever externs it had already

13

\documentclass{article}
\usepackage{memoize}
\mmzset{disable}
\begin{document}
% ...
\mmzset{disable}
% ...
% ...
\mmzset{enable}
% ...
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\mmzset{disable}
\begin{document}
% ...
{
 % ...
 \mmzset{disable}
 % ...
}
% ...
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\begin{document}
\begin{nomemoize}
 % ...
\end{nomemoize}
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\begin{document}
% ...
\nommz{...}
% ...
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\mmzset{auto=\foo{args=m, nomemoize}}
\begin{document}
% ...
\foo{...}
% ...
\foo{...}
% ...
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\mmzset{auto={bar}{nomemoize}}
\begin{document}
% ...
\begin{bar}
 % ...
\end{bar}
% ...
\end{document}

Click here to open the code.

produced (thereby reducing the document compilation time), but to abstain from producing any new
externs. In effect, the stuff we are currently working on does not undergo memoization and therefore
does not produce the clutter which can potentially lead to trouble described in the recompile examples
above.
What I like to do is load the package using \usepackage[readonly]{memoize}, work on stuff, and
once I’m happy with the most recent pictures, remove readonly from the package options for one
compilation.
readonly.tex (work in progress)

�
\usepackage[readonly]{memoize}
% ...
\tikz\node{work in progress};

document page

work in progress

readonly.tex (the final version)
\usepackage{memoize}
% ...
\tikz\node{the final version};

extern page

the final version

document page

the final version

We’re now ready to tackle a completely different way of avoiding the issue, by informing Memoize
which definitions the externalized picture depends on. We do this by appending these definitions to
context — when the context of a picture changes, Memoize recompiles the picture, same as if the code
of the picture itself was changed. (We will talk about context in more detail in section 3.3.)
A command can be added as a dependency using key meaning to context . Below, we make the
following externalized picture depend on the definition of macro \answer; changing this definition will
result in the recompilation of the extern. In general, meaning to context accepts a comma-separated
list of command and environment names, e.g. meaning to context={\foo,bar} (note the braces).
Memoize offers several variants of meaning to context, applicable to various types of commands.
For example, the easiest way of making the picture depend on the definition of a pgfkeys style is to
use handler .meaning to context — note the dot in the name, and observe that emph/.meaning
to context below is executed within \tikzset, not \mmzset; see §87 of the TikZ & PGF manual to
learn about key handlers.

meaning-to-context.tex (version 1)
�

\newcommand\answer{24}
\mmznext{meaning to context=\answer}
\tikzset{

emph/.style={fill=red, text=blue},
emph/.meaning to context,

}
\begin{tikzpicture}

\node[emph]{The answer is \answer!};
\end{tikzpicture}

extern page

The answer is 24!

meaning-to-context.tex (version 2)
% Changing definition
\newcommand\answer{42}
% and/or

emph/.style={fill=yellow, text=blue},
% leads to recompilation of the extern.

extern page

The answer is 42!

All variants of meaning to context (see reference section 5.3.2 for the full list) may be used within
the externalized picture itself, e.g. \node[emph, emph/.meaning to context]{...} is perfectly valid

— and also handy when you want to limit the effect of the handler to a single picture, as .meaning to
context cannot be used within \mmznext.

14

\documentclass{article}

\usepackage{tikz}

% Use this for work in progress. No externs will be created.
\usepackage[readonly]{memoize}

% Use this for the final version. Now the picture will be externalized.
% \usepackage{memoize}

\begin{document}

\tikz\node{work in progress};

\end{document}

Click here to open the code.

https://ctan.org/pkg/pgfkeys
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

\documentclass{article}

\usepackage{tikz}
\usepackage{memoize}

\newcommand\answer{24}
\mmznext{meaning to context=\answer}
\tikzset{
 emph/.style={fill=red, text=blue},
 emph/.meaning to context,
}

\begin{document}
\begin{tikzpicture}
 \node[emph]{The answer is \answer!};
\end{tikzpicture}
\end{document}

Click here to open the code.

2.5 Keeping a clean house

Memoize produces lots of auxiliary files. For each piece of memoized code, it produces two memo files
(we will learn more about these in section 4.2), which will be joined by the extern PDF upon the next
compilation.9 You can recognize these files easily: their names start with the name of your document
and include one or two long hexadecimal numbers.

dirty-house.tex
�

the folder contents (after two compilations)

〈the document folder〉

dirty-house.tex

dirty-house.pdf
…
dirty-house.mmz

dirty-house.39AB85DF9887787FC044C0E10608BBBB.memo

dirty-house.39AB85DF9887787FC044C0E10608BBBB-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.memo

dirty-house.39AB85DF9887787FC044C0E10608BBBB-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf

This is another auxiliary file produced
by Memoize. We will mention it at the
end of the section.

To top it off, changing the memoized code will produce new memo (and extern) files, with the old files
staying in place. This is all by design — the first hexadecimal number in these filenames is the MD5
sum of the memoized code and that’s how Memoize knows which memo belongs to which piece of
code10 — but it has the downside that the folder containing your document can get quite cluttered
(imagine the directory listing as above, but for a document with a hundred externalized pictures which
you have been working on for a month).
I like to keep a clean house by instructing Memoize to put memos and friends into their own directory.
This can be achieved by writing \mmzset{ memo dir } into the preamble (anytime after loading the
package).11 This will put the memo and the extern files into folder 〈document name〉.memo.dir (and
it will also omit the 〈document name〉 prefix in their filenames, because it makes no sense to repeat it
there).

clean-house.tex
�

\mmzset{memo dir}

the folder contents (after two compilations)

〈the document folder〉

clean-house.tex

clean-house.pdf
…
clean-house.mmz

clean-house.memo.dir

39AB85DF9887787FC044C0E10608BBBB.memo

39AB85DF9887787FC044C0E10608BBBB-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.memo

39AB85DF9887787FC044C0E10608BBBB-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf

This directory must be created, somehow.

9If you’re using the TEX-based extraction, each extern (.pdf) is also accompanied by a log file (.log) produced during
the compilation that extracted the extern.

10The second hexadecimal number in the memo and extern filenames is the MD5 sum of the context. The context is
crucial for properly externalizing code containing cross-references, see section 3.3 for details.

11The memo dir key is in fact merely an abbreviation for a sequence of dir and prefix within path; use these keys if
you need more control over the name and location of the auxiliary files. Furthermore, there is also the no memo dir key,
which reverts the configuration back to the dirty default.

15

\documentclass{article}
\usepackage{tikz}

\usepackage{memoize}

\begin{document}

For this document, the auxiliary files produced by
\tikz \node[fill=yellow,draw=red]{Memoize};
will reside in the same folder as the source.

\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{tikz}

\usepackage{memoize}
\mmzset{memo dir}

\begin{document}

For this document, the auxiliary files produced by
\tikz \node[fill=yellow,draw=red]{Memoize};
will reside in their own folder.

\end{document}

Click here to open the code.

Why is memo dir not the default?

The clean-house example most likely compiled just fine, and you are wondering why memo
dir is not in effect by default. Well, out of the box, TEX cannot create directories, so it is
the fact that Memoize can create them (at least under the default settings) which requires
explanation. By default, Memoize triggers extraction by executing the Perl extraction script
memoize-extract.pl, and it is this script which actually creates the memo directory. However,
not everybody will necessarily use this script … so memo dir should not be the default.
The Python extraction script memoize-extract.pl, used when extract=python, works the
same as the Perl variant. With TEX-based extraction extract=tex, things are different. If
you are compiling the document with a full shell escape mode (-shell-escape), Memoize
successfully creates the directory with the system command mkdir.a However, if you’re using
the restricted shell escape mode, the attempt to create the directory won’t succeed unless you
include mkdir among the restricted shell escape commands (see footnote 1 on page 6 for how to
do this, but note that it is not recommended).
If you are using external extraction, you have to create directory clean-house.memo.dir by
hand, prior to the first compilation of the document (with Memoize). This is the case even if
you are performing the extraction using one of the shipped extraction methods, and it is due to
the fact that Memoize needs the memo directory to be present even before extern extraction,
because it writes the .memo files into the same directory. (When Memoize uses the extraction
script to create the memo directory, it does so completely independently of extraction, and prior
to creating any .memo files.)

amkdir is the default value of key mkdir command, but executing the extraction method perl or python
overrides this default.

I actually suggest adding \mmzset{memo dir} into your user-wide memoize.cfg (see section 1.3 for
details on this file). This will keep all your houses clean — without work! — as Memoize will
automatically use the memo directory for any document your create.
It is always safe to delete memos (.memo) and externs (.pdfs residing next to memos), in the sense
that you cannot lose data this way.12

• Many memos and externs are typically stale anyway, i.e. they reflect some previous state of your
document and are not needed anymore. These files can be deleted without any repercussions
whatsoever (unless you later revert to a previous version of the document, of course). In fact, you
might want to delete them periodically, or at least once you finish writing the document. As it is
hard to figure out which memos/externs are stale, Memoize ships with a clean-up script: writing
memoize-clean.pl 〈document name〉.mmz (replace .pl with .py if you use Python rather than
Perl) into the command line will delete all the stale auxiliary files belonging to the document.

• If you delete a memo or an extern currently in use, you will trigger recompilation of their code —
so deleting a memo or an extern is actually a perfectly legal alternative to using the recompile
key!13

It is also safe to delete the .mmz file (or any other kind of record file, see section 4.3) residing next to
your document’s .pdf. The .mmz file contains the information about which externs should be extracted
from the .pdf. Deleting it before this is done (by default, before compiling the document again) will
prevent the extraction (same as if providing the package option extract=no) and ultimately result in
the recompilation of the externs produced in the previous run. Deleting it after the extraction will
have almost no effect: it will only only prevent the clean-up script from working (the .mmz file also
lists the currently active memos and externs, and thereby indirectly informs the clean-up script which
files are stale). For further information on the .mmz file, see section 4.3.1.

12The same goes for the extern .log files produced by the TEX-based extraction.
13For the users of the TEX-based extraction: deleting the .log file does not trigger recompilation.

16

2.6 Writing a book?

Books and other long documents are usually produced from sources which reside in more than a
single file, and to speed up the editing process, authors usually use some system which allows them to
compile each chapter separately. Can Memoize — designed for virtually the same task of speeding up
the editing process — work sensibly in this kind of situation? More precisely, can the book and the
individual chapters share the memos and the externs? Yes they can! If we instruct Memoize to use the
same memo directory for both the book job and the chapter jobs, then we can externalize graphics
when compiling a chapter and have the externs included when compiling the book (and vice versa).14

All we need to do is use our old friend memo dir from section 2.5 — we see now that this setting is
good for more than just keeping a clean house!
book.tex

�
\documentclass{book}
\usepackage{docmute}

\usepackage{memoize}
\mmzset{memo dir=chapters/book}

\usepackage{tikz}

\begin{document}

\chapter{Introduction}
This example demonstrates how to share
memos and externs between the book and
the chapters.

\chapter{A chapter}
\input{chapters/chapter1.tex}

\chapter{Conclusion}
Easy, right?

\end{document}

chapters/chapter1.tex
�

\documentclass{article}

\usepackage{memoize}
\mmzset{memo dir=book}

\usepackage{tikz}

\begin{document}

\begin{tikzpicture}
\node[
text width=5cm,
align=flush left,

]
{This picture can be externalized
by compiling the chapter (twice,
as we need to extract it as well).
The extern will be picked up
when compiling the book.};

\end{tikzpicture}

\end{document}

In the above example, the individual chapters reside in files stored in the chapters subdirectory, and
that’s why the book.tex preamble uses memo dir=chapters/book (rather than memo dir=book or just
memo dir). However, Memoize has no trouble with a situation where the main file and the chapters
reside in the same folder; the setup is even simpler, as we then say memo dir=book in both the book
and the chapter preamble. The more complicated situation was chosen to point out the following
potential problem with the setup where the chapters reside in a subdirectory.
If you’re anything like me, you would first go for having a memo directory immediately contained
in the project directory (so examples/book.memo.dir above) and set up memo dir as shown below.
Well, this won’t work, or at least it won’t work with the vanilla TEX Live, because TEX will refuse to
write into (memo) files outside the directory where it was executed,15 and this is precisely what the
chapter compilation is asked to do below.

the main file
\mmzset{memo dir=book}
% ...
\input{chapters/chapter1.tex}

a chapter file
\mmzset{memo dir=../book}

14Package docmute makes LATEX ignore the preamble of the chapter file when including this file into the main document.
15In TEX Live, the texmf.cnf option controlling this behaviour is called openout_any. By default, it is set to p

(paranoid), which “disallow[s] opening dot files [and] going to parent directories, and restrict[s] absolute paths to be under
$TEXMFOUTPUT” (emphasis mine).

17

\documentclass{book}
\usepackage{docmute}

\usepackage{memoize}
\mmzset{memo dir=chapters/book}

\usepackage{tikz}

\begin{document}

\chapter{Introduction}
This example demonstrates how to share
memos and externs between the book and
the chapters.

\chapter{A chapter}
\input{chapters/chapter1.tex}

\chapter{Conclusion}
Easy, right?

\end{document}

Click here to open the code.

\documentclass{article}

\usepackage{memoize}
\mmzset{memo dir=book}

\usepackage{tikz}

\begin{document}

\begin{tikzpicture}
 \node[
 text width=5cm,
 align=flush left,
]
 {This picture can be externalized
 by compiling the chapter (twice,
 as we need to extract it as well).
 The extern will be picked up
 when compiling the book.};
\end{tikzpicture}

\end{document}

Click here to open the code.

https://ctan.org/pkg/docmute

Section 2.4 presented some ideas on how to work on a single picture. Those ideas can be all easily
applied to the multi-file situation. For example, you could use readonly on the chapter that you’re
working on (and that chapter only). This way, the preview of the chapter will not be tarnished by the
extern pages, and if you periodically compile it without readonly, or compile the book (which does
not have the readonly set), you will have a reasonably up-to-date set of externs.

the main file
\mmzset{memo dir=chapters/book}
% ...
\input{chapters/chapter1.tex}

the current chapter file
\mmzset{memo dir=book, readonly}

For Emacs users
I often use this readonly trick myself, but with a twist. As an Emacs user, I don’t use a
TEX-based mechanism (such as the docmute package) to compile a chapter, but rely on the
region compilation feature of Emacs’ AUCTEX package. AUCTEX offers a way to compile
the current buffer (if you don’t know what an Emacs buffer is, read “file”) or region (roughly
speaking, the selected text). It does that by putting the buffer or the region into a file called
region.tex while dressing it up in the preamble of the original document (when I’m working
on a multi-file document, it correctly pulls the preamble from the main document). This results
in a compilable region file. My trick is to detect whether I’m compiling a region (this is the job
of \ifregion), and if so, put Memoize into the readonly mode (an alternative trick would be
to disable it).
This is the trick in a nutshell, but to make it really work we have to address one further issue: the
original document and the region have to share memos and externs. This happens automatically
if the original document sets memo dir explicitly (e.g. if a document called doc.tex contains
memo dir=doc in the preamble), but I’m lazy and don’t want to write this in every document —
if I have to do that, what’s the point of memo dir I put into my memoize.cfg in section 2.5?
Fortunately, the region file starts with \message{ !name(〈original document name〉.tex)} to
indicate the origin. The complicated part of the code below (everything following \mmzset
{readonly} parses this header to extract the 〈original document name〉, which is then fed to
memo dir. Now, the trick works automatically for any document.a

memoize.cfg
�

\edef\regionfilename{\detokenize{_region_}}
\def\ifregion{%
\edef\jobfilename{\jobname}%
\ifx\jobfilename\regionfilename
\expandafter\@firstoftwo

\else
\expandafter\@secondoftwo

\fi
}
\ifregion{%
\mmzset{readonly}%
\begingroup
\openin0{\regionfilename.tex}\readline0 to \regionheader \closein0
\edef\temp{##1\detokenize{(}##2\detokenize{.tex)}##3}%
\expandafter\def\expandafter\parseregionheader\temp\endregionheader{%
\endgroup
\mmzset{memo dir=#2}%

}%
\expandafter\parseregionheader\regionheader\endregionheader

}{}

aThe assumption here is that memo dir is in effect for the original document. If not, the trick can be adapted
to use (dir and) prefix within path.

18

https://www.gnu.org/software/emacs
https://ctan.org/pkg/docmute

% The contents of this file belong into "memoize.cfg".
\edef\regionfilename{\detokenize{_region_}}
\def\ifregion{%
 \edef\jobfilename{\jobname}%
 \ifx\jobfilename\regionfilename
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi
}
\ifregion{%
 \mmzset{readonly}%
 % Automatically adapt "memo dir" to the real document:
 % (This assumes that "memo dir" is in effect for that document!)
 \begingroup
 \openin0{\regionfilename.tex}\readline0 to \regionheader \closein0
 \edef\temp{##1\detokenize{(}##2\detokenize{.tex)}##3}%
 \expandafter\def\expandafter\parseregionheader\temp\endregionheader{%
 \endgroup
 \mmzset{memo dir=#2}%
 }%
 \expandafter\parseregionheader\regionheader\endregionheader
}{}

Click here to open the code.

2.7 Writing a presentation?

Memoize ships with built-in support for the most widespread LATEX presentation class, Beamer, in the
sense that it can externalize a picture which changes from overlay to overlay. Before we learn how to
use that functionality, however, there’s a peculiarity about loading Memoize in Beamer to address.

Beamer opens the document PDF while loading the class, while Memoize requires the PDF from
the previous compilation intact in order to extract the externs (when extraction is triggered
internally, which is the default setting). The solution is to load Memoize (a package) before
Beamer (a class), which can be done by using \RequirePackage instead of the usual \usepackage.
Easy, if hacky.

\RequirePackage{memoize}
\documentclass{beamer}

To memoize a piece of code which produces different results on different overlays — by virtue of
containing \pause, \only, and/or related commands — apply key per overlay . Without this key,
externalization of the picture will end badly, with a single extern (the final one) appearing on all
overlays. The key may be invoked either from a prior \mmznext command,16 or executed in the
memoized code itself. The example below illustrates the latter option, and also shows that we may
invoke it via its full path, /mmz/per overlay, when listed among options processed by pgfkeys.17

beamer.tex
�

\tikzset{only/.code 2 args={\only<#1>{\pgfkeysalso{#2}}}}
\begin{frame}{A frame with a memoized Ti\emph{k}Z picture}

\begin{tikzpicture}[/mmz/per overlay]
\node[ellipse, fill=yellow, only={2}{

pin={[overlay, fill=red, pin edge={overlay, red}]60:An important remark!}
}]{An important concept};

\end{tikzpicture}
\end{frame}

extern page

An important concept

document page

A frame with a memoized TikZ picture

An important concept

August 9, 2023 1 / 1

extern page

An important concept

An important remark!

document page

A frame with a memoized TikZ picture

An important concept

An important remark!

August 9, 2023 1 / 1

If the memoized code changes the value of Beamer’s pause counter beamerpauses, e.g. by issuing
a \pause, take care that (i) per overlay is executed prior to any changes of beamerpauses,
and that (ii) the final value of this counter in the memoized code is the same for all overlays.

16Of course, per overlay may also be invoked from \mmzset, but I guess this won’t make sense often. For example, if
you set it for the entire presentation, and the presentation contains static memoized pictures as well, you will compile those
pictures more times than necessary: once for each overlay, whereas once per frame would suffice. It might occasionally
make sense, however, to use per overlay as an auto option — consult section 2.9 to learn what that is.

17Read section 4.2.4 to learn how the Beamer support is implemented. The implementation only uses Memoize’s public
interface, so understanding it should help if you need to support some other presentation package.

19

https://ctan.org/pkg/pgfkeys

\RequirePackage{memoize}
\documentclass{beamer}
\mode<presentation>
{
 \usetheme[secheader]{Boadilla}
}

\mmzset{include context in ccmemo}

\usepackage{tikz}
\usetikzlibrary{shapes.geometric}
\tikzset{only/.code 2 args={\only<#1>{\pgfkeysalso{#2}}}}

\begin{document}
\centering
\begin{frame}{A frame with a memoized Ti\emph{k}Z picture}
 \begin{tikzpicture}[/mmz/per overlay]
 \node[ellipse, fill=yellow, only={2}{
 pin={[overlay, fill=red, pin edge={overlay, red}]60:An important remark!}
 }]{An important concept};
 \end{tikzpicture}
\end{frame}
\end{document}

Click here to open the code.

2.8 When stuff sticks out

Some constructs — like plain TEX’s \llap and \rlap, and, notably, TikZ overlays — fool TEX into
thinking that the “size” of the typeset material is different than what it actually is. This can cause
trouble for externalization: a piece of your picture might disappear! In a sentence, the solution is to
manually set the padding of the externs, but let’s slow down a bit.
The TikZ picture in the following example consists of node with a pin on the right, but let’s say we
want to horizontally center this picture so that only the node rather than the entire picture (including
the pin) will be centered. This can be achieved by adding key overlay to the pin (actually, we need to
add it to both the pin and its edge). TikZ normally updates the extents (called the bounding box) of
the picture every time it puts something in it; when overlay is in effect, however, these updates are
temporarily disabled. In effect, the overlay key on the pin below will fool TEX into thinking that the
node is all there is to the picture, so centering will work as desired.

overlay.tex (no memoization)
�

\mmznext{disable}
\begin{figure}

\centering
\begin{tikzpicture}
\node[align=center, text width=0.4\linewidth, draw=blue, thick, pin={

[overlay, pin edge={overlay}, green!50!black] east:an \texttt{overlay}ed pin}
]{To horizontally center this node (rather than the entire picture),
we make \TeX{} ignore the pin by \texttt{overlay}ing it.};

\end{tikzpicture}
\caption{Without memoization}

\end{figure}
\lipsum[66]

document page

To horizontally center this
node (rather than the entire
picture), we make TEX ignore
the pin by overlaying it.

an overlayed pin

Figure 1: Without memoization

Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget,
interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce
aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur
lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.

What happens when we try to externalize this picture? The example below shows what would happen
if Memoize had no concept of padding — which we simulate by setting padding=0pt.18 Along with
the rest of TEX, Memoize would be fooled into thinking that the picture comprises of the node only, so
the pin would never make it into the extern. You would end up with a document missing the pin!19

overlay.tex (memoization without padding)
�

\mmznext{padding=0pt}
\begin{tikzpicture}

% ...
\end{tikzpicture}

extern page

To horizontally center this
node (rather than the entire
picture), we make TEX ignore
the pin by overlaying it.

an overlayed pin

18Unlike in the rest of the manual, the extern pages in this section are shown without trimming the whitespace.
19On the first compilation, the document page containing the figure without padding looks fine, as it uses the result of

the compilation rather than the extern file. But on the second compilation, when Memoize actually uses the extern, the
pin disappears.

20

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{memoize}
\usepackage{tikz,lipsum}
\setlength{\textfloatsep}{2ex}

\begin{document}

\mmznext{disable}
\begin{figure}
 \centering
 \begin{tikzpicture}
 \node[align=center, text width=0.4\linewidth, draw=blue, thick, pin={
 [overlay, pin edge={overlay}, green!50!black] east:an \texttt{overlay}ed pin}
]{To horizontally center this node (rather than the entire picture),
 we make \TeX{} ignore the pin by \texttt{overlay}ing it.};
 \end{tikzpicture}
 \caption{Without memoization}
\end{figure}
\lipsum[66]

\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\usepackage{tikz,lipsum}
\setlength{\textfloatsep}{2ex}

\begin{document}

\mmznext{padding=0pt}
\begin{figure}
 \centering
 \begin{tikzpicture}
 \node[align=center, text width=0.4\linewidth, draw=blue, thick, pin={
 [overlay, pin edge={overlay}, green!50!black] east:an \texttt{overlay}ed pin}
]{To horizontally center this node (rather than the entire picture),
 we make \TeX{} ignore the pin by \texttt{overlay}ing it.};
 \end{tikzpicture}
 \caption{No padding}
\end{figure}
\lipsum[66]

\end{document}

Click here to open the code.

By default, Memoize puts an inch of space around (what it thinks is) the externalized picture, and
if the overlayed parts of the picture fit into this inch of space, you will find them in the extern and
therefore also in the document. In our example, however, the default padding is not enough — the pin
is only partially visible.20

overlay.tex (memoization with default padding)
�

\mmznext{padding=1in} % this is the default

extern page

To horizontally center this
node (rather than the entire
picture), we make TEX ignore
the pin by overlaying it.

an overlayed pin

The solution is to set the padding manually. Below, I used padding right to only increase the padding
on the right side (clearly, we also have padding left, padding top and padding bottom), but if
you’re not bothered by a large extern, you can just use padding , which sets all four sides at once.
By the way, having too much padding (almost) never hurts, and as you see, you can use (simple)
arithmetics in the value of these keys.

overlay.tex (memoization with extra padding)
�

\mmznext{padding right=1in+4em}

extern page

To horizontally center this
node (rather than the entire
picture), we make TEX ignore
the pin by overlaying it.

an overlayed pin

Incidentally, the padding keys only change how the externalized picture is stored. Memoize remembers
the size of the extern as seen by TEX (e.g. the bounding box of the picture as reported by TikZ, with
overlayed parts of the picture protruding out of it), and it uses that size when integrating the extern
into the document — so everything works as it should!

20You might wonder why I didn’t make the default padding much bigger, like 10 inches. TEX wouldn’t be bothered
(unless the resulting extern size exceeded its maximum dimension), but you might be, because with such a large default
padding, all the externs would be huge, most often bigger than the document pages, and remember that the externs are
first dumped into the document, where they can bother you.

21

\documentclass{article}
\usepackage{memoize}
\usepackage{tikz,lipsum}
\setlength{\textfloatsep}{2ex}

\begin{document}

\mmznext{padding=1in} % this is the default
\begin{figure}
 \centering
 \begin{tikzpicture}
 \node[align=center, text width=0.4\linewidth, draw=blue, thick, pin={
 [overlay, pin edge={overlay}, green!50!black] east:an \texttt{overlay}ed pin}
]{To horizontally center this node (rather than the entire picture),
 we make \TeX{} ignore the pin by \texttt{overlay}ing it.};
 \end{tikzpicture}
 \caption{The default padding}
\end{figure}
\lipsum[66]

\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{memoize}
\usepackage{tikz,lipsum}
\setlength{\textfloatsep}{2ex}

\begin{document}

\mmznext{padding right=1in+4em}
\begin{figure}
 \centering
 \begin{tikzpicture}
 \node[align=center, text width=0.4\linewidth, draw=blue, thick, pin={
 [overlay, pin edge={overlay}, green!50!black] east:an \texttt{overlay}ed pin}
]{To horizontally center this node (rather than the entire picture),
 we make \TeX{} ignore the pin by \texttt{overlay}ing it.};
 \end{tikzpicture}
 \caption{With extra padding (on the right)}
\end{figure}
\lipsum[66]

\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf

2.9 The verbatim mode

Not all code will peacefully submit to memoization. In particular, this is the case for environments
which process the environment body verbatim (or perform some other kind of \catcode magic). A
simple environment of this kind is the standard LATEX verbatim, but let us illustrate the issue with
tcblisting, which typesets a code listing alongside its compiled effect. (This environment is defined
by the listings library of package tcolorbox and was used extensively during the production of this
manual.) To manually memoize a tcblisting environment, we enclose it in a memoize environment
with a verbatim key in the optional argument — without this key, the example below would produce
nothing but errors.21

verbatim-manual.tex
�

Use |\emph| to emphasize text:

\begin{memoize}[verbatim]
\begin{tcblisting}{width=15em}

This is an example
\emph{within} an example.

\end{tcblisting}
\end{memoize}

Don't use |\textit| for emphasis!

extern page

This is an example

\emph{within} an example.

This is an example within
an example.

(The document page is the same as for the
verbatim-auto example below.)

Using verbatim from \mmzset or \mmznext works just as well, and the latter can be very useful with
automemoization, when some environment (say, tcolorbox) generally does not require the verbatim
mode, but a specific occurrence does (say, because it contains some verbatim construction such as
|〈verbatim text〉| of the ltxdoc class).
However, for an environment such as tcblisting, it makes the most sense to declare it verbatim in
general, so that all instances of the environment will be processed in the verbatim mode. This is simple
to do: add verbatim to the auto keylist.

verbatim-auto.tex
�

\mmzset{auto={tcblisting}{
memoize, verbatim

}}
% ...
Use |\emph| to emphasize text:

\begin{tcblisting}{width=15em}
This is an example
\emph{within} an example.
\end{tcblisting}

Don't use |\textit| for emphasis!

(The extern page is the same as for the
verbatim-manual example above.)

document page

Use \emph to emphasize text:

This is an example

\emph{within} an example.

This is an example within
an example.

Don’t use \textit for emphasis!

In fact, you can add any /mmz key to the auto keylist, and the key will be applied to all occurrences of the
command or the environment. For example, adding recompile to the declaration of tcblisting above
would recompile all and only the tcblisting environments; and as an auto declaration only updates
(rather than completely replaces) a previous declaration, you can also say things like auto=\tikz
{recompile} to recompile all TikZ pictures produced by the \tikz command (handy, as you don’t
know how automemoization for \tikz was declared unless you’ve read section 4.5 or looked at the
Memoize’s source code).

21Memoize also offers a partial verbatim mode, triggered by key verb; in this mode, the braces retain their usual
category codes. Also note that the effect of verbatim can be “undone” by key no verbatim.

22

https://ctan.org/pkg/tcolorbox

\documentclass{ltxdoc}

\usepackage{tcolorbox}
\tcbuselibrary{listings}

\usepackage{memoize}

\begin{document}
Use |\emph| to emphasize text:

\begin{memoize}[verbatim]
 \begin{tcblisting}{width=15em}
This is an example
\emph{within} an example.
 \end{tcblisting}
\end{memoize}

Don't use |\textit| for emphasis!
\end{document}

Click here to open the code.

https://ctan.org/pkg/ltxdoc

\documentclass{ltxdoc}
\usepackage{tcolorbox}
\tcbuselibrary{listings}

\usepackage{memoize}
\mmzset{auto={tcblisting}{
 memoize, verbatim
}}

\begin{document}
Use |\emph| to emphasize text:

\begin{tcblisting}{width=15em}
This is an example
\emph{within} an example.
\end{tcblisting}

Don't use |\textit| for emphasis!
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf

2.10 The final version of your document

Bluntly put, you might want to disable Memoize when compiling the final version of your document,
at least if you intend to distribute it in electronic form, for two reasons:

• An externalized picture cannot contain hyperlinks. Any hyperlinks (or hyperlink anchors)
contained in the original picture will silently disappear during the production of the extern.

• When the document contains many externs, the size of the resulting PDF can be several times
the size of the PDF compiled without externalization.

Below, we list several ways of fully disabling Memoize. You’re of course already familar with the first
two ways, but what’s this nomemoize package? The rationale behind this package is that if you want
to be absolutely sure that there is no trace of memoization in your document (for example, see the
disable – enable pitfall in section 2.4), the best thing to do is to not load the package at all. However,
you have all those \mmzsets etc. in your source, so the document won’t compile without \usepackage
{memoize}, right? Right, but wrong. Enter nomemoize , a dummy package which accepts all the
commands that Memoize does, but does nothing. In effect, your document will compile, but you can
be sure that not a single memo or extern was loaded or produced.

\usepackage[disable]{memoize} \usepackage{memoize}
\mmzset{disable}

\usepackage{nomemoize}

There is one issue you might need to resolve manually before package nomemoize works as intended,
though. If you have used any /mmz keys outside \mmzset, you need to list them in \nommzkeys. For
example, if you used per overlay in the manner illustrated in section 2.7, i.e. as /mmz/per overlay
among the TikZ keys, you need to write \nommzkeys{per overlay} into the document preamble.
Another thing you might want to do once you have produced the final version of the document (in fact,
just before you disable Memoize for good) is clean up. As we saw in sections 2.5 and 3.4, Memoize
produces a lot of auxiliary files (memos and externs) and it keeps the old versions around! Once your
document is prepared, you can reduce the clutter (and save some disk space) by deleting memos and
externs belonging to the work-in-progress versions of your document, and keep only those used in the
final version.
You could achieve this by deleting all the memos and externs (if you’re using the memo dir directive,
this amounts to the entire contents of the memo directory) and compiling your document for the final
couple of times. However, there is an easier (but TEX-external) way: on the command line, change into
the directory containing your (main) document and write memoize-clean.pl 〈document name〉.mmz
(substitute .py for .pl to use Python rather than Perl). The script will inspect the contents of the
.mmz record file to see which memos and externs were used in the final compilation, and delete all
other memos and externs belonging to the given document.

Deleting memos and externs is never an irreversible operation, as you can always recreate them,
but it is still wise to be cautious when cleaning up. For one, avoid cleaning up after a compilation
which produced errors; a failed compilation can lead to an incomplete .mmz file, which can in
turn lead to over-deletion. Another bad idea is cleaning up after disabling Memoize for a part of
a document, for the same reason.
All that said, Memoize takes some precautions itself. It will cowardly refuse to perform the
clean-up when the .mmz file is missing the end-of-file marker (\endinput), assuming that this
indicates a fatal error in the previous compilation. It will do the same in case the .mmz file is
absent or empty. The latter is assumed to be a result of a globally disabled memoization, but
note that clean-up will be performed if memoization was disabled using package nomemoize:
that package does not touch the .mmz file, so cleaning up should work as intended.

As the final note, memos and externs (cleaned-up or not) may be copied (along the document source)
to another directory or machine, where they should be picked up by Memoize. There is no need to
copy the .mmz file (assuming that the document PDF contains no extern pages waiting for extraction).

23

https://ctan.org/pkg/pgf

3 Digging deeper

3.1 Good to know

Line- and page-breaking An extern can’t be broken across lines or pages.
Externalization of a chunk of code produces a PDF, which is included into the document at subsequent
compilations as a picture — an unbreakable object (a horizontal box) with fixed width and height.
Therefore, the original code should produce an unbreakable object as well. For example, this means
that you cannot externalize some text and expect TEX to break it across lines or pages on subsequent
compilations. If you try, the compilation will succeed — without an error! — but your externalized
text will end up in a single line, as shown below.

no-linebreaking.tex
�

Here's some externalized text: \mmz{\emph{\lipsum[66]}}
As you can see, the text is not integrated into the paragraph.

extern page

Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget, interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.

document page

Here’s some externalized text: Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget, interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.
As you can see, the text is not integrated into the paragraph.

the expected document page

Here’s some externalized text: Nunc sed pede. Praesent vitae lectus. Praesent
neque justo, vehicula eget, interdum id, facilisis et, nibh. Phasellus at purus et
libero lacinia dictum. Fusce aliquet. Nulla eu ante placerat leo semper dictum.
Mauris metus. Curabitur lobortis. Curabitur sollicitudin hendrerit nunc. Donec
ultrices lacus id ipsum. As you can see, the text is not integrated into the
paragraph.

That said, you can externalize a paragraph or some other vertical mode material using capture=vbox,
but beware that the vertical spacing between the memoized material and its surroundings might change.

remember picture TikZ pictures using this key cannot be externalized.
Memoize will silently refuse to externalize any TikZ picture using remember picture (see §17.13 of
the TikZ & PGF manual). Such pictures interact with the outside world — they either reference
or are referenced by other pictures — and are as such unsuitable for externalization. For example,
while the colored boxes in this manual are generally externalized — out of principle © — the title
page illustration is not, and it cannot be, because of the arrows connecting the various TikZ pictures
composing that illustration. Some packages use the remember picture mechanism under the hood,
and are thus subject to this limitation; one example is package todonotes, but in general, any package
dealing with absolute positions on the page will be limited in this way.
How does Memoize deal with this situation? Well, by cowardly refusing to externalize any code which
uses remember picture or a similar mechanism for dealing with absolute positions. Luckily, any such
mechanism eventually boils down to the TEX primitive \(pdf)savepos, so Memoize hacks — or as we
will say in this manual, advises — this primitive to abort any ongoing memoization. Initializing and
then aborting the memoization takes some time, to be sure, but the overhead is negligible, especially
in the light of the fact that not aborting wreaks real havoc.
Memoize actually provides a user interface for aborting memoization. Memoization can be aborted
either manually, by executing \mmzAbort, or automatically. The latter is a generalization of the
automemoization idea: a command such as \(pdf)savepos can be advised to abort memoization by

24

\documentclass{article}
\documentclass[varwidth]{standalone}
\usepackage{lipsum}
\usepackage{memoize}
\begin{document}
Here's some externalized text: \mmz{\emph{\lipsum[66]}}
As you can see, the text is not integrated into the paragraph.
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/todonotes

auto=\(pdf)savepos{abort}. In Memoize, commands take your advice seriously, so memoization will
be aborted whenever the advised command or environment is encountered.

Indirectly embedded environments Such environments cannot be memoized.
Read this if you got an error message such as Environment "tikzpicture" ended as "foo".
Some environments are defined so that they embed another environment using the idiom shown on the
left: the begin-code of the outer environment opens the inner environment, and the end-code of the
outer environment closes the inner environment. While this is a fine, and common, idiom, it messes
up the memoization of the inner environment. In the example on the right, trying to automemoize a
minipage environment (not recommended at all!) causes trouble with package sectionbox.22,23

\newenvironment{foo}% ... args
{% the begin-code of foo

% ...
\begin{tikzpicture}
% ...

}
{% the end-code of foo

% ...
\end{tikzpicture}
% ...

}

sectionbox.tex
�

\usepackage{sectionbox}
\usepackage{memoize}
\mmzset{auto={minipage}{memoize}}
\begin{document}
\begin{sectionbox}{Boxed section}
Some text in the box.

\end{sectionbox}
\end{document}

! Package collargs Error: Environment
"minipage" ended as "sectionbox".

What are your options in this kind of a situation?
1. The only way to perform any memoization here is to memoize the outer environment — if that

makes sense.24 You can do this either on a case-by-case basis, by enclosing it in the memoize
environment, or automemoize it: auto={〈outer environment〉}{memoize}.

2. But what if memoizing the outer environment is out of the question? Then, the only way to
avoid the error is to prevent the automemoization of the inner environment.
(a) If you are facing a single occurrence of the problem, it is perhaps easiest to use key disable

just before the start of the outer environment.
(b) Otherwise, you can automatically disable memoization for the span of each occurrence of

the outer environment: auto={〈outer environment〉}{nomemoize}.
(c) To deactivate the automemoization of the inner environment for the span of the outer

environment, but otherwise allow for memoization inside the outer environment: auto=
{〈outer environment〉}{noop, deactivate=〈inner environment〉}. Key noop does nothing
but apply the given options (in this case, deactivate=〈inner environment〉) to the advised
command or environment.

22This is a Package collargs Error because Memoize outsources the actual work of collecting the environment body
to the auxiliary package CollArgs, described in section 4.5.2.

23Why does this happen? As mentioned in section 2.5, Memoize keeps track of memos and externs by the MD5
sum of the memoized code. But to compute that sum for an environment, Memoize has to grab the environment body,
meaning it has to collect the body in advance. This presents no problem when \end〈environment name〉 is already
present in the input stream at the time \begin〈environment name〉 is executed, like when you use the environment
normally in your document, or when some macro expands so that it produces both \begin〈environment name〉 and
\end〈environment name〉 simultaneously — so there would be no problem above if \end{minipage} occured in the
beginning code of sectionbox. The idiom presented above is problematic for memoization because at the time TEX
executes \begin{sectionbox}, putting \begin{minipage} into the input stream, \end{sectionbox} is not yet executed
and remains as it is. The input stream therefore contains a pair of \begin{minipage} and \end{sectionbox}. In the
normal, non-memoizing course of events this would not be a problem, because \end{sectionbox} would eventually
expand to \end{minipage}. During memoization, however, this is a problem, because, as we said, Memoize needs to grab
the environment body: upon encountering \begin{minipage}, it looks in the input stream for \end{minipage} — but
there is no \end{minipage} in the input stream, there is only \end{sectionbox}, and this results in the Environment
"minipage" ended as "sectionbox" error.

24This avoids the error because Memoize grabs and memoizes the outer environment, and while it is memoizing it,
further memoization is switched off.

25

https://ctan.org/pkg/sectionbox

\documentclass{article}
\usepackage{babel}

\usepackage{sectionbox}
\usepackage{memoize}
\mmzset{auto={minipage}{memoize}}
\begin{document}
\begin{sectionbox}{Boxed section}
 Some text in the box.
\end{sectionbox}
\end{document}

Click here to open the code.

3.2 Extraction methods and modes

Remember that in Memoize, externalization is a two-step process. First, externs are typeset on separate
pages of the main document, called extern pages. Then, these extern pages are extracted out of the
main document PDF into extern files. The process is illustrated on the title page.
Memoize is flexible in terms of which piece of software is used to perform extern extraction. It ships
with three extraction methods:
perl A Perl script, memoize-extract.pl. This method is the default because it is fast and because

Perl is usually already installed on a system running TEX. However, you will most likely still
need to install two pieces of software that the script depends on: Perl libraries PDF::API2 and
the Path::Class, the installation guidelines can be found in section 1.1.

python A Python script, memoize-extract.py. This method is even faster than the Perl script,
though not by much. Try it out if you have problems installing Perl or the required libraries, or
if the Perl script chokes on your document (see section 6.2 for the list of known issues). Besides
Python (≥ 3.8), you will also need the Python library pdfrw or pdfrw2. For the installation
guidelines, see section 1.1.

tex TEX-based extraction requires no additional software, but it is much slower than the scripts. As
TEX can only produce a single PDF per compilation, an instance of TEX (loading the entire
document PDF) has to be invoked for each extern, and this takes time (although the entire
process is still much faster than the venerable TikZ externalization library).

Memoize is also flexible in terms of how extern extraction is triggered, providing two extraction modes:
internal By default, extern extraction is triggered internally, i.e. by Memoize during the compilation

of the document; more precisely, any externs produced in a compilation are extracted during
the next compilation. To choose an extraction method other than the default Perl script, load
Memoize with the package option extract=〈extraction method〉 .

external Loading Memoize with with package option extract=no instructs Memoize to not trigger
the (internal) extraction. When instructed to use extraction “method” no, Memoize expects
you to trigger the extraction yourself, in any way that is convenient to you: manually from the
command line, or automatically through your editor, a Makefile, etc. — all Memoize cares about
is that the extraction takes place before the next compilation of the document.

Summing up, the extraction mode and method are selected by providing the appropriate value to
package option key extract; the possible values are listed in the table below. Note that this key can
only be used as a package option, or in \mmzset within memoize.cfg. In particular, it is disabled in
the document preamble, because Memoize performs extraction while it is loaded.

extraction method external program Memoize invocation

perl memoize-extract.pl \usepackage{memoize}25

python memoize-extract.py \usepackage[extract=python]{memoize}
tex pdftex \usepackage[extract=tex]{memoize}
no none (external extraction) \usepackage[extract=no]{memoize}

For internal extraction, TEX must be allowed to execute the external program implementing the chosen
extraction method. Both memoize-extract scripts should be listed among restricted shell escape
mode commands in your TEX distribution; their execution should therefore be allowed under the
default, restricted shell escape mode. However, the pdftex program, executed by extraction method
tex, is not listed there, nor should it be. If you are forced to use this fallback method, I suggest
you compile documents loading Memoize under the full shell escape mode, by adding command-line
option -shell-escape (on TEXLive) or --enable-write18 (on MiKTEX) to the invocation of the TEX
program. The answers linked from question “How can I enable shell-escape?” on TEX StackExchange
will tell you how you can ask your editor to do this for you.

25Or \usepackage[extract=perl]{memoize}. This is useful if you have changed the default using memoize.cfg.

26

https://metacpan.org/pod/PDF::API2
https://metacpan.org/pod/Path::Class
https://pypi.org/project/pdfrw/
https://pypi.org/project/pdfrw2/
https://ctan.org/pkg/pgf
https://tex.stackexchange.com/q/598818/16819
https://tex.stackexchange.com

You may use any extraction method to perform external extraction. The simplest option is to use the
Perl or the Python script. Supposing you are doing this manually from the command line, change into
the directory containing your document, which should contain the auxiliary .mmz file produced by
Memoize, and execute:

(a) memoize-extract.pl 〈document name〉.mmz (for the Perl script)
(b) memoize-extract.py 〈document name〉.mmz (for the Python script)

See sections 4.3.1 and 5.5.1 for further details on the .mmz file and the extraction scripts.
Things are a bit more complicated if you want to use the TEX-based extraction method externally,
because an instance of pdftex needs to be invoked for each extern (and these have unwieldy names
and can be many in number), but Memoize can help you here by producing a shell script or a makefile,
executing which will extract all the externs at once. To have Memoize produce a shell script, use
package option record=sh (or record=bat on Windows); package option record=makefile will make
a makefile. By default, these files are named memoize-extract.〈document name〉 plus the .sh, .bat
or .makefile suffix. If neither a shell script nor a makefile works for you, you can also define your
own kind of record file, to be processed by the external tool of your choice (and implementation) in
order to extract the externs; see section 4.3.2 to learn how to do this.

27

3.3 From cross-references to the context

Cross-referencing presents a challenge to externalization, because without special provisions, the
“communication channel” between the \label and the \ref is broken once we start utilizing the extern.
One direction of the issue occurs when a \label within the memoized code is referenced by a \ref on
the outside. Without the (built-in) workaround, the \label command would only be executed when
the extern is being produced, but not on subsequent compilations of the document, when it is merely
included. Memoize addresses this problem by generalizing externalization (which can only produce a
picture, the extern) to memoization (which can additionally produce arbitrary code). When Memoize
is externalizing code which contains a \label, it automatically replicates it into the memo, which is
input into the document on subsequent compilations. In effect, the memo–extern team will continue to
produce the label even when it is utilized rather than compiled. As far as the author is concerned,
\labels in memoized code “just work,” without any observable differences to the situation without
memoization. This is why we will not discuss this direction of the issue here; a reader interested in
how precisely the system works is invited to read section 4.2.
The other direction of the issue occurs when a \ref within the memoized code references \label on
the outside. In this situation, the extern should be recompiled when the value of the label it refers to
changes. Again, Memoize addresses this problem in full generality, by associating with each extern a
context, and recompiling the extern whenever the value of the context changes.26 All that needs to be
done for \ref and friends, specifically, is to advise them to add their reference keys to the context.
As we shall see presently, for the author, the only difference between a non-memoized and a memoized
\ref is that the latter will take one more compilation cycle to “stabilize” the resulting document.
(More precisely, the memoized situation will take one more cycle if the reference is undefined on the
first compilation.) Then, we will show how we can teach Memoize about cross-referencing commands
other than \ref and \pageref. Finally, we will learn about key context, the backbone of the
cross-referencing support in Memoize. (The inner workings of the context are further explained in
section 4.2.2.)
When the memoized code contains a \ref referring to a label given in another part of the document,
the code is recompiled when (and only when) the reference changes. Let us look at the following
example, jumping in at the point where it was already compiled enough times that the resulting PDF
had stabilized into a single (document) page with correct references. (Environment nomemoize disables
memoization of TikZlings, so that their externs don’t disturb us, and we can focus on the \tikz
command, which does get externalized and contains a \ref.)

ref.tex (with stable output after three compilations)
�

Here's some Ti\emph{k}Zlings:
\begin{nomemoize}

\tikzset{x=1.3ex, y=1.3ex, baseline=0.5ex}%
\begin{enumerate*}
\item\label{item:koala} \tikz\koala;
\item\label{item:penguin} \tikz\penguin;
\end{enumerate*}

\end{nomemoize}
Where's the penguin? In \ref{item:penguin}. Yes, in
\tikz[baseline]\node[draw=red,thick,fill=yellow,anchor=base]{\ref{item:penguin}};

document page

Here’s some TikZlings: 1. 2. Where’s the penguin? In 2. Yes, in 2

Let us add an owl in front of the penguin. In the next compilation, neither the “normal” nor the
memoized reference is yet updated, as expected — in this compilation, the new value of the penguin
label only makes it into the .aux file.

26The dependency of an extern upon prior definitions and such can also be addressed in a more ad hoc manner, by
recompiling manually; we have already touched upon this subject in section 2.4, and will revisit it in section 3.4.

28

https://ctan.org/pkg/tikzlings

\documentclass{article}

\usepackage{memoize}
\usepackage[inline]{enumitem}
\usepackage{tikzlings}

\begin{document}
Here's some Ti\emph{k}Zlings:
\begin{nomemoize}
 \tikzset{x=1.3ex, y=1.3ex, baseline=0.5ex}%
 \begin{enumerate*}
 %\item\label{item:owl} \tikz\owl; % uncomment for 4th compilation
 \item\label{item:koala} \tikz\koala;
 \item\label{item:penguin} \tikz\penguin;
 \end{enumerate*}
\end{nomemoize}
Where's the penguin? In \ref{item:penguin}. Yes, in
\tikz[baseline]\node[draw=red,thick,fill=yellow,anchor=base]{\ref{item:penguin}};
\end{document}

Click here to open the code.

ref.tex (after the first compilation with the added owl)
\begin{enumerate*}
\item\label{item:owl} \tikz\owl;
\item\label{item:koala} \tikz\koala;
\item\label{item:penguin} \tikz\penguin;
\end{enumerate*}

document page

Here’s some TikZlings: 1. 2. 3. Where’s the penguin? In 2. Yes, in 2

During the following compilation, the \refs pick up the new value of the penguin label, and the \ref
inside the automemoized \tikz command forces recompilation of the extern (how this is done will be
explained later).

ref.tex (after the second compilation with the added owl)

extern page

3

document page

Here’s some TikZlings: 1. 2. 3. Where’s the penguin? In 3. Yes, in 3

In the next compilation, the resulting PDF is finally stabilized, as the updated extern is (extracted
and) included into the document.

ref.tex (after the third compilation with the added owl)
document page

Here’s some TikZlings: 1. 2. 3. Where’s the penguin? In 3. Yes, in 3

The message to take home? When some memoized code contains a reference and that reference changes,
it will take three compilation cycles (so, one more cycle than without memoization) for the resulting
document to “stabilize.”
Out of the box, Memoize supports the standard LATEX cross-referencing commands \ref and \pageref.
To automatically recompile code containing some other cross-referencing command, like \vref of
package varioref, we use the advising framework implemented by package Advice. This framework is
a generalization of automemoization: we use the familiar auto, but with advice offered by ref rather
than memoize.

vref.tex
�

\mmzset{auto=\vref{ref}}

Key ref only works for commands which operate on a single reference key. However, that single key
(which must be enclosed in braces) may be preceded by optional argumen(s) of any kind. Extensions
to \ref, e.g. the hyperref’s variant, which accepts an optional *, work out of the box. Furthermore,
Memoize offers support for cross-referencing commands which work on multireferences and reference
ranges, such as cleveref’s \cref and \crefrange. Those commands should be advised by auto keys
multiref and refrange, respectively.
We have jumped into first example of this section with the assumption that it had already been
compiled several times, allowing the resulting PDF to stabilize. Let us now take a look at what happens
at the very first, fresh compilation of our original example (the one without the owl). (Removing the
.aux file before compiling the example again will start afresh.) The curious thing is that we don’t
get the extern page containing ?? . This is so because by default, Memoize aborts a memoization
containing an undefined reference.

29

https://ctan.org/pkg/varioref

\documentclass{article}

\usepackage{varioref}
\usepackage{memoize}

\mmzset{auto=\vref{ref}}

\begin{document}

\section{Introduction}
\label{sec:intro}

We will conclude the discussion in section\mmz{\vref{sec:conclusion}}.

%% \newpage
%% \section{A new section}
%% After uncommenting this, the reference above will (eventually) update.

\section{Conclusion}
\label{sec:conclusion}

\end{document}

Click here to open the code.

https://ctan.org/pkg/hyperref
https://ctan.org/pkg/cleveref

ref.tex (after the fresh compilation of the original example)
document page

Here’s some TikZlings: 1. 2. Where’s the penguin? In ??. Yes, in ??

Now sometimes you might want to produce an extern even if it contains an undefined reference — for
example, you might intend to write the code containing the \label much later but enjoy the speed-up
offered by Memoize until then. In that case, apply the auto key force ref to \ref.

ref.tex (after the fresh compilation with force ref)
�

\mmzset{auto=\ref{force ref}}

extern page

??

document page

Here’s some TikZlings: 1. 2. Where’s the penguin? In ??. Yes, in ??

However, note that when you use force ref, LATEX will not complain about the undefined reference
once the extern containing it is included (unless that reference also occurs in some non-memoized piece
of code). Using force ref is therefore a tiny bit dangerous, and this is why ref, with the abortion
mechanism, is the default handler for \ref and \pageref.
As already noted in the previous section, \ref works by appending the cross-reference to the context,
the change of which triggers recompilation. Memoize initializes the context to contain the four paddings

— as a result, an extern recompiles if we change the padding — but we can append stuff to the context
by ourselves, as well. Below, we use key context to append the font size (we’ll talk about the value
given to this key a bit later); as a result, the picture is recompiled whenever the font size changes.
Below, we change the font size using command \small; changing the default size with a class option
such as 12pt works as well.

fontsize.tex (the first version)
�

\mmzset{context={fsize={\csname f@size\endcsname}}}
\begin{tikzpicture}

\node[text width=8em, align=center, fill=yellow]
{This picture is sensitive to the current font size.};

\end{tikzpicture}

extern page

This picture is
sensitive to the
current font size.

fontsize.tex (the second version)
\mmzset{context={fsize={\csname f@size\endcsname}}}
\small
\begin{tikzpicture}

% ...
\end{tikzpicture}

extern page

This picture is
sensitive to the
current font size.

How does this work? Key context appends the given tokens to the context expression. When creating
an extern or trying to use it, Memoize (fully) expands this expression and computes the MD5 sum of
the expansion. This context MD5 sum then serves as a part of the extern’s filename (see sections 2.5
and 4.2). In effect, Memoize will only find (and utilize) the extern if the context MD5 sum computed
during (attempted) utilization matches the one computed during memoization.
As revealed by looking at the LATEX source code, LATEX holds the current font size in macro \f@size,
and above, we have effectively added the contents of this macro to the context. Now, why didn’t we
simply write context=\f@size? First, we used \csname ... \endcsname because we were under the
normal LATEX catcode regime, where @ cannot be a part of the command name. Of course, we could
have temporarily changed the catcode of @ using \makeatletter and \makeatother, but I would
advise against that, because the approach does not work in general: it fails when key context is used
within memoized code (we will explain why in section 4.2). Another reason why I recommend the
\csname ... \endcsname approach is that it does not result in an error when the control sequence
is not defined (\csname ... \endcsname will expand to \relax then); this behaviour is handy for

30

\documentclass{article}

\usepackage{memoize}
\mmzset{auto=\ref{force ref}}
\usepackage[inline]{enumitem}
\usepackage{tikzlings}

\begin{document}
Here's some Ti\emph{k}Zlings:
\begin{nomemoize}
 \tikzset{x=1.3ex, y=1.3ex, baseline=0.5ex}%
 \begin{enumerate*}
 %\item\label{item:owl} \tikz\owl; % uncomment for 4th compilation
 \item\label{item:koala} \tikz\koala;
 \item\label{item:penguin} \tikz\penguin;
 \end{enumerate*}
\end{nomemoize}
Where's the penguin? In \ref{item:penguin}. Yes, in
\tikz[baseline]\node[draw=red,thick,fill=yellow,anchor=base]{\ref{item:penguin}};
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{tikz}
\usepackage{memoize}

\mmzset{context={fsize={\csname f@size\endcsname}}}

\begin{document}

%\small % uncomment for v2
\begin{tikzpicture}
 \node[text width=8em, align=center, fill=yellow]
 {This picture is sensitive to the current font size.};
\end{tikzpicture}

\end{document}

Click here to open the code.

undefined cross-references, for example. Second, why did I write fsize={...} around the control
sequence? Well, because I’m being paranoid, really. Writing context={\csname f@size\endcsname}
would work just as well, but I like to explicitly “announce” the value to prevent any possibility of a
conflict with an alternative context. Imagine that we don’t use the “announcements” and we decide to
add some other dimension instead of the font size to the context. Now if that dimension happened to
have the same value as the font size, Memoize would incorrectly pick up the “font size extern” instead
of producing a new one.
It bears emphasizing that whatever you add to the context expression must be fully expandable, and
also not merely declared as robust. So writing context=\ref{〈key〉}, for example, would be unwise,
since it would not work as intended when package hyperref is loaded. (This package declares \ref as
robust, so it won’t expand to the cross-reference value.) You have to look up where the cross-references
are stored internally; the cross-reference for 〈key〉 turns out to be stored in the internal control sequence
\r@〈key〉, so it is \csname r@〈key〉\endcsname that the ref handler actually appends to the context.
The padding and font-size contexts are useful quite generally. However, the context can be pretty
command-specific, as well. Consider the skak package used for typesetting chess games. The board is
drawn using command \showboard, but this command has no arguments, because it draws the state
of the board that is reached by the moves given by command \mainline. Memoizing \showboard
as such will therefore yield the wrong result — all the boards will be one and the same board! The
solution is to provide the correct context: we dig into the skak sources and realize that the current
board is stored in macro \csname chessgame.skak.mainline\endcsname.

skak.tex
�

\usepackage{skak}
\mmzset{

auto=\showboard{
memoize, args={},
context={fen={\csname

chessgame.skak.mainline\endcsname}},
},

}
\newgame\showboard
\mainline{1. e4 e5}\par\showboard

extern page

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

extern page

8rmblkans
7opopZpop
60Z0Z0Z0Z
5Z0Z0o0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

If you remove context={...} from the code above, you will end up with a document where the final
board drawn takes place of all the boards. This is so because in that case, all externs are written into
the same file, so the final extern overwrites the previous ones, but note that you will only observe this
after the second compilation, when the externs are actually used.

31

https://ctan.org/pkg/hyperref
https://ctan.org/pkg/skak
https://ctan.org/pkg/skak

\documentclass{article}
\usepackage{memoize}
\usepackage{skak}
\mmzset{
 auto=\showboard{
 memoize, args={},
 context={fen={\csname chessgame.skak.mainline\endcsname}},
 },
}

\begin{document}
\newgame\showboard

\mainline{1. e4 e5}\par\showboard

\end{document}

Click here to open the code.

3.4 More on redefinitions and stale externs

In this subsection, we elaborate on an issue touched upon at the beginning of section 2.4: what happens
if the memoized code depends on some macro or style which gets redefined? The answer was “nothing,”
and one solution was to recompile the code. Let us take the example from that section a bit further.
We will propose no new solution or workaround, but deepen our understanding of the issue.

Working on redefinitions.tex

I like red. My emphasized nodes will have red background.
1

�
\tikzset{emph/.style={fill=red, text=blue}}
\tikz\node[emph]{an emphasized node}; an emphasized node

Hmm, this particular node is really important, let me put the text in italics as well!
2

\tikz\node[emph, font=\itshape]{an emphasized node}; an emphasized node

You know what? Perhaps yellow background would work better — in general.
3

\tikzset{emph/.style={fill=yellow, text=blue}}
\tikz\node[emph, font=\itshape]{an emphasized node}; an emphasized node

How come my node is still red?! Oh yes, I changed the style, so I have to recompile the extern!
4

\mmznext{recompile} % only for one compilation!
\tikz\node[emph, font=\itshape]{an emphasized node}; an emphasized node

Ahh, yellow background, that’s much better. But you know what, this double emphasis won’t
do after all, let me go back to the upright shape.
5

\tikz\node[emph]{an emphasized node}; an emphasized node

Red???!???!? Ok, I know that recompiling will help, but what happened here?
6

\mmznext{recompile} % only for one compilation!
\tikz\node[emph]{an emphasized node}; an emphasized node

What happened is that the externs from steps 1 and 5 share the very same code. In step 1, this code
was compiled when the red emph style was in effect, and that extern lingered and was eventually picked
up again in step 5, Memoize having no idea that it is including an extern produced with the obsolete
definition of the style.
There are two points to this story. First (and forgetting for a moment about the context, which we
started discussing in section 3.3), Memoize identifies externs (and memos) by the code that produced
them — or more precisely, by the MD5 sum of the code, as each piece of code has a unique (well,
unique enough) MD5 sum. Each extern is saved in a file whose name contains this MD5 sum; see
section 2.5 for illustration. Generally, this is a very useful feature. You can move your picture to
another location in the document, insert some other (externalized) picture in front of it, and so on, all
without triggering recompilation of the extern(s). (None of this is possible with TikZ’s externalization
library, which identifies the externs by the order in which they appear in the document.)
The downside of the MD5 sum approach is the potential pitfall illustrated above, and the downside
comes about because of the second point of the story: Memoize does not attempt to delete the “old”
externs. (However, as described in section 2.5, stale memos and externs can be easily removed using
the memoize-clean.pl script.) That would be not only dangerous (as any deletion inherently is) but
also potentially wasteful: what if you have only temporarily removed some code, or compiled only a
portion of the document — you surely wouldn’t want your hard-won externs to disappear in such a
situation!

32

\documentclass{article}

\usepackage{tikz}
\usepackage{memoize}

\begin{document}

% v1:
\tikzset{emph/.style={fill=red, text=blue}}
\tikz\node[emph]{an emphasized node};

% v2:
%\tikzset{emph/.style={fill=red, text=blue}}
%\tikz\node[emph, font=\itshape]{an emphasized node};

% v3:
%\tikzset{emph/.style={fill=yellow, text=blue}}
%\tikz\node[emph, font=\itshape]{an emphasized node};

% v4:
%\mmznext{recompile} % uncomment only for one compilation!
%\tikzset{emph/.style={fill=yellow, text=blue}}
%\tikz\node[emph, font=\itshape]{an emphasized node};

% v5:
%\tikzset{emph/.style={fill=yellow, text=blue}}
%\tikz\node[emph]{an emphasized node};

% v6:
%\tikzset{emph/.style={fill=yellow, text=blue}}
%\mmznext{recompile} % uncomment only for one compilation!
%\tikz\node[emph]{an emphasized node};

\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf

The pitfall described above applies to any command which depends on parameters which can be set prior
to the invocation of the command, like TikZ pictures, which depend on the settings given in \tikzset.
After customizing the settings, you will have to recompile the externs: \mmznext{recompile} is useful
when you only have to recompile a single extern; use \mmzset{recompile}, or the package option
recompile, to recompile all externs in the document; and there is also the middle road: if you have
changed only Forest’s settings, you can write auto={forest}{recompile} to recompile all and only
the Forest trees.
Above, we have seen the “same code, same extern” issue manifested “through time,” i.e. Memoize was
(incorrectly) reusing externs produced in previous compilations, but the issue can also manifest “through
space.” This can happen if the same code appears twice in the same document — but, crucially, with
some parameters which it depends on changed from one occurrence to the next. Observe what happens
in the following example, where the settings for \progressbar are changed by \progressbarchange.
After the first compilation, everything looks fine. But as both extern pages were produced by the
same code, they will be stored into the same file, the second one overwriting the first one. The second
compilation pulls in the externs — or rather, the single extern — resulting in the document containing
the second progressbar in the place of the first one as well.

progressbar.tex
�

\usepackage[auto={progressbar}{memoize}]{memoize}
% ...
\progressbar{0.85}
\progressbarchange{roundnessr=0.5, filledcolor=red!30}
\progressbar{0.85}

After 1st compilation

extern page

extern page

document page

After extern extraction

the extern file

After 2nd compilation

document page

The same “extern duplication” can arise due to how a particular command is implemented. Say we
deactivate automemoization of Forest trees (deactivate=forest), but keep on automemoizing TikZ
pictures. Forest uses tikzpicture under the hood (a lot); in particular, the tree itself is typeset as a
tikzpicture environment. But the code that typesets it is the same for all trees, regardless of their
content (the actual content of the tree is hidden in various macros and boxes, rather than “pasted”
into the tikzpicture). Consequently, the final tree of the document will overwrite all other trees in
the document, just as the second (and thus final) progress bar overwrote the first one above.27 Ouch!
Generally speaking, this final sort of extern duplication issue can arise whenever we have an “outer”
command that we don’t want to (auto)memoize which uses an “inner” command that we do want to
automemoize. The solution is to use the auto key nomemoize on the outer command; remember that
this key disables memoization for the space of the command or environment. For example, the correct
way to “deactivate” automemoization of forest environments (but keep automemoizing TikZ pictures)
is auto={forest}{nomemoize}.

27That is assuming that TEX doesn’t simply spew a bunch of errors. This can happen as well. In the interest of full
disclosure, compiling a Forest tree in the situation described above would actually also produce — but only in the first
compilation — a number of small empty extern pages, one for each node of the tree. A promise: Forest will soon fully
support Memoize and (among other things) avoid this pitfall. But the principle will remain.

33

https://ctan.org/pkg/pgf

\documentclass{article}
\usepackage{progressbar}
\usepackage[auto={progressbar}{memoize}]{memoize}
\begin{document}
\progressbar{0.85}
\progressbarchange{roundnessr=0.5, filledcolor=red!30}
\progressbar{0.85}
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

3.5 Supporting Memoize in your package

3.5.1 Loading Memoize?

So you want to support Memoize in your package? That’s great!
What form precisely this support will take of course depends on your package. For some commands,
a simple auto declaration will suffice; for other commands, you might need to write a dedicated
memoization driver, as explained in section 4.4. However, one thing is clear: you don’t want to require
Memoize’s presence by \RequirePackage{memoize} in your package. That would trigger memoization,
but triggering memoization should be left at the sole discretion of the author. The question is, if you’re
not allowed to load Memoize, how can you even issue the auto declaration?
Well, it’s not that you really want to memoize anything; you want to make the commands of your
package memoizable. So: \RequirePackage{ memoizable } — and note that in ‘memoizable’, the final
‘e’ of ‘memoize’ is dropped, apparently this is the correct way to spell it.
Loading memoizable does nothing if Memoize is already loaded, and behaves like package nomemoize
otherwise — remember from section 2.10 that nomemoize is a dummy package which accepts all the
commands that Memoize does, but does nothing.
I have decided to require that Memoize must be loaded before any package that supports it. Allowing
for an arbitrary loading order would complicate the implementation (and possibly even turn out to
be problematic), and furthermore, Memoize likes to be loaded early anyaway, because it needs to be
loaded before the document PDF is opened if it is to perform the embedded extern extraction. I don’t
think the ordering requirement will cause any problems — let me know if it does! — but perhaps it
is wise to inform the author about it in the documentation of your package (I did so at the end of
section 2.3). Anyway, I have enforced the requirement by raising an error and refusing to load the
package in case Memoize detects memoizable to be loaded.
Note that the loading order requirement implies that you can use \@ifpackageloaded{memoize} to
specifically react to the presence Memoize, if necessary.

3.5.2 Memoizable design

Many commands and environments can be submitted to externalization with a single-line auto
declaration, as illustrated in section 2.3, perhaps requiring an addition to the context (section 3.3), or
some pre- or post-memoization code (section 2.7). In some situations, however, these simple approaches
won’t work. Most often, this will happen when the extern must be integrated into the document in
some special way. For example, a command might internally create floating material, or surround the
core typeset material with some stretchable space.28 None of these behaviours can be replicated by
merely including the extern; with respect to the stretchable space, remember that an extern, being a
picture, has fixed size, so if our extra space ended up in the extern, it would lose the stretchability.
The key to successful memoization of problematic commands is their design. In a nutshell, the idea is
to break up the command’s definition into two parts, the outer command and the inner command, and
only submit the inner command to automemoization. We will illustrate this with a simple environment
— poormansbox — which produces a potentially framed box of the given width, and surrounds this
box with some configurable material — by default, this material will be stretchable vertical space, and
this will be the source of our memoization problem. (In terms of user experience, the solution in this
section will leave something to be desired, but we will revisit the example in section 4.4.4 and make
things right.)
Let us first take a look at a document using our to-be-developed box environment. The poormansbox
environment takes one optional argument, a keylist of options, which can also be set with the \pmbset
command. This being a poor man’s box, it doesn’t recognize many options. One can set the width of
the box, or request that it occurs in a frame, and the surrounding material can be configured using

28Commands and environments of package tcolorbox exhibit both these issues (see tcolorbox options float, before
and after), and were in fact the inspiration for several technical details of Memoize.

34

https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tcolorbox

keys before and after. As we will see later in the listing of the package, the box is \linewidth wide
by default, has no frame, and is surrounded by vertical glue \vskip 2ex plus 1ex minus 1ex (2ex
of natural vertical space which may both stretch and shrink for 1ex); furthermore, the default value
of before contains \centering to center the box horizontally (centering is of course only observable
when we change the width of the box).

poormansbox.tex
�

\parskip 1ex plus 0.5ex minus 0.5ex

\begin{document}
\lipsum[3]

\begin{poormansbox}[width=.8\linewidth]
\pmbset{width=\linewidth}
\lipsum[101]
\begin{poormansbox}[frame]
\footnotesize\lipsum[66]

\end{poormansbox}
\lipsum[75]

\end{poormansbox}

\lipsum[4]

\begin{poormansbox}[
width=.6\linewidth, frame,
before=\noindent\llap{---},
after=---

]
\lipsum[65]

\end{poormansbox}Framed.

\lipsum[144]
\end{document}

document page

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tinci-
dunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentes-
que ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed
diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ip-
sum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat
magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque
tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus.
Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam
vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Nam quis enim. Quisque ornare dui a tortor. Fusce consequat lacus
pellentesque metus. Duis euismod. Duis non quam. Maecenas vitae
dolor in ipsum auctor vehicula. Vivamus nec nibh eget wisi varius
pulvinar. Cras a lacus. Etiam et massa. Donec in nisl sit amet dui
imperdiet vestibulum. Duis porttitor nibh id eros.

Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget,
interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce
aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur
lobortis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus id ipsum.

Pellentesque interdum sapien sed nulla. Proin tincidunt. Aliquam
volutpat est vel massa. Sed dolor lacus, imperdiet non, ornare non,
commodo eu, neque. Integer pretium semper justo. Proin risus.
Nullam id quam. Nam neque. Duis vitae wisi ullamcorper diam
congue ultricies. Quisque ligula. Mauris vehicula.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus
tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis.
Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida
sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae
tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta
vehicula.

—

Etiam vel ipsum. Morbi facilisis vestibulum nisl.
Praesent cursus laoreet felis. Integer adipiscing
pretium orci. Nulla facilisi. Quisque posuere bi-
bendum purus. Nulla quam mauris, cursus eget,
convallis ac, molestie non, enim. Aliquam congue.
Quisque sagittis nonummy sapien. Proin molestie
sem vitae urna. Maecenas lorem. Vivamus viverra
consequat enim.

—Framed.

Integer viverra, felis ac tempus cursus, neque risus interdum turpis, eget vene-
natis tellus velit in neque. Nulla feugiat luctus tellus. Nam pulvinar lacus id leo.
Vestibulum at ligula. Duis laoreet tincidunt enim. Suspendisse at nisl molestie est
laoreet laoreet. Suspendisse euismod metus vel nisl. Aenean ullamcorper imperdiet
massa. Aliquam nibh. Donec quis erat. Nunc sodales auctor ante.

You might want to play with the example to see that the surrounding vertical space is indeed stretchable.
The example is set up so that the surrounding space is shrunk a bit to fit all the material onto one
page. But if you remove the final \lipsum[144], the natural amount of all vertical space can be
accommodated on the page, so you should observe an increase of vertical spacing.
You might have noticed that the example contains nested poormansboxes: the second box (the one
which contains \lipsum[66]) is nested within the first one (between \lipsum[101] and \lipsum[75]).
This is intentional: when we will revisit the poormansbox example in section 4.4.4, the implementation
will have to pay special attention to nesting (which presents no problem to the implementation in this
section).
As you can see in the package listing below (poormansbox.sty), the implementation of our environment
is straightforward. We first define the configuration command \pmbset and the option keys (we’re
using pgfkeys), and set the option defaults. Then, we move on to the environment itself: we apply
the given options, execute the pre-code, typeset the box (which is a minipage of the given width,
potentially wrapped in a \fbox), and execute the post-code.
Now let’s make our poormansbox externalizable (poormansbox-memoizable.sty). As announced
above, the idea is to split the definition of the environment into the outer part (below, the user-level
environment poormansbox), which (applies the options and) executes the pre- and the post-code, and
the inner part (below, the macro \@poormansbox), which typesets the actual box. If we then then
submit \@poormansbox, rather than poormansbox, to automemoization, the outer part will be executed
at every compilation (giving us stretchable space if we request it), while the inner command will be
executed (and memoized) at the first compilation, and substituted for the extern (the fixed-size box)
at subsequent compilations.29

29You might have wondered why our definition of the poormansbox environment grabs the body into an argument (+b,

35

\documentclass{article}
\usepackage[a5paper,margin=1cm,noheadfoot]{geometry}
\pagestyle{empty}
\usepackage{lipsum}

% This document works with all the poormanbox packages developed in the
% manual. Uncomment the one one you want to test. Also feel free to remove the
% line loading Memoize, all poormanbox packages should work without it, even if
% they support it.

\usepackage{memoize}

\usepackage{poormansbox}
% \usepackage{poormansbox-memoizable}
% \usepackage{poormansbox-driver}

\parskip 1ex plus 0.5ex minus 0.5ex

\begin{document}
\lipsum[3]

\begin{poormansbox}[width=.8\linewidth]
 \pmbset{width=\linewidth}
 \lipsum[101]
 \begin{poormansbox}[frame]
 \footnotesize\lipsum[66]
 \end{poormansbox}
 \lipsum[75]
\end{poormansbox}

\lipsum[4]

\begin{poormansbox}[
 width=.6\linewidth, frame,
 before=\noindent\llap{---},
 after=---
]
 \lipsum[65]
\end{poormansbox}Framed.

\lipsum[144]
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgfkeys

poormansbox.sty
�

\ProvidesPackage{poormansbox}
\RequirePackage{pgfkeys}

\newcommand\pmbset[1]{\pgfqkeys{/pmb}{#1}\ignorespaces}
\newif\ifpmb@frame
\pmbset{

frame/.is if=pmb@frame,
width/.store in=\pmb@width, width=\linewidth,
before/.store in=\pmb@before, before=\vskip 2ex plus 1ex minus 1ex \centering,
after/.store in=\pmb@after, after=\vskip 2ex plus 1ex minus 1ex,

}

\NewDocumentEnvironment{poormansbox}{
o % the options
+b % the environment body

}{%
\pmbset{#1}% apply the options
\pmb@before % execute the pre-code
\ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi{% add the frame, maybe
\begin{minipage}{\pmb@width}% create the minipage
#2

\end{minipage}%
}%
\pmb@after % execute the post-code

}{}

Looking at the definition of the internal \@poormansbox command, it might strike you as weird that
we have equipped this command with an optional argument (#1) it never uses. However, this optional
argument is crucial for memoization. It will become a part of the memoized code (note args=om in
the auto declaration) and thereby ensure that Memoize will produce separate externs for invocations
of \@poormansbox with the same environment body but different options; or in other words, it will
ensure that changing the options recompiles the extern.30,31

The downside to automemoizing an internal command is that this might be counter-intuitive for
the author. For example, to deactivate automemoization of poormansbox, the author will have to
write \mmzset{deactivate=\@poormansbox} (note the \@), but they will have no clue they have
to do this unless they have carefully read poormansbox’s documentation. Even worse, the above

yielding #2), necessitating the use of \NewDocumentEnvironment over the venerable \newenvironment. One reason was
that having the environment body as an argument simplifies wrapping the \fbox around the minipage, but there is a more
important reason. If we did not grab the environment body, we would have to implement the internal part of the definition
as an environment (@poormansbox) as well, and embed it into the user-level environment using the following idiom:
\newenvironment{poormansbox}[2][]{...\begin{@poormansbox}}{\end{@poormansbox}...}. However, as illustrated
in section 3.1, automemoizing an environment indirectly embedded in such a way produces an error, because Memoize is
prevented from collecting the environment body.

30Of course, this only holds for options given in the optional arguments; if the user changes an option value using a
prior \pmbset (and that option does not occur in the optional argument), Memoize won’t detect the change. But the
end-user knows about this issue, as it was addressed in sections 2.4 and 3.4, and she is also aware of two workarounds:
manual recompilation, or setting the context (section 3.3).

While we’re on the subject of the context, note that it is also possible to deploy context to trigger recompilation of the inner
command upon change of parameters it depends on. We could simply omit the optional argument of \@poormansbox and
add context={width=\pmb@width,frame=\ifpmb@frame true\else false\fi}, to the auto declaration. The advantage
of such an approach is that Memoize reacts to the change of parameters regardless of whether they are set using the
optional argument or \pmbset. However, the approach is unfeasible for commands depending on many parameters: can
you imagine listing all the TikZ options in the context? Not to mention that a particular picture usually only depends on
a small subset of these options — by and large, TikZ externs would get recompiled too often if the context contained all
TikZ options.

31I have toyed with the idea of splitting (using pgfkeys key filtering) the given options into outer options, relevant for
the outer command, and inner options, relevant for the inner command, and only passing the inner options to the inner
command. The thought was that would (i) avoid recompiling the extern when only outer options change, as these options
don’t affect the inner command, and (ii) avoid applying the inner options when utilizing the extern, as these options
don’t affect the outer command. However, it then hit me that the end-user might define a style which incorporated both
inner and outer options — I know I do this with my tcolorboxes.

36

\ProvidesPackage{poormansbox}
\RequirePackage{pgfkeys}

\newcommand\pmbset[1]{\pgfqkeys{/pmb}{#1}\ignorespaces}
\newif\ifpmb@frame
\pmbset{
 frame/.is if=pmb@frame,
 width/.store in=\pmb@width, width=\linewidth,
 before/.store in=\pmb@before, before=\vskip 2ex plus 1ex minus 1ex \centering,
 after/.store in=\pmb@after, after=\vskip 2ex plus 1ex minus 1ex,
}

\NewDocumentEnvironment{poormansbox}{
 o % the options
 +b % the environment body
}{%
 \pmbset{#1}% apply the options
 \pmb@before % execute the pre-code
 \ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi{% add the frame, maybe
 \begin{minipage}{\pmb@width}% create the minipage
 #2
 \end{minipage}%
 }%
 \pmb@after % execute the post-code
}{}

Click here to open the code.

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgfkeys

poormansbox-memoizable.sty
�

\NewDocumentEnvironment{poormansbox}{ o +b }{% the outer part of the definition
\pmbset{#1}%
\pmb@before
\@poormansbox[#1]{#2}%
\pmb@after

}{}

\newcommand\@poormansbox[2][]{% the inner part of the definition
\ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi{%
\begin{minipage}{\pmb@width}%
#2%

\end{minipage}%
}%

}

\mmzset{
auto=\@poormansbox{% submit the *inner* command to automemoization
args=om, memoize,

},
}

\mmzset command will not work unless surrounded by \makeatletter and \makeatother, as it refers
to an internal control sequence containing @. Well, Memoize offers auto csname, activate csname
and deactivate csname, so that @ catagory code manipulations can be omitted by writing \mmzset
{deactivate csname=@poormansbox}, but still.
Another downside could occur when you use the same (automemoized) internal command in service of
several user interface commands. For the sake of illustration, assume we have also defined an UI-macro
\pmb which again relies on \@poormansbox. How is the author to deactivate automemoization of
\pmb but leave the poormansbox environment intact? This is how: \mmzset{auto=\pmb{args=m,
nomemoize}}. Again, counter-intuitive; the author expects \mmzset{deactivate=\pmb} to work.
One other consequence of this approach is that the code included in the c-memo (if include source
in cmemo is in effect) will not faithfully reflect the source: as shown in the c-memo listing below, it
will contain \@poormansbox{...} instead of \begin{poormansbox}...\end{poormansbox} — even
if this might actually count as an advantage, as the discrepancy will at least inform the author who
refuses to read the fine material accompanying our poormansbox that something funky is going on.

the c-memo of the last poormansbox environment
\mmzMemo
\global \mmzContextExtra {}%
%
\mmzSource
\@poormansbox [width=.6\linewidth , frame, before=\noindent \llap {---}, after=---]

{\lipsum [65]}

In a nutshell, automemoizing an internal command might be counter-intuitive for the author. But the
core idea — to support memoization of a resistant command by splitting its definition into the outer
and the inner command — is sound, and we will elaborate on this idea in section 4.4.4, where we will
revisit our poormansbox example and develop a variant of this environment which is both memoizable
and user-friendly.

37

\ProvidesPackage{poormansbox-memoizable}
\RequirePackage{pgfkeys}

\newcommand\pmbset[1]{\pgfqkeys{/pmb}{#1}\ignorespaces}
\newif\ifpmb@frame
\pmbset{
 frame/.is if=pmb@frame,
 width/.store in=\pmb@width, width=\linewidth,
 before/.store in=\pmb@before, before=\vskip 2ex plus 1ex minus 1ex \centering,
 after/.store in=\pmb@after, after=\vskip 2ex plus 1ex minus 1ex,
}

\NewDocumentEnvironment{poormansbox}{ o +b }{% the outer part of the definition
 \pmbset{#1}%
 \pmb@before
 \@poormansbox[#1]{#2}%
 \pmb@after
}{}

\newcommand\@poormansbox[2][]{% the inner part of the definition
 \ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi{%
 \begin{minipage}{\pmb@width}%
 #2%
 \end{minipage}%
 }%
}

\mmzset{
 auto=\@poormansbox{% submit the *inner* command to automemoization
 args=om, memoize,
 },
}

Click here to open the code.

4 Under the hood

This chapter is written for three audiences: a curious user who wants to know how Memoize does what
it does; a package writer who wants to support Memoize in a tricky situation; and myself, lest I forget
why I made the design decisions that I made.

4.1 The entry point

From the author’s perspective, the functionality of this package is entered either through the manual
memoization commands (macro \mmz and environment memoize), or via automemoization. And
while that is correct, those user interface entry points merely determine what code is submitted to
memoization, and set any options specific to the upcoming memoization. The real fun starts with
command \Memoize , which is eventually executed by both manual and automatic memoization.
Not every call to \Memoize results in memoization. Calling this macro has three possible outcomes. It
can result in memoization, which produces the memos and externs; in utilization of the result of an
earlier memoization (which boils down to inputting the memos); or in regular compilation, whereby the
code is compiled (almost)32 as if Memoize was not there. Which outcome obtains depends on several
factors. The decision logic is depicted below, and note that you can trace the action on the terminal.

Is Memoize enabled?
(\ifmemoize)

Are we currently undergoing memoization?
(\ifmemoizing)

regular compilation Is the
recompile

mode in effect?

memoization Do the relevant
memos and externs exist?

utilization
(of the cc-memo)

Is the
readonly

mode in effect?

regular compilation memoization

regular compilation

yes

yes no

yes no

yes no

yes no

no

As the memoization options were already set by the user interface entry points, you might expect,
quite reasonably, that \Memoize takes a single argument, the code submitted to memoization. After
all, what more does it need? Clearly, executing this code is what produces the typeset material, and to
detect whether the code has “changed” (in order to recompile the memos and externs), we compute the
MD5 sum of this very code, don’t we? Well, the reality is a bit more complicated. When it comes to

32This is absolutely true for memoized code which is “contained” in the sense of not peeking into the input stream
following the memoized code. In general, code which fails to satisfy this containment requirement is most likely simply
not memoizable; but there are borderline cases. For example, \ignorespaces at the end of some code will have the
expected effect in the absence of Memoize, but no effect when executed either during memoization or regular compilation
under Memoize, simply because it will hit some code belonging to Memoize rather than the continuation of the document.
Memoize offers the ignore spaces provision to work around this specific problem.

38

automemoized commands, the code which the MD5 sum is computed off of (and which is displayed in
the c-memo if include source in cmemo is in effect) is not exactly the same as the code we compile
(during either memoization or regular compilation). We’ll see what the difference is in section 4.5;
what matters here is that we must provide \Memoize with both and that this macro therefore takes
two arguments: the identification code, which the MD5 sum is computed off of, and the executable
code, which, well, is the code that gets executed during memoization (or regular compilation).
Let’s illustrate this with an example which is probably entirely useless (but don’t worry, we’ll get to a
realistic example in section 4.5). We first memoize some text manually, using command \mmz, and then
do something very stupid: we use this very text as the identification code for the following \Memoize,
even if the executable code of that command is completely different. The second line of the typeset
output should convince you that the first argument to that command was really used to produce the
extern; and one further compilation should convince you that the first argument was indeed used to
identify the extern: the extern produced by \mmz was overwritten by the extern produced by \Memoize,
in the fashion of the progressbar example from section 3.4.

memoize-internal.tex
�

% The following line internally invokes
% \Memoize{Will this get memoized?}{Will this get memoized?}
\mmz{Will this get memoized?}

\begingroup
\Memoize{Will this get memoized?}{Something entirely different got memoized!}
% \endgroup % Don't uncomment! \Memoize already closed this group!

document page (after the first compilation)

Will this get memoized?
Something entirely different got memoized!

document page (after the second compilation)

Something entirely different got memoized!
Something entirely different got memoized!

The example above also illustrates a(nother) peculiar feature of \Memoize. \Memoize does not open a
new TEX group, but it expects a group to be opened prior to calling it, as it will issue an \endgroup at
some point. Specifically, the memoization group will be closed before regular compilation or utilization,
but after memoization. If you want to know why, read the boxed text below.

\Memoize and grouping

One important desideratum behind the design of Memoize was that using the package should
disrupt the original, Memoize-less compilation as little as possible. In particular, if the memoized
code contains local assignments whose effect (in the original compilation) persists into the rest of
the document (until the end of the surrounding TEX group, of course), wouldn’t one want these
local effects to persist when Memoize is around, as well? Fortunately, most memoized code does
not have persistent local effects (at least for me, it is usually environments, like tikzpictures,
that I want to memoize, and environments introduce a group anyway) — fortunately, because
there are design reasons for enclosing memoization in a TEX group (or two), and this enclosure
will of course cancel the effect of local assignments in the memoized code.
For one, the user interface memoization commands, such as \mmz and automemoized commands,
allow for options specific to a particular piece of memoized code (the options given as the optional
argument to manual memoization, the next-options and the auto-options), and to delimit their
effect, it makes most sense to apply them in a group. I have toyed with the idea of working
around the introduction of a group by manually saving and restoring all the options, but I
quickly gave up on this line of thought. For one, manually saving and restoring the options
would be cumbersome and error-prone, and probably also slower than using the group. But even
worse, all that work would not really solve the problem of the persistence of local effects, because
memoization itself introduces a group, as well: during memoization, the typeset material is
collected into a box, and opening a box introduces a group. In some particular situations, this
could be avoided by typesetting the memoized code as-is and collecting the resulting material
using \lastbox, but this approach cannot work in general. In general, memoization will take

39

\documentclass{article}
\usepackage{memoize}

\begin{document}
% The following line internally invokes
% \Memoize{Will this get memoized?}{Will this get memoized?}
\mmz{Will this get memoized?}

\begingroup
\Memoize{Will this get memoized?}{Something entirely different got memoized!}
% \endgroup % Don't uncomment! \Memoize already closed this group!
\end{document}

Click here to open the code.

place in a group, so the issue of local effects must be addressed in some other way. Memoize offers
the following workaround: during memoization, the memoized code can (globally) add code to
the after memoization hook, which gets executed immediately after closing the memoization
group.
Does this mean it would be best if the user interface memoization commands straightforwardly
surrounded \Memoize by \begingroup and \endgroup? For example, \mmz would open the
memoization group, let \Memoize do its work, and then close the group. Not really. Remember
that memoization is not the only possible outcome of calling \Memoize. Perhaps we can at least
retain the local effects of a regular compilation, and of utilization?
We can, by finely tuning the timing of the memoization group closure within \Memoize. This
command is designed to close the memoization group after memoization, but before regular
compilation and utilization. Closing the group after memoization makes sure that the given
options are in effect during this process. By closing the group prior to regular compilation, regular
compilation of the memoized code (which takes place when Memoize is disabled, for example) is
guaranteed to have (almost, see footnote 32) exactly the same effect as the compilation of that
code in absence of Memoize; in particular, the effect of any local assignments will persist into
the rest of the document. Finally, closing the group before utilization simplifies the construction
of the memo in the cases where we need to replicate local effects of the memoized code — the
group closed, there is no need to smuggle local assignments out of a memo.

40

4.2 Memos

Up until now, we have pretended that there is a single kind of a memo file. In truth, there’s two kinds:
code memos, or c-memos for short; and code–context memos, or cc-memos for short. In this section, we
will learn what they are for, and how they look like — and also a bit on how they are produced, even
if the details on that will have to wait until section 4.4.
We will see that when Memoize utilizes memos, c-memos are processed first. But conceptually, cc-memos
are more important, so we will start the discussion with these.

4.2.1 Cc-memos (and extern inclusion)

When it is input, a cc-memo replicates the effect of the memoized code. This includes the reproduction
of its visual output, which takes the form of inclusion of any externs produced by memoization. And
yes, you got the implication right: a cc-memo can have any number of associated externs, including
zero, even if the most common case is that of exactly one extern per cc-memo. The number of externs
mostly depends on the memoization driver (see section 4.4); the default driver always produces exactly
one extern.
A cc-memo is located in the directory given via subkey dir (and relative) of key path. You can
recognize it by its filename, which has the following form (〈prefix〉 is set via subkey prefix):

〈prefix〉〈code md5sum〉-〈context md5sum〉.memo
In fact, this is how Memoize recognizes — or rather, searches for — a cc-memo as well: Memoize will
utilize a cc-memo when the code and the context MD5 sum computed during an attempted utilization
match the code and the context MD5 sum computed during some previous memoization (for details on
the context MD5 sum, see section 4.2.2). In detail, a cc-memo is created at the end of memoization, at
which point Memoize computes the MD5 sum of the memoized code and the MD5 sum of the context,
and writes the results of memoization into the cc-memo identified by (the prefix and) these two MD5
sums. And when Memoize, on a subsequent compilation, encounters a piece of memoized code, it again
computes the MD5 sum of that code and the MD5 sum of the context, and tries to input the cc-memo
identified by (the prefix and) these two MD5 sums. If the inputting is successful, we have utilized the
cc-memo (which in the typical case amounts to including the one associated extern); if the cc-memo
cannot be found, Memoize starts the memoization process, which creates the memos and the externs.
Let us take a look at the contents of a cc-memo in detail. Here’s a typical cc-memo (it belongs to the
titlepage penguin):

./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.memo

\mmzResource{2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf}%
\mmzMemo
\quitvmode
\mmzIncludeExtern {0}\hbox {14.76718pt}{16.24402pt}{0.65717pt}
{72.26999pt}{72.26999pt}{72.26999pt}{72.26999pt}{0.001pt}%

\mmzEndMemo

A cc-memo begins by listing the externs which the memo will (actually, might) attempt to include
into the document. When the cc-memo is input, each \mmzResource command checks if the given
extern exists. If some existence check fails, Memoize enters the memoization mode, same as if the
cc-memo itself did not exist. If all the resources pass the existence check, Memoize inputs the core of
the cc-memo, i.e. everything following the \mmzMemo marker.
The core might contain arbitrary code, but most often, it will consist of only two commands. The
first one is \quitvmode and it is included if the extern was captured into a horizontal box (which is
the usual situation). The second one is \mmzIncludeExtern, and it is this command which actually
includes the extern into the document upon inputting the cc-memo. The core code is executed without
introducing any groups, i.e. the effect of any local assignments in the cc-memo will persist into the
code following the memoized code.

41

Command \mmzIncludeExtern takes nine parameters. The first is the sequential number of the extern
associated with the cc-memo, starting with 0; usually, this is simply 0 as most memos are associated
with a single extern. The second one is a \hbox or \vbox, noting the type of the box the memoized
code was externalized into. The next three numbers are the expected width, height and the depth of
the extern. Finally, we have the four padding amounts (left, bottom, right and top). We should arrive
at the expected size after trimming the extern PDF by the padding amounts; Memoize will complain if
we don’t.
Let’s look at a more interesting cc-memo. Using the advising framework, described in section 4.5,
Memoize hacks \label to support \labels inside memoized code — the following code “just works.”

label.tex
�

The titlepage Ti\emph{k}Zlings are:

\begin{memoize}
\begin{minipage}{5em}
\tikzset{x=1.3ex, y=1.3ex, baseline=0.5ex}%
\begin{enumerate}
\item\label{item:penguin} \tikz\penguin;
\item\label{item:koala} \tikz\koala;
\item\label{item:owl} \tikz\owl;
\end{enumerate}

\end{minipage}
\end{memoize}

The penguin lives in item \ref{item:penguin}.

document page (compilation 1)

The titlepage TikZlings are:

1.

2.

3.

The penguin lives in item ??.

document page (compilation 2)

The titlepage TikZlings are:

1.

2.

3.

The penguin lives in item 1.

document page (compilation 3)

The titlepage TikZlings are:

1.

2.

3.

The penguin lives in item 1.

Everything seems normal — after the first compilation, we get “??” because the label has not made it
into the .aux file yet, but in subsequent compilations, we learn where the penguin lives — but it is far
from normal under the hood. If we de-hacked \label by writing \mmzset{deactivate=\label}, the
third compilation (and subsequent compilations) would revert to “??”. Why would that happen? The
memoized code containing the \labels is only executed in the first compilation; in the subsequent
compilations, we’re simply inputting the cc-memo, so the memoized code, including any \labels in
contains, is not compiled, and the labels don’t get into the .aux file anymore.
The \label hack deploys Memoize’s ability to put arbitrary code into the cc-memo. During memoization,
the memoized code may add arbitrary code to register \mmzCCMemo, and the contents of this register
at the end of the memoization form the free-form part of the cc-memo.33 When the hacked \label
is encountered during memoization, it appends \mmzLabel{〈label name〉}{〈current label value〉} to
\mmzCCMemo, so this command winds up in the cc-memo. It is then a simple job for \mmzLabel, executed
when the cc-memo is input at subsequent compilations, to temporarily store 〈current label value〉 (i.e.
the contents of \@currentlabel at the time the \label was invoked) back into \@currentlabel and
to execute \label{〈label name〉}. In effect, any \label command contained within the memoized
code is executed at every compilation, even if the memoized code itself is not compiled.
We will continue the discussion of \label in section 4.2.3 using a funkier example.

33This is also how the above-described code containing \mmzIncludeExtern gets into the cc-memo. The code is produced
by \mmzExternalizeBox and appended to \mmzCCMemo by the default memoization driver \mmzSingleExternDriver; see
section 4.4 for details.

42

\documentclass{article}
\usepackage{memoize}
\usepackage{tikzlings}

% Uncomment this if you dare!
% \mmzset{
% recompile, % for the first compilation
% deactivate=\label,
% }

\begin{document}

The titlepage Ti\emph{k}Zlings are:

\begin{memoize}
 \begin{minipage}{5em}
 \tikzset{x=1.3ex, y=1.3ex, baseline=0.5ex}%
 \begin{enumerate}
 \item\label{item:penguin} \tikz\penguin;
 \item\label{item:koala} \tikz\koala;
 \item\label{item:owl} \tikz\owl;
 \end{enumerate}
 \end{minipage}
\end{memoize}

\medskip
The penguin lives in item \ref{item:penguin}.

\end{document}

Click here to open the code.

./label.memo.dir/EB19BE685000E2DF39C76F321E7E2792-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.memo

\mmzResource{EB19BE685000E2DF39C76F321E7E2792-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf}%
\mmzMemo
\quitvmode
\mmzLabel{item:penguin}{1} \mmzLabel{item:koala}{2} \mmzLabel{item:owl}{3}
\mmzIncludeExtern {0}\hbox {50.00008pt}{30.89412pt}{25.89412pt}
{72.26999pt}{72.26999pt}{72.26999pt}{72.26999pt}{0.001pt}%

\mmzEndMemo

4.2.2 C-memos (and context)

As explained in the previous section, a cc-memo belonging to a piece of memoized code is identified by
two MD5 sums: the MD5 sum of the memoized code, and the MD5 sum of the associated context.
However, when Memoize encounters some code submitted to memoization, the context expression is
not yet fully known, as it may be adjusted by the memoized code itself during memoization — and this
potential adjustment is crucial for \ref and friends to work as advertised (see section 3.3). Upon being
invoked, Memoize therefore cannot immediately attempt to input the cc-memo; it needs to first learn
about the context adjustments. Here’s where c-memos enter the picture: the primary job of a c-memo
is to store the context adjustments made by the memoized code. Let’s see how this works in detail.
Same as cc-memos, c-memos are located in the directory given via subkey dir (and relative) of key
path. However, a c-memo belonging to some memoized code is identified by the MD5 sum of that
code alone; its filename has the following form, where 〈prefix〉 is again set via subkey prefix:

〈prefix〉〈code md5sum〉.memo
The c-memo is created at the end of the memoization process. At that time, the context expression
is fully known, as the memoized code was already processed. Even more, Memoize keeps track of
both the state of the context expression prior to memoization, stored in token register \mmzContext,
and of the additions to the context expression made by the memoized code, which are stored in
token register \mmzContextExtra. (Incidentally, key context automatically adapts to the situation
by appending to \mmzContext outside memoization and to \mmzContextExtra during memoization.)
The complete context expression is the concatenation of the contents of these two registers, but it is
only the context expression additions, i.e. the contents of \mmzContextExtra, which Memoize stores
into the c-memo, with the idea that during subsequent compilations, the initial context (\mmzContext)
will be set up again via “normal” compilation, while inputting the c-memo will restore the additions,
jointly reconstructing the complete context expression associated with a piece of memoized code to
what it was at the end of memoization.
We can now complete the picture of a utilization attempt started in section 4.2.1. Memoize begins by
trying to input the c-memo; this can be done as the c-memo can be identified based solely on (the
MD5 sum of) the memoized code. If the c-memo does not exist, Memoize starts the memoization
process, which will produce the memos and the externs. But if it does exist, inputting it reconstructs
the context expression to the state at the end of memoization. Therefore, as the MD5 sum of the
expansion of the context expression at the end of memoization is baked into the cc-memo filename,
trying to load the cc-memo identified by (the prefix, the code MD5 sum and) the MD5 sum of the
expansion of the context expression at attempted utilization will succeed precisely when the context
remained unchanged from memoization to attempted utilization.
All this might have sounded very complicated, but in the end, most c-memos are quite boring, the
titlepage penguin’s c-memo shown below being no exception. A c-memo starts with the \mmzMemo
marker, which is always followed by a (global) assignment to token register \mmzContextExtra, holding
the context expression additions. As promised, the c-memo below is boring: it assigns an empty
token list to this register, leaving the context expression as-is. Next comes the free-form part of the
memo. Below, it is boringly empty as well (just the percent sign), but in principle, it will contain
any code gathered in register \mmzCMemo during memoization; see 4.2.4 for an example. A c-memo is
concluded by an optional part consisting of the \mmzSource marker, followed by the memoized code.
The source code section is not used by Memoize in any way and can be switched off by include source
in cmemo=false; it is included by default so that an interested user can know which code produced

43

which memo, which can be useful if one wants to trigger recompilation of an extern by deleting the
corresponding memo. Incidentally, any newlines in the source code are lost in the c-memo replica
(unless verbatim is in effect), but we will only see this once we arrive at the beamer example below.

./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2.memo

\mmzMemo
\global \mmzContextExtra {}%
%
\mmzSource
\tikz \penguin ;

A c-memo of code containing a cross-reference will prove more interesting. The following c-memo was
produced by the ref example from section 3.3. As we know from that section, when a \ref (as hacked
by Memoize’s ref key) occurs in some memoized code, it appends the cross-reference to the context.
In the c-memo below, this is reflected by the (global) assignment of an expression containing the
cross-reference macro to token register \mmzContextExtra, holding the context expression additions.

./ref.memo.dir/90F2CE242AE52CAA56DEFFB44D8F8FFB.memo

\mmzMemo
\global \mmzContextExtra {r@item:penguin={\csname r@item:penguin\endcsname }}%
%
\mmzSource
\tikz [baseline]\node [draw=red,thick,fill=yellow,anchor=base]{\ref {item:penguin}};

4.2.3 More on \label

A \label inside memoized code works out of the box in the usual situation when label value is
fully determined by the memoized code, as in the example in section 4.2.1, where the memoized
code contained the outermost (and only) enumerate environment. However, the out of the box
approach does not work if the label value is (fully or partially) determined outside the memoized
code. To illustrate the problem, and some potential solutions, we define two very simple enumeration
environments, listi and listii, which use counters counti and countii, and which are intended
as the outer and the inner environment, respectively. Our interest here is in the inner environment,
listii. While it prefixes each item by an indented \thecountii), the label is a composite of both
counters: \thecounti\thecountii. The label is stored into \@currentlabel, so referencing works as
usual. However, problems arise when we automemoize the inner environment.

label+.tex
�

\mmzset{
auto={listii}{memoize,
% ...

},
}
% ...
\begin{listi}
\item pets:

\begin{listii}
\item\label{item:dog} dog
% ...

\end{listi}
The dog can be found in (\ref{item:dog}).

document page

1. pets:
a) dog
b) cat

2. domestic:
a) cow
b) sheep

3. wild:
a) tiger
b) lion

The dog can be found in (1a).

While the result looks fine at first, changing the order of listii environments, for example by moving
“pets” below “domestic”, will result in a problem: the reference at the bottom will remain unchanged.
This is so because the reference text is baked into the cc-memo, as shown below.

44

https://ctan.org/pkg/beamer

\documentclass{article}

\makeatletter
\newcounter{counti}
\newenvironment{listi}{%
 \setcounter{counti}{0}%
 \def\item{%
 \par\strut
 \stepcounter{counti}%
 \edef\@currentlabel{\thecounti}%
 \thecounti.
 }%
}{\par}

\newcounter{countii}
\gdef\thecountii{\alph{countii}}
\newenvironment{listii}{%
 \setcounter{countii}{0}%
 \def\item{%
 \par\strut
 \stepcounter{countii}%
 \edef\@currentlabel{\thecounti\thecountii}%
 \quad\thecountii)
 }%
}{\par}
\makeatother

\usepackage{memoize}
\mmzset{
 auto={listii}{memoize,
 capture=vbox,
 at begin memoization={%
 \csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
 },
 },
}

\begin{document}

\begin{listi}
\item pets:
 \begin{listii}
 \item\label{item:dog} dog
 \item cat
 \end{listii}
\item domestic:
 \begin{listii}
 \item cow
 \item sheep
 \end{listii}
\item wild:
 \begin{listii}
 \item tiger
 \item lion
 \end{listii}
\end{listi}
The dog can be found in (\ref{item:dog}).

\end{document}

Click here to open the code.

./label+.memo.dir/9A04214725FF802E62550FBDCDB15249-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.memo

\mmzResource{9A04214725FF802E62550FBDCDB15249-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf}%
\mmzMemo
\csuse {par}\mmzLabel {item:dog}{1a}\mmzIncludeExtern {0}\vbox
{345.0pt}{20.39996pt}{3.60004pt}
{72.26999pt}{72.26999pt}{72.26999pt}{72.26999pt}{0.001pt}%

\mmzEndMemo

How can we remedy this? The manual option is to force the recompilation of the extern by putting an
(invisible) reference to the outer item into the inner item: add \label{item:pets} to item “pets” and
refer to it at “dog” by \mmzNoRef{item:pets}.�

An automatic variant of the recompilation solution is to add \@currentlabel to the context upon memo-
izing listii. This can be achieved by adding context={@currentlabel={\csuse{@currentlabel}}}
to the auto declaration for listii. The downside of this approach is that every listii will get
reexternalized upon movement, whether it actually contains a label or not.�

In fact, given that the externs produced by the inner environment do not contain the value of the
outer counter, it seems wasteful to recompile any extern just to change the reference. And indeed, it is
possible to avoid this, but the approach unfortunately requires adapting the inner environment code
(and this is why I have not illustrated the problem using an environment of an elaborate package like
enumitem). The idea is to “unbake” the reference to the outer item in the cc-memo. We can achieve this
by changing listii to define \@currentlabel to be \unexpanded{\thecounti}\thecountii. Under
this definition, the cc-memo will contain \mmzLabel {item:dog}{\thecounti a}, and rearranging
listii environments will produce (upon two compilations, of course) the correct reference without
recompiling the extern. Note again, however, that this solution can only work when the value of the
outer counter does not appear in the extern, i.e. it would not work the “dog” item was prefixed by 1a)
rather than simply a). In those cases, one should deploy one of the other solutions.�

The final solution, presented below, is an elaboration on the second one. Rather than append
\@currentlabel to the context immediately upon beginning to memoize environment listii, we will
at that point redefine \label to do that. In effect, changing the location of listii will only recompile
it if it contains a \label.
At announced, we redefine \label once the memoization of listii begins, so within at begin
memoization.34 However, we do not redefine \label directly, as Memoize advises this control sequence
out of the box (see section 4.5 for details). What we redefine is the command which the advising
framework executes instead of \label — its so-called outer handler — and we do this by calling
\AdviceSetup, the low-level variant of the familiar key auto.35 The first argument of \AdviceSetup
is the installation path (/mmz), the second one the command or environment we are submitting to the
framework (\label), and the third one the setup code — here lies the biggest difference between auto
and \AdviceSetup: the former expects a keylist, and the latter TEX code which directly manipulates
settings macros like \AdviceOuterHandler (for the full list, see section 4.5 or 5.6.1).
Within \AdviceSetup, we prefix (using macro \preto of package etoolbox) the original outer handler
\AdviceOuterHandler by code which causes \outerlabeltocontext to be executed at the end of mem-
oization (by globally appending this macro to \mmzAtEndMemoizationExtra; “Extra” because we’re
appending during memoization). It is \outerlabeltocontext which then appends \@currentlabel to
the context (\mmzContextExtra; again, “Extra” because we’re appending during memoization),36 and
it is crucial that this happens at the end of memoization rather than when \label is executed. When
\label is executed, we’re inside an inner item, and \@currentlabel refers to that item, while at the
end of memoization, the value of this macro equals the value at the beginning of memoization, namely

34Another generally good location for such redefinitions is among the auto-options of listii. We could include an
auto\label{〈...〉} there, or a /utils/exec with \AdviceSetup. However, in this particular case this would be wasteful,
as it would be applied regardless of whether memoization will take place or not, whereas we only need the redefined
\label when memoizing.

35We could have also used auto, but we don’t, because (a) \AdviceSetup is faster, (b) it is easier to prepend material
to a handler using the low-level interface, and (c) I wanted to showcase \AdviceSetup.

36As a courtesy, we clear out macro \outerlabeltocontext once it did it’s job, so that multiple \labels do not include
multiple \@currentlabels into the context. But the code would work even without this addendum, can you see why?

45

\documentclass{article}

\makeatletter
\newcounter{counti}
\newenvironment{listi}{%
 \setcounter{counti}{0}%
 \def\item{%
 \par\strut
 \stepcounter{counti}%
 \edef\@currentlabel{\thecounti}%
 \thecounti.
 }%
}{\par}

\newcounter{countii}
\gdef\thecountii{\alph{countii}}
\newenvironment{listii}{%
 \setcounter{countii}{0}%
 \def\item{%
 \par\strut
 \stepcounter{countii}%
 \edef\@currentlabel{\thecounti\thecountii}%
 \quad\thecountii)
 }%
}{\par}
\makeatother

\usepackage{memoize}
\mmzset{
 auto={listii}{memoize,
 capture=vbox,
 at begin memoization={%
 \csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
 },
 },
}

\begin{document}

\begin{listi}
\item\label{item:pets} pets:
 \begin{listii}
 \item\label{item:dog}\mmzNoRef{item:pets} dog
 \item cat
 \end{listii}
\item domestic:
 \begin{listii}
 \item cow
 \item sheep
 \end{listii}
\item wild:
 \begin{listii}
 \item tiger
 \item lion
 \end{listii}
\end{listi}
The dog can be found in (\ref{item:dog}).

\end{document}

Click here to open the code.

\documentclass{article}

\makeatletter
\newcounter{counti}
\newenvironment{listi}{%
 \setcounter{counti}{0}%
 \def\item{%
 \par\strut
 \stepcounter{counti}%
 \edef\@currentlabel{\thecounti}%
 \thecounti.
 }%
}{\par}

\newcounter{countii}
\gdef\thecountii{\alph{countii}}
\newenvironment{listii}{%
 \setcounter{countii}{0}%
 \def\item{%
 \par\strut
 \stepcounter{countii}%
 \edef\@currentlabel{\thecounti\thecountii}%
 \quad\thecountii)
 }%
}{\par}
\makeatother

\usepackage{memoize}
\mmzset{
 auto={listii}{memoize,
 capture=vbox,
 at begin memoization={%
 \csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
 },
 context={@currentlabel={\csuse{@currentlabel}}},
 },
}

\begin{document}

\begin{listi}
\item pets:
 \begin{listii}
 \item\label{item:dog} dog
 \item cat
 \end{listii}
\item domestic:
 \begin{listii}
 \item cow
 \item sheep
 \end{listii}
\item wild:
 \begin{listii}
 \item tiger
 \item lion
 \end{listii}
\end{listi}
The dog can be found in (\ref{item:dog}).

\end{document}

Click here to open the code.

https://ctan.org/pkg/enumitem

\documentclass{article}

\makeatletter
\newcounter{counti}
\newenvironment{listi}{%
 \setcounter{counti}{0}%
 \def\item{%
 \par\strut
 \stepcounter{counti}%
 \edef\@currentlabel{\thecounti}%
 \thecounti.
 }%
}{\par}

\newcounter{countii}
\gdef\thecountii{\alph{countii}}
\newenvironment{listii}{%
 \setcounter{countii}{0}%
 \def\item{%
 \par\strut
 \stepcounter{countii}%
 \edef\@currentlabel{\unexpanded{\thecounti}\thecountii}%
 \quad\thecountii)
 }%
}{\par}
\makeatother

\usepackage{memoize}
\mmzset{
 auto={listii}{memoize,
 capture=vbox,
 at begin memoization={%
 \csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
 },
 },
}

\begin{document}

\begin{listi}
\item pets:
 \begin{listii}
 \item\label{item:dog} dog
 \item cat
 \end{listii}
\item domestic:
 \begin{listii}
 \item cow
 \item sheep
 \end{listii}
\item wild:
 \begin{listii}
 \item tiger
 \item lion
 \end{listii}
\end{listi}
The dog can be found in (\ref{item:dog}).

\end{document}

Click here to open the code.

https://ctan.org/pkg/etoolbox

label+.tex
�

\mmzset{
auto={listii}{memoize,
capture=vbox,
at begin memoization={%
\csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
\AdviceSetup{/mmz}\label{%
\preto\AdviceOuterHandler{%
\gappto\mmzAtEndMemoizationExtra{\outerlabeltocontext}

}%
}%

},
},

}
\def\outerlabeltocontext{%

\gtoksapp\mmzContextExtra{@currentlabel={\csuse{@currentlabel}}}%
\let\outerlabeltocontext\relax

}

the label of the outer item. While the outer list remains unshuffled, the value of \@currentlabel that
contributes to the context MD5 sum during the utilization attempt will therefore match the value
which contributed to the context MD5 sum during memoization, resulting in matching MD5 sums and
therefore in actual utilization of the extern; once the outer list is shuffled, this will cease to be the case
and the extern will be recompiled.

4.2.4 The Beamer support explained

The implementation of per overlay, which makes memoization sensitive to Beamer overlays, provides
an example of a complex interaction between various components of memoization. At the core, the
Beamer support works by adjusting the context, but we will also have the occasion to observe the
free-form part of the c-memo, add a bit of extra code to the cc-memo, and deploy several memoization
hooks. We will show the complete Beamer support code later on; let us build our understanding of
that code step by step. (Before you read on, you might want to refresh your memory about the beamer
example from section 2.7, as we will refer to it in the present section.)
The core idea behind per overlay is to append the current beamer overlay number to the context:37

context={overlay=\csname beamer@overlaynumber\endcsname}. This makes Memoize produce a
separate extern for each overlay. However, only the first of these externs will get utilized on subsequent
compilations, in general at least. Even worse, we will lose each frame whose creation is driven solely
by the memoized code. We will lose the second overlay in our example (i.e. in the beamer example
from section 2.7) as the second overlay was only created because Beamer encountered only={2}{...}
(resolving to \only<2>{...} under the hood) inside the picture code; once we utilize the extern instead
of compiling the picture on the first overlay, the \only command is not executed anymore, so Beamer
thinks it is done with the frame.
As the compilation of our picture is substituted by utilization of its cc-memos, we have to somehow
drive the creation of the necessary overlays from these files. An easy way to achieve this is to furnish
them with a dummy \only<〈final overlay number〉>{},38,39 but there is a problem: the final overlay
number is unknown when we’re memoizing our picture — it is unknown even when we’re memoizing
the picture on final overlay itself (we simply don’t know yet that this overlay will end up being the
final one), let alone during the memoization on the first overlay.
The solution exploits the fact that the c-memo is rewritten at each memoization: at each memoization

37As we saw in section 2.7, it is convenient to execute per overlay inside memoized code. But remember, from
section 3.3, that when context is executed from within the memoized code, its argument winds up in the c-memo.
As the c-memo is processed under the normal category code regime, where @ is not a letter, we have to access
\beamer@overlaynumber using the \csname ... \endcsname construct.

38‘The final overlay’ here should be understood as relative to our memoized picture, i.e. as the final overlay containing
the memoized picture.

39Actually, putting this \only command only into the first cc-memo would suffice, but would be harder to implement.

46

\documentclass{article}

\makeatletter
\newcounter{counti}
\newenvironment{listi}{%
 \setcounter{counti}{0}%
 \def\item{%
 \par\strut
 \stepcounter{counti}%
 \edef\@currentlabel{\thecounti}%
 \thecounti.
 }%
}{\par}

\newcounter{countii}
\gdef\thecountii{\alph{countii}}
\newenvironment{listii}{%
 \setcounter{countii}{0}%
 \def\item{%
 \par\strut
 \stepcounter{countii}%
 \edef\@currentlabel{\thecounti\thecountii}%
 \quad\thecountii)
 }%
}{\par}
\makeatother

\usepackage{memoize}
\mmzset{
 auto={listii}{memoize,
 capture=vbox,
 at begin memoization={%
 \csuse{par}\gtoksapp\mmzCCMemo{\csuse{par}}%
 \AdviceSetup{/mmz}\label{%
 \preto\AdviceOuterHandler{%
 \gappto\mmzAtEndMemoizationExtra{\outerlabeltocontext}
 }%
 }%
 },
 },
}

\def\outerlabeltocontext{%
 \gtoksapp\mmzContextExtra{@currentlabel={\csuse{@currentlabel}}}%
 \let\outerlabeltocontext\relax
}
\begin{document}

\begin{listi}
\item pets:
 \begin{listii}
 \item\label{item:dog} dog
 \item cat
 \end{listii}
\item domestic:
 \begin{listii}
 \item cow
 \item sheep
 \end{listii}
\item wild:
 \begin{listii}
 \item tiger
 \item lion
 \end{listii}
\end{listi}
The dog can be found in (\ref{item:dog}).

\end{document}

Click here to open the code.

https://ctan.org/pkg/beamer
https://ctan.org/pkg/beamer

of our picture, we store the the current overlay number to the c-memo; after all memoizations, the
c-memo will thus contain the number of the final overlay containing our memoized picture. To access
this number from the cc-memo, we store it as a macro definition, and then use the defined macro,
\mmzBeamerOverlays, in the overlay specification of the dummy \only. Below, you can see all this in
code, as the argument to at begin memoization.

The implementation of per overlay (first attempt)
�

\mmzset{
per overlay/.style={
/mmz/context={overlay=\csname beamer@overlaynumber\endcsname},
/mmz/at begin memoization={%
\xtoksapp\mmzCMemo{%
\gdef\noexpand\mmzBeamerOverlays{\beamer@overlaynumber}%

}%
\gtoksapp\mmzCCMemo{%
\only<\mmzBeamerOverlays>{}%

}%
},

}
}

A couple of remarks are in order here. First, the definition of \mmzBeamerOverlays in the c-memo
is global, because it will be accessed from the cc-memo, but the cc-memo is input after closing the
memoize group (which the c-memo is processed in). Second, using at begin memoization makes
it possible to use per overlay both outside and during memoization: if at begin memoization is
executed outside memoization, its argument is (locally) stored into hook \mmzAtBeginMemoization, to
be called at the beginning of each memoization; if the key executed outside memoization, the argument
is executed immediately. Third, the Memoize keys in the definition of per overlay are prefixed with
/mmz/, so that this key can be called from pgfkeys option lists of other packages, for example the
option list of the tikzpicture environment, as shown in the example in section 2.7.
I used the above version of per overlay for quite a while. In general, it worked as I expected, but
there were glitches. Occasionally, the picture would appear on the wrong overlay, or I would get an
extra overlay, or perhaps lose an overlay. Eventually, I figured out this happens when I play with the
overlay structure of the frame: when I add or remove a \pause or similar. In hindsight, it is easy to
see what was happening. Once the picture is memoized, it is fixed, forever, which extern will appear on
which overlay. I cannot expect the extern–overlay correlation to change just because I added a \pause
in front of the picture. Furthermore, the number of overlays the memos will drive to be created is fixed
as well. If I memoize the picture while it follows a \pause, and the picture creates 10 overlays, the
c-memo will define \mmzBeamerOverlays to 11. So what, if I then remove that \pause! The c-memo
will still define \mmzBeamerOverlays to 11, and drive the creation of 11 overlays — one too many.
By now, the road ahead is probably clear — we put the beamerpauses counter into the context —
but we will see there are still obstacles on the way. The issue is that the context is evaluated at the
end of memoization (so that those cross-references from section 3.3 actually get into it). However, the
memoized code might contain a \pause or similar itself, and change the value of beamerpauses. For
one, this means that we have to write down the changed value of beamerpauses into the cc-memo;
below, we do this using key at end memoization (the code given code to this key is executed after
the driver but before Memoize writes down the memos and ships out the extern pages; the key itself
may be executed either before or during memoization). Furthermore, if the memoized code changes the
value of beamerpauses, the value of beamerpauses at the attempted utilization, which would nicely
match the value from the start of memoization, will never match the changed, final value from the end
of memoization, in effect preventing our hard-won externs from ever getting utilized.
We therefore have to invent a way to get the memoization-initial value of beamerpauses into the
context.40 Fine, we store it in a macro,41 \mmzBeamerPauses, when we start the memoization (at

40This imposes a requirement on the in-code usage of per overlay, namely, that it should be executed prior to any
changes of beamerpauses.

41We must define \mmzBeamerPauses globally, because per overlay can be arbitrarily deeply embedded in the
memoized code.

47

\mmzset{
 per overlay/.style={
 /mmz/context={overlay=\csname beamer@overlaynumber\endcsname},
 /mmz/at begin memoization={%
 \xtoksapp\mmzCMemo{%
 \gdef\noexpand\mmzBeamerOverlays{\beamer@overlaynumber}%
 }%
 \gtoksapp\mmzCCMemo{%
 \only<\mmzBeamerOverlays>{}%
 }%
 },
 }
}

Click here to open the code.

https://ctan.org/pkg/pgfkeys

begin memoization), and put \mmzBeamerPauses rather than beamerpauses into the context. Will
this work? Not yet, because \mmzBeamerPauses is undefined at utilization. We need to set up the
context expression so that it will expand to the value of \mmzBeamerPauses at (the end of) memoization,
and to the value of beamerpauses at utilization. This leads to the pauses=\ifmemoizing... part of
the context expression in (the final version of) the Beamer support code below.

The implementation of per overlay
�

\mmzset{per overlay/.style={
/mmz/context={%

overlay=\csname beamer@overlaynumber\endcsname,
pauses=\ifmemoizing

\mmzBeamerPauses
\else
\expandafter\the\csname c@beamerpauses\endcsname

\fi
},
/mmz/at begin memoization={%

\xdef\mmzBeamerPauses{\the\c@beamerpauses}%
\xtoksapp\mmzCMemo{%
\noexpand\mmzSetBeamerOverlays{\mmzBeamerPauses}{\beamer@overlaynumber}}%

\gtoksapp\mmzCCMemo{%
\only<\mmzBeamerOverlays>{}}%

},
/mmz/at end memoization={%

\xtoksapp\mmzCCMemo{%
\noexpand\setcounter{beamerpauses}{\the\c@beamerpauses}}%

},
/mmz/per overlay/.code={},

}}
\def\mmzSetBeamerOverlays#1#2{%
\ifnum\c@beamerpauses=#1\relax

\gdef\mmzBeamerOverlays{#2}%
\ifnum\beamer@overlaynumber<#2\relax \mmz@temptrue \else \mmz@tempfalse \fi

\else
\mmz@temptrue

\fi
\ifmmz@temp

\appto\mmzAtBeginMemoization{%
\gtoksapp\mmzCMemo{\mmzSetBeamerOverlays{#1}{#2}}}%

\fi
}%

Are we done? Almost. The final issue is that once we have introduced support for pauses, we
have to relativize \mmzBeamerOverlays (the final overlay number) to beamerpause. So instead of a
simple \gdef\mmzBeamerOverlays in the first version, we define \mmzSetBeamerOverlays{〈beamer
pauses〉}{〈final overlay number〉}, which sets \mmzBeamerOverlays only if 〈beamer pauses〉 argument
matches the value of beamerpauses (at its invocation in the c-memo). Well, the macro has some
other housekeeping to do as well: it is self-replicating, so that during potential memoization, the
\mmzBeamerOverlays values belonging to non-current beamerpauses values get rewritten into the
c-memo.42 (Fine, there is another fine detail, regarding anti-pollution: the macro also ensures that,
relative to {〈beamer pauses〉}, only the instance with the greatest 〈final overlay number〉 is replicated.)
We are now truly done, and we can look at the final result, the c-memo and the cc-memo be-
longing to the extern on the first overlay of the example from section 2.7. Specifically, look at the
\mmzSetBeamerOverlays {1}{2}, which says that the extern chain started when beamerpauses equals

42As replication should only occur during memoization (actually, it can only occur then, anyway), the instruction
to append to the c-memo is appended to the \mmzAtBeginMemoization hook (the low-level interface to at begin
memoization). Note that the assignment to this hook must be local (once local, always local), and it can be local because
of a little implementation detail: while the c-memo is processed in the memoize TEX group, we don’t open an additional
group to process it; so the local effects from c-memo will persist into memoization (but not into utilization, because
remember that the memoize group is closed before inputting the cc-memo).

48

 \mmzset{per overlay/.style={
 /mmz/context={%
 overlay=\csname beamer@overlaynumber\endcsname,
 pauses=\ifmemoizing
 \mmzBeamerPauses
 \else
 \expandafter\the\csname c@beamerpauses\endcsname
 \fi
 },
 /mmz/at begin memoization={%
 \xdef\mmzBeamerPauses{\the\c@beamerpauses}%
 \xtoksapp\mmzCMemo{%
 \noexpand\mmzSetBeamerOverlays{\mmzBeamerPauses}{\beamer@overlaynumber}}%
 \gtoksapp\mmzCCMemo{%
 \only<\mmzBeamerOverlays>{}}%
 },
 /mmz/at end memoization={%
 \xtoksapp\mmzCCMemo{%
 \noexpand\setcounter{beamerpauses}{\the\c@beamerpauses}}%
 },
 /mmz/per overlay/.code={},
 }}
 \def\mmzSetBeamerOverlays#1#2{%
 \ifnum\c@beamerpauses=#1\relax
 \gdef\mmzBeamerOverlays{#2}%
 \ifnum\beamer@overlaynumber<#2\relax \mmz@temptrue \else \mmz@tempfalse \fi
 \else
 \mmz@temptrue
 \fi
 \ifmmz@temp
 \appto\mmzAtBeginMemoization{%
 \gtoksapp\mmzCMemo{\mmzSetBeamerOverlays{#1}{#2}}}%
 \fi
 }%

Click here to open the code.

1 should continue up to overlay 2, and at the (expanded) context included at the end of the cc-memo,
courtesy of include context in ccmemo, where you can see that the cc-memo will be used when on
the first overlay (overlay=1) when preceded by no \pause command (pauses=1).

./beamer.memo.dir/E2051FB7C5136FAB13436F08554C3F38.memo

\mmzMemo
\global \mmzContextExtra {overlay=\csname beamer@overlaynumber\endcsname ,
pauses=\ifmemoizing \mmzBeamerPauses \else \expandafter \the \csname
c@beamerpauses\endcsname \fi ,}%

\mmzSetBeamerOverlays {1}{2}%
\mmzSource
\begin {tikzpicture}[/mmz/per overlay] \node [ellipse, fill=yellow, only={2}{
pin={[overlay, fill=red, pin edge={overlay, red}]60:An important remark!} }]{An
important concept}; \end {tikzpicture}

./beamer.memo.dir/E2051FB7C5136FAB13436F08554C3F38-1F0C25A65E527F6006CFC8FACAAB578F.memo

\mmzResource{E2051FB7C5136FAB13436F08554C3F38-1F0C25A65E527F6006CFC8FACAAB578F.pdf}%
\mmzMemo
\quitvmode
\only <\mmzBeamerOverlays >{}%
\mmzIncludeExtern {0}\hbox {152.6188pt}{24.08765pt}{0.0pt}
{72.26999pt}{72.26999pt}{72.26999pt}{72.26999pt}{0.001pt}%

\setcounter {beamerpauses}{1}%
\mmzThisContext
padding=(1in,1in,1in,1in),overlay=1, pauses=1,
\mmzEndMemo

49

4.3 Record files

We have seen that externalization is a two-step process in Memoize: as it is impossible for TEX to
create multiple PDFs during a single compilation, the externs are first dumped into the document
PDF as special extern pages, and only later extracted from the main document into separate PDF files.
But extraction requires a complete PDF, which is unavailable even at the very end of the compilation
which produces the externs. The externs can therefore only be extracted after that compilation (either
before or at the beginning of the next one), and this necessitates some form of communication whereby
the memoization step informs the extraction step which pages should be extracted from the document
PDF and into which (PDF) files they should be stored. This communication is implemented through
auxiliary files called record files.

4.3.1 The .mmz file

By default, Memoize records the information needed for the extraction in a file named 〈document
name〉.mmz,43 henceforth a .mmz file. In fact, this file contains more than information on externs
created during the last compilation: it records which memos and externs were either used or created
during the compilation. The full information contained in the .mmz file is used by the clean-up script
memoize-clean.pl to safely remove stale memos and externs. Let us take a look at the .mmz file
produced by the titlepage illustration. In fact, we have two versions of this file, as it changes upon the
second compilation.

titlepage.mmz (after the first compilation)
\mmzPrefix {./titlepage.memo.dir/}
\mmzNewCMemo {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2.memo}
\mmzNewCCMemo {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\mmzNewExtern {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}{1}{159.30716pt}{161.44116pt}{0.001pt}

\mmzNewCMemo {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E.memo}
\mmzNewCCMemo {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\mmzNewExtern {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}{2}{159.56323pt}{163.74576pt}{0.001pt}

\mmzNewCMemo {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018.memo}
\mmzNewCCMemo {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\mmzNewExtern {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}{3}{157.49072pt}{162.97757pt}{0.001pt}

\endinput

As you can see, the .mmz file takes the form of a TEX script (the format was chosen because it facilitated
the implementation of the internally triggered TEX-based extraction). The crucial lines in this file,
and the only lines used by the extraction script, occur in the first version of the file: they contain
command \mmzNewExtern, which informs the extraction script that it should extract the document
page given by the second argument into the extern file given by the first argument.44 (The following
two arguments provide the expected width and height of the extern; the extraction script may check
whether the extern size conforms to these expectations, but this is not crucial, as the extern size is
checked every time it is included anyway.)
A .mmz file also contains a record of the memos (both c-memos and cc-memos) created in the last
compilation; this information is provided by the sole argument of commands \mmzNewCMemo and
\mmzNewCCMemo. And once memos and externs get used in subsequent compilations, the .mmz file

43For TEXperts: the 〈document name〉 is of course the expansion of \jobname.
44If you look at the .mmz file after extracting the externs using memoize-extract.pl without the --keep option, you

will find that the \mmzNewExtern commands are commented out; this is to prevent multiple extractions (even if they are
harmless).

50

titlepage.mmz (after subsequent compilations)
\mmzPrefix {./titlepage.memo.dir/}
\mmzUsedCMemo {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2.memo}
\mmzUsedExtern {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}

\mmzUsedCCMemo {./titlepage.memo.dir/2A2447B6AC5EBF4B454B605A60EFDCB2-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\mmzUsedCMemo {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E.memo}
\mmzUsedExtern {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}

\mmzUsedCCMemo {./titlepage.memo.dir/AD85DF8CABE7B570BF9EE388C750890E-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\mmzUsedCMemo {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018.memo}
\mmzUsedExtern {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.pdf}

\mmzUsedCCMemo {./titlepage.memo.dir/BE512513CDE383A26EC0469517265018-E778DCCCB8AAB0%
BBD3F6CFEEFD2421F8.memo}

\endinput

will reflect this with \mmzUsedCMemo, \mmzUsedCCMemo and \mmzUsedExtern, as shown in the second
version of the file above.
Finally, both versions illustrate that a .mmz file always begins with command \mmzPrefix and ends
with the \endinput marker. The argument of \mmzPrefix is the path prefix to the memo and extern
files, as determined by the invocation of key path (and its subkeys relative, dir and prefix). The
initial \mmzPrefix line is written to the .mmz file at the beginning of the document, but an additional
\mmzPrefix line will occur for every invocation of path in the document body. Finally, the \endinput
marker signals that the .mmz file is complete.
As mentioned above, the full contingent of .mmz file commands is only used by the clean-up script
memoize-clean.pl. By default, this script removes all memos and externs with the prefix given by
\mmzPrefix (relative to the directory hosting the .mmz file) but those listed by any of \mmzNewCMemo,
\mmzNewCCMemo, \mmzNewExtern, \mmzUsedCMemo, \mmzUsedCCMemo and \mmzUsedExtern. Further-
more, the clean-up script will cowardly refuse to delete anything if the .mmz file does not end with
\endinput, as this means that the compilation ended prematurely and that the .mmz file might not
mention all memos and externs actually used in the document. If given option --all, the clean-up
script removes even the memos and externs mentioned in the .mmz file, and as this option is intended to
bring Memoize to a clean slate after any “disasters,” the --all mode also ignores the potential absence
of the \endinput marker. Incidentally, the --all mode is also the raison d’être for \mmzPrefix: while
the prefix is usually recognizable from \mmzNewCMemo and friends, these commands might not make
it into the .mmz file in a fatally failed compilation, but it is precisely such compilations that could
occasionally require the full clean-up.

4.3.2 Defining a new record type

The .mmz file is not the only kind of a record file that can be produced by Memoize. Out of the box,
it can also write down the extraction instructions into a makefile or a shell script. These are useful
on systems which have to employ the TEX-based extraction but cannot trigger it internally. Running
the TEX-based extraction manually would be painful, as it must be done on extern-by-extern basis, so
Memoize offers to automate the extraction by a makefile or a shell script; here, the record file is named
memoize-extract.〈document name〉.〈record type〉 by default, where 〈record type〉 is either makefile,
sh (for shell scripts on Linux), or bat (for shell scripts on Windows).
To turn on recording of an alternate record type, use key record=〈record type〉. Memoize can record
any number of files simultaneously, so saying record=sh will produce the shell script alongside .mmz
(Memoize internally executes record=mmz to start recording the .mmz file); this should not be a problem,
but if you really want to disable the .mmz file production, you can say no record.
The predefined record types are defined through a generic system open to the user. To define
an additional record type, one needs to define, using pgfkeys, the relevant hooks of the form

51

https://ctan.org/pkg/pgfkeys

/mmz/record/〈record type〉/〈hook〉. The following 〈hook〉s can be defined (the hooks not needed
for the record file type may be left undefined):

• Key begin will be executed at the beginning of the document; it will receive no argument. Use
it to open the record file.

• Key end will be executed at the end of the document; it will receive no argument. Use it to close
the record file.

• Key prefix will be executed at the end of the document and at every invocation of key path in
the document body; it will receive a single argument, the path prefix determined by key path.

• Keys new cmemo, used cmemo, new ccmemo and used ccmemo will be executed after creating or
inputting a memo; they will receive a single argument, the full path to the memo.

• Key used extern will be executed after an extern was included into the document; it will receive
a single argument, the full path to the extern.

• Key new extern will be executed after creating creating an extern, more precisely at the end of
memoization, right after shipping out the extern page. It will receive a single argument, the full
path to the extern, but additionally, Memoize prepares the following macros:

– \externbasepath holds the full path to the extern, but (unlike #1) without the .pdf suffix;
– \pagenumber holds the “physical” page number of the extern page in the document (the

numbering starts by 1);
– \expectedwidth and \expectedheight hold the width and the height (total height, i.e.

the sum of TEX’s height and depth) of the extern page.
Below, we present two simple examples of a record file. The first type simply records the names of all
memos and externs used or created by Memoize; the resulting file could be included by .gitignore to
have git automatically ignore all files produced by Memoize. The second type lists the new externs,
each preceded by its page number in the .pdf; this file could be fed to a custom extern extraction tool.

record-files.tex
�

\newout\mmzfilesout
\mmzset{

record/files/begin/.code={
\immediate\openout\mmzfilesout{\jobname.files}%

},
record/files/new extern/.code={\immediate\write\mmzfilesout{#1}},
record/files/new cmemo/.code={\immediate\write\mmzfilesout{#1}},
record/files/new ccmemo/.code={\immediate\write\mmzfilesout{#1}},
record/files/used extern/.code={\immediate\write\mmzfilesout{#1}},
record/files/used cmemo/.code={\immediate\write\mmzfilesout{#1}},
record/files/used ccmemo/.code={\immediate\write\mmzfilesout{#1}},
record/files/end/.code={
\immediate\closeout\mmzfilesout

},
}

record-extern-pages.tex
�

\newout\mmzexternpagesout
\mmzset{

record/pages/begin/.code={
\immediate\openout\mmzexternpagesout{\jobname.extern-pages}},

record/pages/new extern/.code={%
\immediate\write\mmzexternpagesout{\pagenumber\space#1}},

record/pages/end/.code={
\immediate\closeout\mmzexternpagesout},

}

Finally, note that (unlike memos and externs) record files are auxiliary files and may be deleted at any
time after the extraction of the externs produced in the final compilation — actually, even if these
externs were not yet extracted, deleting the record file(s) will merely force their recompilation.

52

https://git-scm.com

\newout\mmzfilesout
\mmzset{
 record/files/begin/.code={
 \immediate\openout\mmzfilesout{\jobname.files}%
 },
 record/files/new extern/.code={\immediate\write\mmzfilesout{#1}},
 record/files/new cmemo/.code={\immediate\write\mmzfilesout{#1}},
 record/files/new ccmemo/.code={\immediate\write\mmzfilesout{#1}},
 record/files/used extern/.code={\immediate\write\mmzfilesout{#1}},
 record/files/used cmemo/.code={\immediate\write\mmzfilesout{#1}},
 record/files/used ccmemo/.code={\immediate\write\mmzfilesout{#1}},
 record/files/end/.code={
 \immediate\closeout\mmzfilesout
 },
}

Click here to open the code.

\newout\mmzexternpagesout
\mmzset{
 record/pages/begin/.code={
 \immediate\openout\mmzexternpagesout{\jobname.extern-pages}},
 record/pages/new extern/.code={%
 \immediate\write\mmzexternpagesout{\pagenumber\space#1}},
 record/pages/end/.code={
 \immediate\closeout\mmzexternpagesout},
}

Click here to open the code.

4.4 The memoization process

We now turn to the memoization process itself. The job of memoization is to, while compiling the given
code in a regular fashion, prepare the cc-memo (which, when it is input, will replicate the effect of
the given code), alongside any externs that the cc-memo will include (these hold the typeset material
to be replicated). Clearly, merely compiling the code cannot have this effect (unless that code was
written specifically to support memoization; more on this later), and this is why the memoized code is
typically wrapped by a memoization driver, which can be set using key driver . We’ll inspect the
default memoization driver, \mmzSingleExternDriver, in the first subsection, and we will learn how
to write specialized drivers in the remaining subsections. But first, let us say some words about a
grouping-related TEXnical detail we need to take care about during memoization.
During memoization, we have to collect certain information, like build the contents of the cc-memo.
Some of that information might be contributed by the memoized code itself. For example, a \label
“adds itself” to the cc-memo (by appending to token register \mmzCCMemo); a remember picture
aborts memoization (by issuing \mmzAbort); etc. The issue is that the memoized code might open
any number of TEX groups; we have no idea how deeply embedded the \label or remember picture
might be. Therefore, we have to collect all the information about the ongoing memoization globally:
all assignments to \mmzCCMemo must be global; \mmzAbort sets the underlying conditional globally;
etc. (Clearly, all these global variables are initialized at the start of memoization.)
This was the easy part. An additional complication arises with some options which may be set either
outside memoization, or during this process. For example, you can append the font size to the context
expression in the preamble (see section 3.3), so that the externs will be automatically recompiled when
the font size changes, and clearly, this context adjustment should respect TEX grouping; but a \ref or
some other cross-referencing command in the memoized code needs to append to the context as well,
and as this \ref occurs within the memoized code, the assignment must be global, as explained above.
Mixing the local and global assignments to the token register \mmzContext, which holds the (in the
actual implementation, local) context expression, will not do. For one, we do want to restore the
pre-memoization context expression after we have memoized the code, and furthermore, mixing local
and global assignments to the same variable is not recommended for save stack reasons anyway.
Memoize addresses this issue by having two context registers, \mmzContext and \mmzContextExtra —
when computing the context MD5 sum (which happens at the end of memoization), the two registers
are concatenated (the local one comes first). A package writer should know when to use which register,
and how. Outside memoization, one should assign to \mmzContext — locally. During memoization,
one should assign to \mmzContextExtra — globally. The user interface key context respects this
requirement automatically: it locally appends to \mmzContext outside memoization, and it globally
appends to \mmzContextExtra during memoization. (The same idea is applied to the post-memoization
hooks at end memoization and after memoization.)

4.4.1 The default memoization driver

The default memoization driver, \mmzSingleExternDriver, produces exactly one extern, which con-
tains whatever is typeset by the code submitted to memoization. The driver compiles the code into a
horizontal or vertical box depending on the value of key capture. Let us look at the definition of the
driver line by line:

The default memoization driver
�

1 \long\def\mmzSingleExternDriver#1{%
2 \xtoksapp\mmzCCMemo{\mmz@maybe@quitvmode}%
3 \setbox\mmz@box\mmz@capture{#1}%
4 \mmzExternalizeBox\mmz@box\mmz@temptoks
5 \xtoksapp\mmzCCMemo{\the\mmz@temptoks}%
6 \mmz@maybe@quitvmode\box\mmz@box
7 }

53

\long\def\mmzSingleExternDriver#1{%
 \xtoksapp\mmzCCMemo{\mmz@maybe@quitvmode}%
 \setbox\mmz@box\mmz@capture{#1}%
 \mmzExternalizeBox\mmz@box\mmz@temptoks
 \xtoksapp\mmzCCMemo{\the\mmz@temptoks}%
 \mmz@maybe@quitvmode\box\mmz@box
}

Click here to open the code.

1. Macro \mmzSingleExternDriver (and in fact any memoization driver) takes a single argument,
the code to compile. Memoize will call the driver with the code given as the second argument to
\Memoize, but wrapped in a macro which re-reads it using \scantokens when verbatim is in
effect.

2. If we’re capturing into a horizontal box (capture=hbox), we put \quitvmode into the cc-memo
— putting it to the very beginning should make sure that any replicated \label and \index
commands refer to the correct page.

3. We compile the given code, storing the typeset material into a box (above, a temporary box
called \mmz@box). \mmz@capture resolves into a box construction command, depending on the
value capture.

4. Macro \mmzExternalizeBox instructs Memoize to externalize the box given as its first argument.
However, this macro does not directly produce an extern page or write any instructions into
the cc-memo; the road to this final destination is indirect. \mmzExternalizeBox has two effects.
First, it adds the contents of the given box (above, \mmz@box) to an internal box dedicated to
holding all the externs produced in this memoization (the contents of \mmz@box remain as they
are) — it is only at the end of memoization that the contents of this internal box are shipped off to
extern pages. Second, \mmzExternalizeBox produces the code which will include the extern into
the document on subsequent compilations (this will be a call to \mmzIncludeExtern, potentially
prefixed by \quitvmode; see section 4.2.1 for details). This code is stored into the token register
gives as the second argument (above, \mmz@temptoks), and it is the responsibility of the driver
to include it into the cc-memo. (In the interest of full disclosure, \mmzExternalizeBox also
updates the list of externs produced in this memoization. At the end of memoization, this list
is written to the beginning of the cc-memo, resulting in the \mmzResource lines preceding the
\mmzMemo marker.)

5. The construction of the cc-memo is indirect as well. In the third line of the definition, we globally
append the extern-inclusion code residing in \mmz@temptoks to token register \mmzCCMemo. At
the end of memoization, the contents of \mmzCCMemo are written into the cc-memo, preceded by
the \mmzMemo marker.

6. We put the typeset material into the document, again preceded by \quitvmode when capturing
in a horizontal box.

You might wonder why the construction of the extern pages and the cc-memo (and actually, of the
c-memo as well) is indirect, as described above.

• For one, the indirect construction facilitates potential abortion of memoization (see section 3.1).
With the indirect route, aborting is easy — as nothing was permanently written anywhere yet,
Memoize simply skips the final part of the process, where extern boxes are shipped into extern
pages and the memo registers written into memo files — and also clean: if \mmzExternalizeBox
immediately shipped out the extern pages, these pages would remain in the document even in
the case of abortion.

• Even more importantly, the cc-memo filename contains the 〈context md5sum〉 (see section 4.2.1),
but the context expression is not yet fully known when memoization starts — remember (from
section 3.3) that a \ref in the memoized code will update the context! The cc-memo can therefore
only be opened at the end of memoization, which necessitates a buffer (i.e. the \mmzCCMemo
register) for storing its contents during memoization.

4.4.2 Pure memoization

The default memoization driver discussed above is really an externalization driver: it produces a
single extern. We now move to examples of drivers with other functions, starting with a pure
memoization driver, which does not externalize any typeset output — simply because it does not call
\mmzExternalizeBox at any point — but rather remembers the result of a (pgfmath) computation
(let’s pretend that the computation is time-consuming).

54

pgfmathparse.tex
�

\def\mmzPgfmathDriver#1{%
#1%
\xtoksapp\mmzCCMemo{\def\noexpand\pgfmathresult{\pgfmathresult}}%
\xappto\mmzAfterMemoizationExtra{\def\noexpand\pgfmathresult{\pgfmathresult}}%

}
\mmz[driver=\mmzPgfmathDriver]{\pgfmathparse{6*7}}%
$6*7=\pgfmathresult$

the cc-memo
\mmzMemo
\def \pgfmathresult {42.0}%
\mmzEndMemo

document page

6 ∗ 7 = 42.0

Command \mmz above memoizes its mandatory argument with the memoization driver set to the pre-
viously defined macro \mmzPgfmathDriver. Just as the default driver above, \mmzPgfmathDriver first
executes the given code. However, there is no need to do this in the context of a \setbox, as the mem-
oized code, which is obviously expected to consist of a single \pgfmathparse call, does not typeset any-
thing: \pgfmathparse evaluates the given expression and stores the result into macro \pgfmathresult.
The driver has two jobs: first, it must store this result into the cc-memo, to be utilized in subsequent
compilations; second, because the assignment to \pgfmathresult (within \pgfmathparse) is local,
the driver also needs to somehow smuggle the result out of the \endgroup issued by \Memoize and
thereby make it into the following code (the final line of the example, which typesets the equation).
Both jobs are easy enough: the expansion of \def\noexpand\pgfmathresult{\pgfmathresult} (in
this case, \def\pgfmathresult{42.0}) is (globally) appended both to the token register \mmzCCMemo,
which Memoize later writes into the cc-memo, and to the macro underlying the after memoization
hook, whose contents are executed after closing the memoization group.
Let us consider an alternative implementation of the same goal of memoizing the result of a pgfmath
computation, showcasing a couple of useful tricks.

pgfmathparse-embellished.tex
�

\def\mmzSmuggleOneDriver#1#2{% #1 = the macro to smuggle, #2 = the memoized code
#2%
\xtoksapp\mmzCCMemo{\def\noexpand#1{#1}}%
\xappto\mmzAfterMemoizationExtra{\the\mmzCCMemo}%

}
\mmzset{

auto=\pgfmathparse{
args=m, memoize,
clear context,
driver=\mmzSmuggleOneDriver\pgfmathresult,

},
}
\pgfmathparse{6*7}%
$6*7=\pgfmathresult$

For one, this “embellished” example reminds us that we can list the driver key among the auto-options
(even if I don’t really recommend automemoizing \pgfmathparse). But even more importantly, the
example shows that the driver consist of more than a single control sequence; the only requirement
is that the given driver code will consume the memoized code. In this example, we have developed
a generic smuggling driver and applied it to \pgfmathresult in particular — \pgfmathresult will
become the first argument of \mmzSmuggleOneDriver, and the memoized code will become its second
argument.
In the first version of the example, we have appended the same code to macro \mmzCCMemo and to
macro \mmzAfterMemoizationExtra — no surprise here, as we want the effect of memoization and
utilization to be the same. In the embellished version, we advertise another way to achieve the same
effect, a way which might be useful for complicated drivers: we simply smuggle out the entire cc-memo.

55

\documentclass{article}

\usepackage{pgfmath}
\usepackage{memoize}

\def\mmzPgfmathDriver#1{%
 #1%
 \xtoksapp\mmzCCMemo{\def\noexpand\pgfmathresult{\pgfmathresult}}%
 \xappto\mmzAfterMemoizationExtra{\def\noexpand\pgfmathresult{\pgfmathresult}}%
}

\begin{document}
\mmz[driver=\mmzPgfmathDriver]{\pgfmathparse{6*7}}%
$6*7=\pgfmathresult$
\end{document}

Click here to open the code.

\documentclass{article}

\usepackage{pgfmath}
\usepackage{memoize}

\def\mmzSmuggleOneDriver#1#2{% #1 = the macro to smuggle, #2 = the memoized code
 #2%
 \xtoksapp\mmzCCMemo{\def\noexpand#1{#1}}%
 \xappto\mmzAfterMemoizationExtra{\the\mmzCCMemo}%
}
\mmzset{
 auto=\pgfmathparse{
 args=m, memoize,
 clear context,
 driver=\mmzSmuggleOneDriver\pgfmathresult,
 },
}

\begin{document}
\pgfmathparse{6*7}%
$6*7=\pgfmathresult$
\end{document}

Click here to open the code.

The idea works even when memoization procudes externs; in that case, however, the driver also has
to say \mmzkeepexternstrue — conditional \ifmmzkeepexterns decides whether Memoize keeps the
externs around, in memory, even after shipping them out (but they are always gone at the start of the
next memoization).
Finally, remember that the default context expression contains the padding values. However, these
really have no place in the context expression of some purely memoized code. We have therefore
emptied out the context expression using clear context.

4.4.3 Multiple externs per memo

In the next example, we show how to produce multiple externs for a single piece of memoized code.
The usage case I find most appealing is breaking the typeset material, like a table, across pages — but
of course, table-breaking is too complicated an example, so we illustrate the idea by defining command
\countdown, which counts down from the given number, typesetting each number into its own line.
Clearly, if we were to externalize a call to this command using the default memoization driver, page
breaking would stop working, as the entire countdown would be seen as a single, unbreakable box. To
externalize it properly, the chunks of the countdown that should appear on separate pages must be
externalized into separate externs, as shown below.

countdown.tex
�

\lipsum[66]\par
{\Huge\countdown{30}}\par
\lipsum[66]\par

extern …0E11C.pdf

..................... 30.....................

..................... 29.....................

..................... 28.....................

..................... 27.....................

..................... 26.....................

..................... 25.....................

..................... 24.....................

..................... 23.....................

..................... 22.....................

..................... 21.....................

extern …0E11C-1.pdf

..................... 20.....................

..................... 19.....................

..................... 18.....................

..................... 17.....................

..................... 16.....................

..................... 15.....................

..................... 14.....................

..................... 13.....................

..................... 12.....................

..................... 11.....................

..................... 10.....................

...................... 9......................

...................... 8......................

extern …0E11C-2.pdf

...................... 7......................

...................... 6......................

...................... 5......................

...................... 4......................

...................... 3......................

...................... 2......................

...................... 1......................

document page

Nunc sed pede. Praesent vitae lectus. Praesent neque ju-
sto, vehicula eget, interdum id, facilisis et, nibh. Phasellus at
purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante
placerat leo semper dictum. Mauris metus. Curabitur lobor-
tis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus
id ipsum.

..................... 30.....................

..................... 29.....................

..................... 28.....................

..................... 27.....................

..................... 26.....................

..................... 25.....................

..................... 24.....................

..................... 23.....................

..................... 22.....................

..................... 21.....................

document page

..................... 20.....................

..................... 19.....................

..................... 18.....................

..................... 17.....................

..................... 16.....................

..................... 15.....................

..................... 14.....................

..................... 13.....................

..................... 12.....................

..................... 11.....................

..................... 10.....................

...................... 9......................

...................... 8......................

document page

...................... 7......................

...................... 6......................

...................... 5......................

...................... 4......................

...................... 3......................

...................... 2......................

...................... 1......................
Nunc sed pede. Praesent vitae lectus. Praesent neque ju-

sto, vehicula eget, interdum id, facilisis et, nibh. Phasellus at
purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante
placerat leo semper dictum. Mauris metus. Curabitur lobor-
tis. Curabitur sollicitudin hendrerit nunc. Donec ultrices lacus
id ipsum.

To achieve this, we will have to integrate the memoization driver into the very code of \countdown.
This approach contrasts sharply with the standard memoization driver, which is simply wrapped around
the memoized code. Let’s say we have implemented a non-memoization-aware variant of \countdown
as a loop which gathers the countdown lines into a vertical box, and periodically, when this box holds
all the material that will fit onto the page, places it into the main vertical list (i.e. on the page).45 To

45Of course, implementing \countdown this way would be idiotic; a sane implementation would simply spit out the

56

\documentclass{article}
\usepackage[a6paper,margin=5mm]{geometry}
\pagestyle{empty}
\usepackage{lipsum}

\usepackage{memoize}
\usepackage{countdown}

\parskip 2ex
\begin{document}
\lipsum[66]\par
{\Huge\countdown{30}}\par
\lipsum[66]\par
\end{document}

Click here to open the code.

have this command support memoization, we have to externalize our box every time we’re placing
it into the main vertical list. This is precisely what we do in the definition of \countdowntypeset
below:46 the final line of this macro adds the material to the main vertical list, and the preceding
lines externalize it (the two lines inside \ifmemoizingcountdown should be familiar from the definition
of the standard memoization driver; we’ll explain about the conditional below); note that Memoize
automatically deals with the fact that our box is vertical. As a result of having our memoization driver
integrated into the loop of the core command, we can create as many externs as necessary, complete
with the code in the cc-memo for including each and every one of them on subsequent compilations.
Each extern eventually makes it into its own extern file, and note that the filenames of the non-first
externs have their sequential number (we start counting at 0) appended to the basename, as shown in
the example.47

countdown.sty (version 1)
�

\ProvidesPackage{countdown}
\RequirePackage{memoizable}

% ...

\newif\ifmemoizingcountdown
\def\countdowntypeset{%

\ifmemoizingcountdown
\mmzExternalizeBox\countdownbox{\toks0}%
\xtoksapp\mmzCCMemo{\the\toks0}%

\fi
\noindent\box\countdownbox\par

}

\def\countdowndriver#1{%
\memoizingcountdowntrue
#1%

}

\mmzset{
auto=\countdown{
args=m, memoize,
driver=\countdowndriver,
context={fsize=\csname f@size\endcsname,textheight=\the\textheight},
options={context/.expanded={pagetotal=\the\pagetotal}},

},
}

Of course, the chunks of the countdown should only be externalized when the code is actually being
memoized, and not, say, when Memoize is disabled or performing regular compilation. (Note that this is
a problem that only affects integrated drivers and not wrapped drivers such as the default driver.) The
first thought is to detect whether we’re undergoing memoization using conditional \ifmemoizing, which
Memoize sets to true at the start of every memoization. This conditional is used in the run conditions of
advice for \ref and \label, the idea being that they should add stuff to the context (\ref) and the cc-
memo (\label) only when undergoing memoization. However, deploying \ifmemoizing in the current
example would not be exactly right. It would work well with the main document as it is, but it would
fail if \countdown was called from a piece of code that was independently submitted to memoization,

countdown lines one by one, and let TEX deal with page-breaking. However, remember that we are pretending that we
are typesetting (and page-breaking) some complex material, like a table; in such a case, the loop outlined in the main
text would make perfect sense.

46We omit the definition of the core algorithm of \countdown in the listing, because it is mostly irrelevant for our
discussion, and only show the memoization-related code.

47The auto declaration of \countdown adds some relevant parameters to the context (see section 3.3). The countdown
will be recompiled upon change of either the font size (f@size), the text height (\textheight), or the height of the
material in the main vertical list collected so far (\pagetotal). The \pagetotal parameter is especially important;
including it makes sure that the countdown will be recompiled when it is pushed up or down the page. Also note that we
want the context to record the value of \pagetotal when the (automemoized) \countdown is encountered (rather than at
the end of memoization), so we expand it when applying the auto-options.

57

\ProvidesPackage{countdown}
\RequirePackage{memoizable}

\newbox\countdownbox
\newcount\countdowncount

\def\countdown#1{%
 \countdowncount=#1\relax
 \edef\countdownpagetotal{\the\pagetotal}%
 \countdowni
}

\def\countdowni{%
 \ifnum\countdowncount=0
 \countdowntypeset
 \else
 \expandafter\countdownii
 \fi
}

\def\leaderfill{\leaders\hbox to 0.25em{\hss.\hss}\hfill}
\def\countdownii{%
 \setbox0=\hbox to \linewidth{\leaderfill\strut\the\countdowncount\leaderfill}%
 \ifdim\dimexpr\ht\countdownbox+\dp\countdownbox+\ht0+\dp0\relax
 >\dimexpr\textheight-\countdownpagetotal\relax
 \def\countdownpagetotal{0pt}%
 \countdowntypeset
 \fi
 \setbox\countdownbox=\vbox{\unvbox\countdownbox\box0}%
 \advance\countdowncount -1
 \countdowni
}

\newif\ifmemoizingcountdown
\def\countdowntypeset{%
 \ifmemoizingcountdown
 \mmzExternalizeBox\countdownbox{\toks0}%
 \xtoksapp\mmzCCMemo{\the\toks0}%
 \fi
 \noindent\box\countdownbox\par
}

\def\countdowndriver#1{%
 \memoizingcountdowntrue
 #1%
}

\mmzset{
% trace context, include context in ccmemo,
 auto=\countdown{
 args=m, memoize,
 driver=\countdowndriver,
 context={fsize=\csname f@size\endcsname,textheight=\the\textheight},
 options={context/.expanded={pagetotal=\the\pagetotal}},
 },
}

Click here to open the code.

e.g. \mmz{\countdown{30}}.48 In that case, both the \mmz driver and the \countdown integrated
driver would get executed, resulting in the creation (and in subsequent compilations, utilization) of
four externs: first, the \countdown driver would externalize each countdown chunk separately, and
then, the \mmz driver would externalize them, all together, yet again. You can try this out by replacing
\ifmemoizingcountdown in \countdowntypeset by \ifmemoizing (and wrapping the \countdown
call in \mmz).
The solution to the \ifmemoizing problem deployed in the example is to declare a new, \countdown-
specific memoization conditional, and set it to true in \countdown’s formal driver, i.e. the macro set
as the driver in the auto declaration for \countdown. In fact, Memoize can do most of this for you:
when we write integrated driver=countdown, Memoize creates the countdown-specific memoization
conditional and declares the formal driver which sets this conditional to true; you only have to access
this conditional in your code, and you should do this using the LATEX-style conditional \IfMemoizing,
as shown below.49

countdown.sty (version 2)
�

\def\countdowntypeset{%
\IfMemoizing{countdown}{%
\mmzExternalizeBox\countdownbox{\toks0}%
\xtoksapp\mmzCCMemo{\the\toks0}%

}{}%
\noindent\box\countdownbox\par

}

\mmzset{
auto=\countdown{
args=m, memoize,
integrated driver=countdown,
% ...

4.4.4 Driver-based memoizable design

In the previous section, we used the integrated driver approach to produce memos including multiple
externs, but the approach can be useful for one-extern memos as well, when the extern must be
integrated into the document in some special way. We already discussed such situations in section 3.5.2,
where we suggested to split a “difficult” command into the outer command and the inner command,
and only submit the inner command to automemoization. However, the vanilla flavour of this approach
had a negative impact on the user interface to automemoization. In this section, we will deploy the
memoization driver to overcome the issue.
Let us revisit the poormansbox example from section 3.5.2. Remember that that environment produced
a potentially framed box of a certain width, surrounded by some pre- and post-code, and that the issue
was that the pre- and the post-code should not be memoized, but rather executed at every invocation
of the command, as it was primarily intended to put some stretchable vertical space around the box.
The document source� and the resulting PDF of the example are the same as in section 3.5.2, so we
will not repeat them here, but jump directly into a revised definition of the environment. We will
retain the core idea from the original implementation: the outer command will execute the pre- and
the post-code, and the inner command will typeset the box. But unlike in the original implementation,
we will not automemoize the inner, internal command (this was the source of the author’s discomfort)
but the outer, user-level command — and we will equip it with a custom memoization driver. The
major idea here is to have the driver compose a cc-memo which not only includes the extern, but also
executes the outer command.

48Such embedding occurs more often than you might think. For example, forest calls tikzpicture under the hood,
and both environments are automemoized.

49You shouldn’t directly use the plain TEX countdown-specific conditional created by integrated driver — to prevent
accidental access, Memoize doesn’t actually name it \ifmemoizingcountdown — because this conditional is undefined
when Memoize is not loaded, i.e. when only package memoizable is in effect. Furthermore, \IfMemoizing addresses a
problem faced by integrated drivers of potentially recursive commands; we will talk about this in section 4.4.4.

58

% This file should be saved as "countdown.sty".
\ProvidesPackage{countdown}
\RequirePackage{memoizable}

\newbox\countdownbox
\newcount\countdowncount

\def\countdown#1{%
 \countdowncount=#1\relax
 \edef\countdownpagetotal{\the\pagetotal}%
 \countdowni
}

\def\countdowni{%
 \ifnum\countdowncount=0
 \countdowntypeset
 \else
 \expandafter\countdownii
 \fi
}

\def\leaderfill{\leaders\hbox to 0.25em{\hss.\hss}\hfill}
\def\countdownii{%
 \setbox0=\hbox to \linewidth{\leaderfill\strut\the\countdowncount\leaderfill}%
 \ifdim\dimexpr\ht\countdownbox+\dp\countdownbox+\ht0+\dp0\relax
 >\dimexpr\textheight-\countdownpagetotal\relax
 \def\countdownpagetotal{0pt}%
 \countdowntypeset
 \fi
 \setbox\countdownbox=\vbox{\unvbox\countdownbox\box0}%
 \advance\countdowncount -1
 \countdowni
}

\def\countdowntypeset{%
 \IfMemoizing{countdown}{%
 \mmzExternalizeBox\countdownbox{\toks0}%
 \xtoksapp\mmzCCMemo{\the\toks0}%
 }{}%
 \noindent\box\countdownbox\par
}

\mmzset{
% trace context, include context in ccmemo,
 auto=\countdown{
 args=m, memoize,
 integrated driver=countdown,
 context={fsize=\csname f@size\endcsname,textheight=\the\textheight},
 options={context/.expanded={pagetotal=\the\pagetotal}},
 },
}

Click here to open the code.

\documentclass{article}
\usepackage[a5paper,margin=1cm,noheadfoot]{geometry}
\pagestyle{empty}
\usepackage{lipsum}

% This document works with all the poormanbox packages developed in the
% manual. Uncomment the one one you want to test. Also feel free to remove the
% line loading Memoize, all poormanbox packages should work without it, even if
% they support it.

\usepackage{memoize}

% \usepackage{poormansbox}
% \usepackage{poormansbox-memoizable}
\usepackage{poormansbox-driver}

\parskip 1ex plus 0.5ex minus 0.5ex

\begin{document}
\lipsum[3]

\begin{poormansbox}[width=.8\linewidth]
 \pmbset{width=\linewidth}
 \lipsum[101]
 \begin{poormansbox}[frame]
 \footnotesize\lipsum[66]
 \end{poormansbox}
 \lipsum[75]
\end{poormansbox}

\lipsum[4]

\begin{poormansbox}[
 width=.6\linewidth, frame,
 before=\noindent\llap{---},
 after=---
]
 \lipsum[65]
\end{poormansbox}Framed.

\lipsum[144]
\end{document}

Click here to open the code.

poormansbox-driver.sty
�

\NewDocumentEnvironment{poormansbox}{% the environment
o % the options
+b % the environment body

}{%
\poormansbox@outer{#1}{\poormansbox@inner{#1}{#2}}%

}{}

\def\poormansbox@outer#1#2{% the outer command
\pmbset{#1}% apply the options
\pmb@before % the pre-code
#2% this will be either the inner command, or |\mmzIncludeExtern|
\pmb@after % the post-code

}
\def\poormansbox@inner#1#2{% the inner command

\setbox0=\hbox{% typeset our product into a box
\ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi
{%
\begin{minipage}{\pmb@width}%
#2%

\end{minipage}%
}%

}%
\IfMemoizing[1]{pmb}{% if memoizing the this instance of poormansbox
\mmzExternalizeBox0{\toks0}% externalize the box
\xtoksapp\mmzCCMemo{% append to cc-memo
\noexpand\csuse{poormansbox@outer}% call the outer command
{\unexpanded{#1}}% the options
{\the\toks0}% the extern-inclusion code (|\mmzIncludeExtern...|)

}%
}{}%
\quitvmode
\box0 % put the extern box into the document

}
\mmzset{auto={poormansbox}{memoize, integrated driver=pmb}}

In detail, the implementation (partially shown in the .sty listing) is as follows. The outer command
(\poormansbox@outer) first applies the options (#1) and then wraps the pre-code (\pmb@before)
and the post-code (\pmb@after) around some arbitrary code (#2). During memoization or regular
compilation, the outer command is invoked through the poormansbox environment, and you can see
that in the definition of that environment, the second argument to \poormansbox@outer is a call to
the inner command (\poormansbox@inner; this command takes two arguments, the options and the
environment body). During utilization, the outer command is invoked from the cc-memo,50 and as you
can see in the cc-memo listing below, the second argument to \poormansbox@outer there is a call to
\mmzIncludeExtern.

the second poor man’s box’s cc-memo
\mmzResource{4CF57AD067E58C5F29B2FE463A62E9DE-E778DCCCB8AAB0BBD3F6CFEEFD2421F8.pdf}%
\mmzMemo
\csuse {poormansbox@outer}{ width=.6\linewidth , frame, before=\noindent \llap {---},
after=--- }{\mmzIncludeExtern {0}\hbox {225.31938pt}{52.34444pt}{47.34444pt}
{72.26999pt}{72.26999pt}{72.26999pt}{72.26999pt}{0.001pt}}%

\mmzEndMemo

And how does \poormansbox@outer get into the cc-memo, which normally only includes a call to
\mmzIncludeExtern, you ask? This is the job of the memoization driver, which is in this case integrated
into the inner command. The overall shape of the driver is the same as the shape of the standard

50As you can see, in the cc-memo the outer command is invoked by \csuse{poormansbox@outer}. A straight
\poormansbox@outer would not work because we’re in the middle of the document where @ is not a letter, and including
a \makeatletter in front of it (and in a group) only works if direct ccmemo input was in effect. Under the default,
indirect cc-memo input regime, the core cc-memo is tokenized before \makeatletter can take effect.

59

\ProvidesPackage{poormansbox-driver}
\RequirePackage{memoizable}

\newcommand\pmbset[1]{\pgfqkeys{/pmb}{#1}}
\pmbset{
 width/.store in=\pmb@width,
 frame/.is if=pmb@frame,
 before/.store in=\pmb@before,
 after/.store in=\pmb@after,
}
\def\pmb@width{\linewidth}
\newif\ifpmb@frame
\def\pmb@before{}
\def\pmb@after{}

\NewDocumentEnvironment{poormansbox}{% the environment
 o % the options
 +b % the environment body
}{%
 \poormansbox@outer{#1}{\poormansbox@inner{#1}{#2}}%
}{}

\def\poormansbox@outer#1#2{% the outer command
 \pmbset{#1}% apply the options
 \pmb@before % the pre-code
 #2% this will be either the inner command, or |\mmzIncludeExtern|
 \pmb@after % the post-code
}
\def\poormansbox@inner#1#2{% the inner command
 \setbox0=\hbox{% typeset our product into a box
 \ifpmb@frame\expandafter\fbox\else\expandafter\@firstofone\fi
 {%
 \begin{minipage}{\pmb@width}%
 #2%
 \end{minipage}%
 }%
 }%
 \IfMemoizing[1]{pmb}{% if memoizing the this instance of poormansbox
 \mmzExternalizeBox0{\toks0}% externalize the box
 \xtoksapp\mmzCCMemo{% append to cc-memo
 \noexpand\csuse{poormansbox@outer}% call the outer command
 {\unexpanded{#1}}% the options
 {\the\toks0}% the extern-inclusion code (|\mmzIncludeExtern...|)
 }%
 }{}%
 \quitvmode
 \box0 % put the extern box into the document
}
\mmzset{auto={poormansbox}{memoize, integrated driver=pmb}}

Click here to open the code.

driver, discussed in section 4.4.1: typeset the extern material into a box, externalize this box, append
the extern-inclusion code to the cc-memo, and put the extern box into the document. It is the cc-memo
part which interests us right now: unlike the standard driver, we don’t simply append the contents
of \mmz@temptoks, i.e. a \mmzIncludeExtern call; we rather append a call to \poormansbox@outer,
which gets the \mmzIncludeExtern call as its second argument (and the options as its first argument).
The core part of the driver, which externalizes the box and appends to the cc-memo, is embedded
inside the true branch of conditional \IfMemoizing[1]{pmb}. We already used this conditional in
section 4.4.3, but without the optional argument. Such usage will not work here, because it is not
recursion-safe. Unlike in the \countdown situation, one poormansbox environment can be embedded
in another one (and, in our example, it is). If we deployed \IfMemoizing{pmb} in the inner command,
the driver would be executed for both the outer and the inner instance of the environment, whereas it
should really be executed only for the outer instance.
When used in a recursion-safe way, i.e. with the optional argument, \IfMemoizing first tests whether
the auxiliary command-specific conditional from the previous section is true, and then proceeds to
compare the current group level (ε-TEX’s \currentgrouplevel) to the group level at the start of
memoization (which Memoize stored in \memoizinggrouplevel). Only if these group levels match do
we know that we’re working on the outer instance of the environment, and that we should therefore
execute the memoization driver. Importantly, though, the two group levels are compared modulo the
offset, given as the optional parameter to \IfMemoizing: in our example, the offset is 1, because the
driver is located inside the poormansbox environment, which opens a group — note that 0 zero (no
offset) is not the default optional parameter; the absence of the optional parameter indicates that the
non-recursion safe method should be used.51

4.4.5 Shipout

Memoize is a hypocrite: when it is creating extern pages, it uses \(pdf)primitive\shipout to bypass
the regular shipout routine of the format, but it is offended if anyone else does that.
Memoize bypasses the regular shipout because the extern pages should really not be modified or
discarded by a foreign package. But using the primitive \shipout means that extern shipouts can’t be
detected by another package, at all. To facilitate peaceful coexistence with a potential package which
needs to know about our extern pages, we offer public counter \mmzExternPages holding the number
of externs shipped out so far. And if anyone really needs to do something at every extern shipout, they
can always (ab)use /mmz/record/〈record type〉/new extern as a post-extern-shipout hook.
The other side of the story is about Memoize needing to know the “physical” page numbers of its
externs in the document PDF — how else are we to extract them? Memoize computes these page
numbers by adding the values of several counters: \mmzRegularPages, which holds the number of
regular shipouts; the above-mentioned \mmzExternPages, which holds the number of extern shipouts;
and \mmzExtraPages, which holds the number of other shipouts. The latter counter should be advanced
by a package which, like Memoize, bypasses the regular shipout routine.
LATEX and ConTEXt kindly provide the number of regular shipouts as publicly a accessible counter, so
we define \mmzRegularPages as synonymous with their \ReadonlyShipoutCounter and \realpageno.
In plain TEX, we have to hijack the \shipout control sequence and count regular shipouts ourselves;
as we have to hijack it while it still refers to the \shipout primitive, this format provides another
reason for preferring Memoize to be loaded early.

51Even this approach is not completely bullet-proof. It will only work when the inner instance of the command is
guaranteed to occur in an additional group, i.e. when our command opens up a group for any free-form code. I will
assume that situations which require externalization of a potentially recursive command which, for some reason, cannot
open the group before processing a free-form argument, are rare enough to not warrant a generic solution here.

60

4.5 Automemoization

Automemoization is a mechanism that automatically memoizes the result of the compilation of certain
commands and environments. Writing Memoize, I went to great lengths to make it flexible, yet easy to
use. This resulted in automemoization deploying two specifically developed auxiliary packages: package
Advice, which provides a generic framework for extending the functionality of selected commands
and environments, and package CollArgs, which provides a command for collection of the arguments
conforming to the given (slightly extended) xparse argument specification.
This section lists the considerations which went into designing the system, followed by short tutorials on
both auxiliary packages, which include several examples of how Memoize uses the underlying advising
framework.

(De)activation Ideally, all commands and environments where memoization makes sense would
support Memoize (or Memoize would support them) and nothing would ever go wrong. In this dream
world, memoization would be completely transparent to the author. However, things will go wrong, so
at the very least, we need to offer the author a simple way to selectively switch automemoization on
and off. This is achieved by keys activate and deactivate.

Submission Of course, there will be commands without official support by either Memoize or
the package which defines them; clearly, at the moment when I write this, all commands but \tikz,
tikzpicture and forest are such. Or, the author might want to automemoize his or her own command.
Ideally, submitting a new command to automemoization would be as simple as memoize=〈command〉,
and for environments, this is in fact achievable, although the actual interface is auto={〈environment〉}
{memoize}. But simply submitting the name cannot work for commands, because commands are where
we encounter the major TEXnical problem with automemoization: we need to somehow collect the
arguments of the command — without executing the command itself.

Argument collection using CollArgs TEX being TEX, automatically determining the scope of a
command in general is just plain impossible. Note that inspecting the \meaning is not enough in general,
because the “real” and the formal arguments of a command can, and quite often do, differ wildly. The
author (or the package writer) will need to tell Memoize about the argument structure of the command.
And as there is already a nice and general argument specification on the market — I’m obviously
referring to the argument specification of package xparse, which was recently even integrated into the
core LATEX — why not use that? Memoize comes with an auxiliary package CollArgs, which (given the
slightly extended xparse-style argument specification) collects the arguments of a command into a single
entity. All the user needs to write to enable automemoization for a command is thus auto=〈command〉
{memoize, args={〈argument specification〉}}. Even simpler, when it comes to commands defined by
xparse’s \NewDocumentCommand or friends, writing auto=〈command〉{memoize} will suffice, as the
argument specification of these commands can be retrieved by \GetDocumentCommandArgSpec.

Weird commands Not every argument structure can be described using xparse’s argument
specification, a case in point being \tikz with its totally idiosyncratic syntax — and if Memoize won’t
support \tikz, why have it at all? The interface to automemoization must be flexible enough to
cover even the craziest commands, and this is why Memoize allows for arbitrary argument collectors.
These are defined by the advanced user or package writer and then declared to be used for parsing
the argument structure of a command by writing auto={〈command〉}{...,collector=〈argument
collector〉}.

Over and above automemoization: handlers The framework facilitating automemoization
must cover more than just that. For one, it sometimes makes sense to automatically prevent memoization
during the execution of certain commands (as in the nomemoize example in section 3.4). It follows
that the action performed to an invocation of a command should not be fixed. In the advising
framework, implemented by the auxiliary package Advice, we assign each advised command a handler

— a command which does the real work of memoizing or whatever. Crucially, the handler and the

61

https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse

collector are independent of each other, allowing a single memoization handler to handle commands
with both standard and non-standard argument structure, and allowing a single collector to serve
either the memoization or the no-memoization handler.

Over and above automemoization: the outer and the inner handler Second, unlike the
memoization handler set by memoize, not all handlers work with the entire argument list of the advised
command. Some handlers don’t care about the arguments of the advised command at all: abort simply
aborts memoization whenever the advised command is executed. Other handlers are only intended
to advise a single command or a small family of commands, and need to inspect specific arguments
of the advised command: for example, ref needs to append the internal cross-reference macro to
the context, and it of course constructs the name of this macro from the reference key. For all such
handlers, it would be plain wasteful to first collect the arguments and then tear them apart to inspect
them (or not). The advising framework therefore recognizes two kinds of handlers. The abortion and
the cross-reference handler are examples of an outer handler, which is simply placed in front of the
arguments of the handled command as they are, without invoking the collector. The memoization
handler, on the other hand, is an example of an inner handler, which receives the entire argument list
from the collector (as a single argument) — or more precisely, even memoize sets up an outer handler,
but this outer handler doesn’t do much more than invoke the collector, which in turn invokes the inner
handler.

Run conditions are another, if minor, lego piece of the advising framework. Using key run
conditions, the user can set the conditions under which the (outer) handler is executed; for ex-
ample, cross-reference commands are only advised when memoization is underway. And the same
goes for \label, and for the replicated \index, and for \(pdf)savepos, upon which memoization
must be aborted. The bottom-line is that run conditions repeat across handlers, so it makes sense
to separate them out as an independent component of the framework, with the added bonus that
the system can make sure that an invocation of a advised command which does not satisfy the run
conditions will incur as litte overhead as possible.

Bailout handler An automemoized command applies the next-options (set by \mmznext), but
what happens when the run conditions are not satisfied? If nothing happened, the existing next-options
might apply to the next instance of (auto)memoization, which would not be what the author intended.
This is why Advice introduces the bailout handler, a piece of code executed before the original command
when the run conditions are not met. Obviously, the bailout handler for memoization clears out the
next-options (and does not process them).

The structure of advice Together, the components mentioned above form a piece of advice:

activated?

run conditions?

outer handler〈args〉

default:

collector〈args〉

inner handler {〈args〉}

other:
whatever52

bailout handler

〈original command〉〈args〉

〈original command〉〈args〉

yes

yes no

no

52The handler may do whatever as long as it consumes all and only the arguments of the original command.

62

Deferred activation Memoize needs to be loaded early, but activation should take place late, so
that it can surely override the submitted commands; a case in point, hyperref redefines \ref very
late. To address the issue, the advising framework implements the deferred activation regime, under
which (de)activation commands are not executed but collected in a special style, activate deferred.
Memoize deploys the deferred activation regime throughout the preamble, and executes activate
deferred at the latest possible begindocument hook; as a bonus, it also offers the author a way to
avoid automatic activation completely by invoking key manual.

Install anywhere Once all this machinery is developed, why not offer it to others as well?
Once I decided to offer Advice (at the time, still called Auto) as a standalone package (and I freely
admit that the framework got much cleaner once I separated its code out of Memoize) it became
immediately clear that if it is to serve as a generic framework, it should be possible for multiple packages
to use it without interfering with each other. The package thus allows any number of installations
into different namespaces, each namespace a pgfkeys keypath. The installation is a breeze: \pgfkeys
{〈namespace〉/.install advice}.

4.5.1 Using package Advice

In this section, we will provide some examples of handler declarations, mainly based on how Memoize
deploys the advising framework.

/mmz/auto/memoize

In section 2.3, the author was instructed to submit a command to automemoization by writing
auto=〈command〉{memoize,...}. The auto-key memoize is a style (defined by Memoize rather than
Advice) which sets the appropriate components of the automemoization advice. Residing in keypath
/mmz/auto, it is effectively defined as follows:

\mmzset{
auto/memoize/.style={
run if memoization is possible,
bailout handler=\mmz@auto@bailout,
outer handler=\mmz@auto@outer,
inner handler=\mmz@auto@memoize

}
}

The heart of this advice is its inner handler, which actually triggers memoization by executing \Memoize.
Remember that the first argument of \Memoize is the code which the md5sum is computed off of. This
argument must therefore be identical to the author’s invocation of the automemoized command or
environment. Given what Advice offers, this is easy to construct: \AdviceReplaced holds the code
replaced by the advice, and the 〈arguments〉 of the automemoized command are waiting for us in #1.
The second argument of \Memoize will be similar, but as this is the code which will get compiled, we
have to execute the original definition of the command, followed by the (unbraced!) 〈arguments〉 as #1;
this is a job for \AdviceOriginal. (Note that executing \AdviceReplaced would run the auto-handler
again, resulting in an infinite loop! Or at least a pile of errors.)
However, the overly simplistic approach shown below won’t necessarily work. The issue is that the
arguments of \Memoize contain \AdviceReplaced and \AdviceOriginal themselves, instead of their
contents, i.e. (first) expansions.

\long\def\mmz@auto@memoize#1{%
\Memoize{\AdviceReplaced#1}{\AdviceOriginal#1}%

}

Regarding the first argument, the problem is that the code md5sum will be computed off of the token

63

https://ctan.org/pkg/hyperref
https://ctan.org/pkg/pgfkeys

list \AdviceReplaced〈arguments〉 — exactly as you see it.53 This implies that two commands sharing
exactly the same 〈arguments〉 will receive the same (c-)memo. For example, if you automemoized first
\textit{foo} and then \textbf{foo}, both would come out as a bold “foo” upon utilization.
The second argument illustrates a general issue about the lifespan of \AdviceOriginal and other
\Advice... commands.54 By executing \Memoize, we leave the advice and thereby cannot be sure that
when expanded, \AdviceOriginal will mean what it means at the moment. In general, another piece of
advice might be triggered until its expansion, or the group might be closed, etc. For example, the author
may have issued \mmznext{at begin memoization=\label{〈key〉}}, and as the pre-memoization code
is executed before the memoization driver, the \label, which is submitted to Advice so that any
\labels inside the memoized code “just work”, would execute another piece of advice, redefining
\AdviceOriginal and friends. Effectively, you’d end up memoizing an invocation of the \label
command.
The bottom line is that while the code following the above template might sometimes work, Advice
offers no guarantees that it will, so I advise against using it. The actual definition of the memoization
inner handler is shown below. In this definition, we expand \AdviceReplaced and \AdviceOriginal

— exactly once! — into the respective arguments of \Memoize; of course, as the entire invocation of
\Memoize is expanded, we have to guard against expanding the collected arguments (#1) and \Memoize
itself.55 The result of the expansion is shown under the code: the first and the second line assume we
are automemoizing command \foo and environment bar, respectively. Note that \AdviceOriginal
expands into an invocation of \AdviceGetOriginal, a command which may be safely used outside the
advice; the first argument of this command is the auto-namespace (in our case, /mmz), and the second
argument is the advised command. For a LATEX environment, the advised command is actually \begin,
and this is why the call of \AdviceGetOriginal is of course followed by the environment name.

The implementation of the inner handler for automemoization
\long\def\mmz@auto@memoize#1{%

\expanded{%
\noexpand\Memoize
{\expandonce\AdviceReplaced\unexpanded{#1}}%
{\expandonce\AdviceOriginal\unexpanded{#1}}%

\ifmmz@ignorespaces\ignorespaces\fi
}%

}

→ \Memoize{\foo#1}{\AdviceGetOriginal{/mmz}{\foo}#1}
→ \Memoize{\begin{bar}#1}{\AdviceGetOriginal{/mmz}{\begin}{bar}#1}

Let us now move backwards in time and look at the outer handler installed by memoize. It is very
simple, but performs an important function of applying the auto- and the next-options (in this order),
which also necessitates opening a group (closed by \Memoize). The final line invokes the argument
collector, which then calls the inner handler; remember that the invocation of \AdviceCollector is
the sole function of the default outer handler.

The implementation of the outer handler for automemoization
\def\mmz@auto@outer{%

\begingroup
\mmzAutoInit
\AdviceCollector

}

Moving even further back in time, we arrive at the run conditions. The memoize style invokes run if
memoization is possible, defined as run conditions=\mmz@auto@rc@if@memoization@possible,

53If you inspected a c-memo, you would find \AdviceReplaced〈arguments〉 in the \mmzSource section.
54The list of all commands available only within the handler can be found in the documentation of key outer handler

in section 5.6.1.
55As the final touch, the handler also contains \ignorespaces after the invocation of \Memoize, if this was requested

using ignore spaces. Note that this could not be done without pre-expanding the \ifmmz@ignorespaces conditional, as
\Memoize closes the group in which the auto- and the next-options are applied.

64

with the installed macro as shown below. Indeed, memoization only makes when Memoize is enabled
(which we test using \ifmemoize), but we’re not already “inside \Memoize” (which we test using
\ifinmemoize). The latter condition is true when we’re either memoizing or regularly compiling some
code submitted to memoization (see the diagram in section 4.1). Note that it is not necessary to invoke
\AdviceRunfalse in branches where the run conditions are not satisfied.

The implementation of run if memoization is possible

\def\mmz@auto@rc@if@memoization@possible{%
\ifmemoize
\ifinmemoize
\else
\AdviceRuntrue

\fi
\fi

}

While it is clear that double memoization is a no-no, why should we avoid memoizing inside a regular
compilation? Imagine that Memoize decides not to memoize a Forest tree, perhaps because readonly is
in effect. Under the hood, Forest creates many tikzpictures. Should all of them be (auto)memoized
now? Certainly not.
Finally, what happens when the run conditions are not met? Not much, but something important
nevertheless: by consuming the next-options, the bailout handler makes sure they will not erroneously
apply to the next instance of (auto)memoization.

The implementation of the bailout handler for automemoization
\def\mmz@auto@bailout{%

\mmznext{}%
}

The only component of the automemoization advice not determined by style memoize is the argument
collector, which allows the user to submit a command with a weird argument structure to automemoiza-
tion simply by setting key collector in addition to executing memoize. For example, Memoize submits
\tikz to automemoization by loading advice-tikz.code.tex, which contains Advice’s definition of
the \tikz collector \AdviceCollectTikZArguments, and issuing the following declaration.

Declaring automemoization of command \tikz

auto=\tikz{memoize, collector=\AdviceCollectTikZArguments},

/mmz/auto/ref

The cross-reference advice presents an example of an outer handler radically different from the default
outer handler. This outer handler does not invoke the collector at all. As shown below, it grabs the
argument of \ref (or whichever cross-referencing command) on its own — remember that the outer
handler receives the arguments of the handled command “as they are,” i.e. uncollected. It then asks
\mmzNoRef to do the real job of getting the reference key into the context, and finally executes the
original \ref.

A simplified56 definition of ref
\mmzset{auto/ref.style={outer handler=\mmz@auto@ref, run if memoizing}}
\def\mmz@auto@ref#1{%

\mmzNoRef{#1}%
\AdviceOriginal{#1}%

}

The run conditions of this style are agonizingly simple: run if memoizing sets run conditions to a
macro defined as \ifmemoizing\AdviceRuntrue\fi.

56The real outer handler allows for arbitrary optional arguments of the cross-referencing command, and shares code
with force ref.

65

/mmz/auto/abort

The advice for aborting memoization is very simple — it merely executes \mmzAbort — but also
very sneaky. Here, the run conditions do the real work of aborting memoization, while the “real,”
i.e. outer handler, never even gets executed; note the absence of \AdviceRuntrue, which implies
\AdviceRunfalse, which triggers the execution of the original command after the run conditions are
“checked.”

The definition of abort
\mmzset{

auto/abort/.style={run conditions=\mmzAbort},
}

The point here is that executing \mmzAbort (itself a single-liner setting an internal conditional) is
cheaper than testing for the real run conditions (run if memoizing) and aborting only if they are
satisfied. Of course, the trick only works because (i) the advice doesn’t need to inspect any arguments
of advised command, and because (ii) setting the internal abortion conditional outside memoization
does no damage.

Advice in chains
A command may be submitted to several instances of the advising framework, i.e. instances installed
under different keypaths. In the example below, we submit \foo both to the instance of Advice installed
in keypath /one and to the one installed in keypath /two. Under /one, the result of \foo{...} will
be boxed (\fboxWrap); under /two, in will be parenthesized (\parenWrap). The order in which this
happens depends on the order in which \foo was activated under different keypaths. If we first activate
it under /one with the boxing effect and then under two with the parenthesizing effect, the box will
appear within parenthesis; if we reverse the activation order, the parenthesis will appear inside the box.

chained-advice.tex
�

\usepackage{advice}

\def\foo#1{``#1''}
\def\fboxWrap#1{\fbox{\AdviceOriginal{#1}}}
\def\parenWrap#1{(\AdviceOriginal{#1})}

\pgfqkeys{/one}{.install advice, advice'=\foo{args=m, outer handler=\fboxWrap}}
\pgfqkeys{/two}{.install advice, advice'=\foo{args=m, outer handler=\parenWrap}}

\begin{document}
{\pgfkeys{/one/activate=\foo, /two/activate=\foo}\foo{bar}}
{\pgfkeys{/two/activate=\foo, /one/activate=\foo}\foo{bar}}
\end{document}

(“bar”) (“bar”)

First of all, looking at the code above, you have probably noticed the absence of key auto. This is
because by default, .install advice defines the setup key to be advice — Memoize overrides this
default by installing the framework with .install advice={setup key=auto, ...}.
Next, advice' is a variant of advice which prevents automatic activation upon setup (and the same
holds for auto' vs. auto in Memoize). We have used the bar variant above to make it clear that it is
the order of activation, rather than declaration by advice/auto, which matters in determining which
handler is applied first.
Finally, note that the deactivation order must be the reverse of the activation order. So if we activate
\foo first in /one and then in /two, we should deactivate it in /two first and in /one next, otherwise
Advice will complain.

66

\documentclass{article}
\usepackage{advice}

\def\foo#1{``#1''}
\def\fboxWrap#1{\fbox{\AdviceOriginal{#1}}}
\def\parenWrap#1{(\AdviceOriginal{#1})}

\pgfqkeys{/one}{.install advice, advice'=\foo{args=m, outer handler=\fboxWrap}}
\pgfqkeys{/two}{.install advice, advice'=\foo{args=m, outer handler=\parenWrap}}

\begin{document}
{\pgfkeys{/one/activate=\foo, /two/activate=\foo}\foo{bar}}
{\pgfkeys{/two/activate=\foo, /one/activate=\foo}\foo{bar}}
\end{document}

Click here to open the code.

A simple collector
Let us implement a collector for a command which accepts one (standard LATEX) optional argument
and one mandatory argument; in xparse terms, a command with argument specification om.
Using \NewDocumentCommand, such a collector is very easy to implement. We simply define a command
with signature om and distinguish two possibilities regarding the presence of the optional argument,
which we test using \IfValueTF. If the true branch, we pass a braced [#1]{#2} to the inner handler,
which we invoke by \AdviceInnerHandler; in the false branch, we omit the optional argument, passing
it an (additionally) braced {#2}.

om-collector-NewDocumentCommand.tex
�

\NewDocumentCommand\omCollector{om}{% the collector
\IfValueTF{#1}{\AdviceInnerHandler{[#1]{#2}}}{\AdviceInnerHandler{{#2}}}}

Defining a functionally equivalent collector using \newcommand would be a bit more involved, as
LATEX 2ε does not offer a standardized way to test for the presence of the optional argument. Consider
the following collector, whose optional argument has the same default value as the advised command.
Is it functionally equivalent to the one above?

om-collector-newcommand.tex
�

\newcommand\omCollector[2][green]{% the collector
\AdviceInnerHandler{[#1]{#2}}}

\newcommand\foo[2][green]{\textcolor{#1}{``#2''}\\}% the advised command
\mmzset{auto=\foo{memoize, collector=\omCollector}}% the advice

\begin{document}
\foo[red]{red memoized text}
\foo[green]{memoized text of the default color}
\foo{memoized text of the default color}
\end{document}

While there will be no visual difference, there is a difference under the hood. If you compile both
documents, you will see that the first one creates three memos/externs, while the second one only
creates two: \foo{...} does not have its own memo anymore, but creates and uses the same memo as
\foo[green]{...}.
While the second version might sometimes be preferred, perhaps even in the context of memoization, the
initial collector, which deploys command \CollectArguments, behaves like the \NewDocumentCommand-
defined collector above,57 as it attempts to perfectly replicate the command invocation. Furthermore,
this behaviour makes it unnecessary for the author to provide the default values of optional arguments
(and even allows them to replace O{default} in the argument specification by o).
We now turn to the package CollArgs, which implements the actual argument collection; we’ll revisit
the initial collector of Advice at the end of the following subsection.

4.5.2 Using package CollArgs

Automemoization is implemented on top of the framework offered by package Advice, and that package
in turn couldn’t really work as intended without package CollArgs. A regular user of Memoize shouldn’t
need to know anything about CollArgs, but a package writer wanting to support Memoize might have
to.
The package provides two public commands, \CollectArguments and \CollectArgumentsRaw; we’ll
focus on the former first. \CollectArguments takes three arguments: optional 〈options〉 in the form
of a pgfkeys keylist; a mandatory 〈argument specification〉 in a (slightly extended) xparse format;
and the 〈next-code〉:

57In fact, there is a slight difference after all. While the above-defined collector won’t distinguish between the
single-token mandatory argument given with or without braces, \CollectArguments will again faithfully replicate the
original argument tokens.

67

https://ctan.org/pkg/xparse

\documentclass{article}
\usepackage{xcolor}
\usepackage{memoize}

\NewDocumentCommand\omCollector{om}{% the collector
 \IfValueTF{#1}{\AdviceInnerHandler{[#1]{#2}}}{\AdviceInnerHandler{{#2}}}}

\newcommand\foo[2][green]{\textcolor{#1}{``#2''}\\}% the advised command
\mmzset{auto=\foo{memoize, collector=\omCollector}}% the advice

\begin{document}
\foo[red]{red memoized text}
\foo[green]{memoized text of the default color}
\foo{memoized text of the default color}
\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{xcolor}
\usepackage{memoize}

\newcommand\omCollector[2][green]{% the collector
 \AdviceInnerHandler{[#1]{#2}}}

\newcommand\foo[2][green]{\textcolor{#1}{``#2''}\\}% the advised command
\mmzset{auto=\foo{memoize, collector=\omCollector}}% the advice

\begin{document}
\foo[red]{red memoized text}
\foo[green]{memoized text of the default color}
\foo{memoized text of the default color}
\end{document}

Click here to open the code.

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/xparse

\CollectArguments[〈options〉]{〈argument specification〉}{〈next-code〉}〈tokens〉
Following the three formal arguments of \CollectArguments are some 〈tokens〉 — the rest of the
document, really — and the job of \CollectArguments is to figure out the extent to which these 〈tokens〉
conform to the given 〈argument specification〉. In other words, \CollectArguments will consume
as many of the 〈tokens〉 as a 〈command〉 defined by \NewDocumentCommand〈command〉{〈argument
specification〉}{...} would. Once these 〈argument tokens〉 are collected, \CollectArguments executes
the 〈next-code〉 with the 〈argument tokens〉 given as a single, braced argument (clearly, the 〈rest〉 of
the 〈tokens〉, i.e. the non-consumed tokens, will follow):

〈next-code〉{〈argument tokens〉}〈rest〉
In the example below, we define macro \PrintAndDo, which takes two arguments, a command and the
collected arguments of that command, prints out which command we’re about to execute and with what
arguments, and then executes that command with those arguments — #1#2 at the end of the definition.
Note that #2 immediately following #1 is not braced, so \PrintAndDo\makebox{[5em][r]{text}}
executes \makebox[5em][r]{text}.
Executing \PrintAndDo\makebox{[5em][r]{text}} directly would thus yield the first line of the
result below — and in fact, this is precisely what gets executed to yield that line, but in a
roundabout fashion. Given the argument specification oom (two optional arguments followed by
a mandatory argument), \CollectArguments figures out how many tokens following its formal argu-
ments conform to this argument specification — below, these would be [5em][r]{text} following
\CollectArguments{oom}{\PrintAndDo\makebox}— and puts them, braced, behind its 〈next-code〉
argument, \PrintAndDo\makebox, yielding \PrintAndDo\makebox{[5em][r]{text}}.

collargs-makebox.tex
�

\newcommand\PrintAndDo[2]{%
Executing \texttt{\string#1} with arguments ``\texttt{\detokenize{#2}}''
yields ``#1#2''.\par

}
\CollectArguments{oom}{\PrintAndDo\makebox}[5em][r]{text}
\CollectArguments{oom}{\PrintAndDo\makebox}[5em]{text}
\CollectArguments{oom}{\PrintAndDo\makebox}{text}

Executing \makebox with arguments “[5em][r]{text}” yields “ text”.
Executing \makebox with arguments “[5em]{text}” yields “ text ”.
Executing \makebox with arguments “{text}” yields “text”.

Seeing the arguments of \makebox without the immediately preceding \makebox might seem strange, but
remember that \CollectArguments is about the arguments of a command, not about the command’s
control sequence. It doesn’t know or care which command the argument tokens “belong” to, as long as
they conform to the given specification. In the example above, it is only in #1#2 of \PrintAndDo that
\makebox is “reunited” with its arguments, but note that the reunion is far from obligatory.
CollArgs supports all the argument types (and modifiers) that xparse does, including the environ-
ment type b, as exemplified below. Again, the code below might seem strange, as it features an
\end{minipage} without the matching \begin{minipage}, but the logic is similar as for commands:
just as \CollectArguments occurs in front of the command arguments, without the command itself,
so it occurs in front of the environment body, without the opening of that body. However, while
\CollectArguments never needs to know the command name, we need to inform it of the environment
name, so that it can find the end of the environment. This can be achieved as shown below, using key
environment in the optional argument of the command, or by our extension to the xparse argument
specification, where the environment argument type b may be followed by a braced environment name.
In the example below, we could therefore also invoke argument collection by \CollectArguments{+b
{minipage}} (we have preceded b with a + to allow for an environment body containing paragraph
tokens).58

58CollArgs automatically adapts to the format, i.e. it knows that environments are tagged by \〈name〉 and \end〈name〉
in plain TEX and by \start〈name〉 and \stop〈name〉 in ConTEXt.

68

\documentclass{article}
\usepackage{collargs}
\newcommand\PrintAndDo[2]{%
 Executing \texttt{\string#1} with arguments ``\texttt{\detokenize{#2}}''
 yields ``#1#2''.\par
}
\begin{document}
\CollectArguments{oom}{\PrintAndDo\makebox}[5em][r]{text}
\CollectArguments{oom}{\PrintAndDo\makebox}[5em]{text}
\CollectArguments{oom}{\PrintAndDo\makebox}{text}
\end{document}

Click here to open the code.

https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse

collargs-minipage.tex
�

\newcommand\PrintAndDoEnv[2]{%
Executing environment ``#1'' with body ``\texttt{\detokenize{#2}}''
yields \fbox{\begin{#1}#2\end{#1}}.\par

}
\CollectArguments[environment=minipage]{+b}{\PrintAndDoEnv{minipage}}[t]{6cm}

This forms the body of a minipage environment, even if it is not preceded by
\texttt{\string\begin\{minipage\}}.%

\end{minipage}

Executing environment “minipage” with body “[t]{6cm} This forms the body of a minipage
environment, even if it is not preceded by \texttt {\string \begin \{minipage\}}.”
yields This forms the body of a minipage

environment, even if it is not pre-
ceded by \begin{minipage}.

.

You might wonder why didn’t we provide \CollectArguments in the previous example with argument
specification omb — after all, the minipage environment takes an optional and a mandatory argument.
While that would work, and produce the same result,59 note that \CollectArguments is only interested
in finding the scope of the arguments, and grabbing everything until \end{minipage} is the same as
first grabbing the optional argument, maybe, then the mandatory argument, and finally the argument
body.
\CollectArguments not only supports xparse’s verbatim argument type v, it can grab an argument
of any type in the verbatim mode, triggered by option verbatim.60 We illustrate this key below, where
we also use option tags, which makes CollArgs automatically surround the grabbed environment body
with the begin tag \begin{〈environment name〉} and the end tag \end{〈environment name〉}, and
use \scantokens to execute the grabbed environment. Consult section 5.6.3 for the full reference on
the verbatim mode and its limitations.

collargs-verbatim.tex
�

\newcommand\PrintAndDoEnv[1]{%
Executing \texttt{#1} yields this: \scantokens{#1}

}
\CollectArguments[environment=verbatim, verbatim, tags]{+b}{\PrintAndDoEnv}

Here is some \LaTeX{} code.
\end{verbatim}

Executing \begin{verbatim}� Here is some \LaTeX{} code.�\end{verbatim} yields this:
Here is some \LaTeX{} code.

Finally, CollArgs extends the xparse specification by modifier &, which allows the user to specify options
which apply only to the following argument, as opposed to the options given as the optional argument
of \CollectArguments, which apply to all the arguments. A third way to invoke the environment
body collection in the above example is thus \CollectArguments{&{environment=minipage}+b}.
Both the single-argument and the common options can be given not only as pgfkeys keys, but also in
the raw, “programmer’s interface” format. Every option key has a corresponding macro; for example,
key environment is matched by macro \collargsEnvironment. The macros are listed alongside their
corresponding keys in the reference section 5.6.3; here, we merely learn how to use them.
To use raw options for a single argument, double the ampersand in the argument specification. Therefore,
the fourth way to specify the environment name is &&{\collargsEnvironment{minipage}}+b.
To set the raw options for all arguments, use \CollectArgumentsRaw, the second public command of
the package. This command is exactly like \CollectArguments, excepts that it expects the options in
the raw format and as a mandatory argument:

59Unless argument processing was in effect; see section 5.6.3 for details.
60We refer to the verbatim mode triggered by verbatim as the full verbatim mode, where all characters are of category

“other”. There is also the partial verbatim mode, triggered by verb, where braces retain their normal category codes.

69

\documentclass{article}
\usepackage{collargs}
\newcommand\PrintAndDoEnv[2]{%
 Executing environment ``#1'' with body ``\texttt{\detokenize{#2}}''
 yields \fbox{\begin{#1}#2\end{#1}}.\par
}
\begin{document}
\CollectArguments[environment=minipage]{+b}{\PrintAndDoEnv{minipage}}[t]{6cm}
 This forms the body of a minipage environment, even if it is not preceded by
 \texttt{\string\begin\{minipage\}}.%
\end{minipage}
\end{document}

Click here to open the code.

https://ctan.org/pkg/xparse

\documentclass{article}
\usepackage{collargs}
\usepackage{verbatim}
\newcommand\PrintAndDoEnv[1]{%
 Executing \texttt{#1} yields this: \scantokens{#1}
}
\begin{document}
\CollectArguments[environment=verbatim, verbatim, tags]{+b}{\PrintAndDoEnv}
 Here is some \LaTeX{} code.
\end{verbatim}
\end{document}

Click here to open the code.

https://ctan.org/pkg/xparse
https://ctan.org/pkg/pgfkeys

\CollectArgumentsRaw{〈raw options〉}{〈argument specification〉}{〈next-code〉}〈tokens〉
This leads us to the fifth way to set the environment name (an overkill, I know): \CollectArgumentsRaw
{\collargsEnvironment{minipage}}{+b}{〈next-code〉}. Furthermore, you can use a mixture of raw
and key–value options: the raw option commands include \collargsSet, which applies the given
option keylist. The idea here (incarnated by both Auto and Memoize) is that the package will provide
CollArgs with the raw options, for speed, while the author can supplement them in the friendly keylist
format — and this leads us to the sixth, and thankfully final way to set the environment name:
\CollectArgumentsRaw{\collargsSet{environment=minipage}}{+b}{〈next-code〉}.

The initial collector
As the final example, let us study Advice’s initial collector; this is a macro which is used as the collector
when key collector is not given. This macro is not really \CollectArguments, as we sometimes
state to simplify matters, but a macro which acts as the “bridge” between Advice and CollArgs, by
compiling an invocation of \CollectArgumentsRaw from the given advice setup, and executing it.
The bridge macro is shown below in its full glory, but it is really less complicated than it might appear
at first sight. In line 2, we use \AdviceIfArgs to see whether the argument structure of the handled
command was given by the user. If it wasn’t, we assume that the handled command was defined using
\NewDocumentCommand or similar, and use \GetDocumentCommandArgSpec to retrieve it (line 3; note
that \AdviceName holds the handled control sequence) and store it into \AdviceArgs (line 4), which
also receives the argument specification when given by the user via key args.

The definition of the initial collector
1 \def\advice@CollectArgumentsRaw{%
2 \AdviceIfArgs{}{%
3 \expandafter\GetDocumentCommandArgSpec\expandafter{\AdviceName}%
4 \let\AdviceArgs\ArgumentSpecification
5 }%
6 \expanded{%
7 \noexpand\CollectArgumentsRaw{%
8 \noexpand\collargsCaller{\expandonce\AdviceName}%
9 \expandonce\AdviceRawCollectorOptions

10 \ifdefempty\AdviceCollectorOptions{}{%
11 \noexpand\collargsSet{\expandonce\AdviceCollectorOptions}%
12 }%
13 }%
14 {\expandonce\AdviceArgs}%
15 {\expandonce\AdviceInnerHandler}%
16 }%
17 }

Lines 6–17 are somewhat of an expansion mess, because we have to construct the invocation of the
CollArgs’ collector from the advice setup stored in various macros. But once we think away all the
(non-)expansion commands, we’re left with \CollectArgumentsRaw plus the following three arguments:

1. The raw options (lines 8–11):
(a) In line 8, the advised command’s control sequence is designated as the caller. The effect

is that if the given arguments don’t conform to the specification, the error thrown seems to
come from the advised command rather than some internal CollArgs macro. The author
will be grateful for this little detail.

(b) In line 9, we add any raw collector options set by Advice (plus the package deploying
Advice, like Memoize); user-given options are of course possible, but not really expected
here, because:

(c) In lines 10–11, we add the user-given collector options, if there are any, embedded under
\collargsSet.

2. The argument specification (line 14).
3. The inner handler (line 15).

70

5 Reference

In this section, the extra information about keys, offered at the right of a key in parenthesis, may
contain the initial value of a key, and also a default value of a key. In this context, the terms “initial”
and “default” have the meaning employed by the pgfkeys utility. Initial value refers to the value that
is set by the package. More often, we would call this the default or the package-default value, but in
the pgfkeys parlance, the default value refers to the value that is passed to the key in the absence of
the argument. Honestly, I only kept to this convention in the reference section; elsewhere, I often say
“default” or “package-default” and mean the initial value.
Another convention I kept to in this section is the color-coding of the keys and commands. Green
background indicates a basic key or command, which any user might want to know about. Red
background indicates other, more or less advanced keys and commands.

5.1 Loading

LATEX
Load Memoize by \usepackage{memoize} or \usepackage[〈options〉]{memoize}. The latter form
functions almost identically to the former followed by \mmzset{〈options〉}, with two exceptions.
First, the 〈options〉 as package options may not contain spaces. This is a constraint imposed by
LATEX itself. To avoid it for a particular key, define a spaceless variant of the key in memoize.cfg.
For example, to use memo dir as a package option, put \mmzset{memodir/.style={memo dir={#1}}}
into that file.
Second, key extract only make senses as a package option, or within memoize.cfg. Internal extern
extraction can only be performed before the output PDF is opened, and to maximize chances of that,
Memoize is designed to extract as soon as it can: while it is being loaded. Consequently, changing the
extraction method in the document preamble has no effect.
The necessity of performing extraction before the output PDF is opened is also why Memoize prefers
to be loaded early with respect to other packages. In particular, it must be loaded before PGF library
fadings (see section 6.2) and before the beamer class (see section 2.7).
If you’re familiar with the TikZ externalization library, you might wonder whether Memoize has an
equivalent of the \tikzexternalize command. It doesn’t. Memoize assumes that if you loaded it,
you want to use it — but you can always disable it using key disable, or even by loading package
nomemoize in its stead.
In LATEX, initialization and finalization are completely automatic. Memoize defines several initial-
ization and finalization styles — begindocument/before, begindocument, begindocument/end and
enddocument/afterlastpage —and executes them at the cognominal LATEX hooks.

plain TEX
Load Memoize by \input memoize. As package options cannot be provided in plain TEX, the author
must trigger extraction from \mmzset using key extract; I recommend doing this immediately after
loading the package. This key may be invoked with or without a value. In the latter case, Memoize
will extract using the package default method perl, unless its has been overriden from memoize.cfg.
Furthermore, as plain TEX has no concept of a document body, the text must be manually enclosed
in \mmzset{begin document} and \mmzset{end document}; this is where the initialization and
finalization hooks described above will be executed. Note that extract, when used, must precede this
enclosure.
Finally, plain TEX has another reason for preferring the early loading of the package. In this format,
Memoize must redefine \shipout, at a time the meaning of this control sequence is still primitive. In
particular, this means that Memoize must be loaded before atbegshi.

71

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgf
https://ctan.org/pkg/beamer
https://ctan.org/pkg/pgf
https://ctan.org/pkg/atbegshi

A minimal plain TEX example
�

\input memoize
\mmzset{extract}

% ...

\mmzset{at begin document}

Hello, \mmz{world}!

\mmzset{at end document}

\bye

A minimal ConTEXt example
�

\usemodule[memoize]

% ...

\mmzset{at begin document}
\starttext

Hello, \mmz{world}!

\stoptext
\mmzset{at end document}

ConTEXt
Load Memoize by \usemodule[memoize] or \usemodule[memoize][〈options〉]. Unlike in LATEX,
spaces are allowed in 〈options〉; the remarks on key extract and loading order are the same as for
LATEX.
In LATEX, Memoize automatically executes its initialization and finalization code when at the beginning
and the end of the document body. Due to my very limited experience with ConTEXt, and its project
structure in particular, I don’t know what the appropriate place for initialization and finalization would
be in ConTEXt. I therefore provisionally leave it to the author to execute \mmzset{begin document}
and \mmzset{end document} manually, and hope for advice on how to handle this properly.

Auxiliary packages

nomemoize (package)

Loading this package instead of Memoize completely disables memoization, but does not require
removing any Memoize commands from the document (they all become no-ops).

memoizable (package)

This package is a programmer’s stub: if Memoize is loaded, it does nothing; otherwise, it provides
the no-op variants Memoize commands. See section 3.5.1 for details.

72

\input memoize
\mmzset{extract}

% ...

\mmzset{at begin document}

Hello, \mmz{world}!

\mmzset{at end document}

\bye

Click here to open the code.

\usemodule[memoize]

% ...

\mmzset{at begin document}
\starttext

Hello, \mmz{world}!

\stoptext
\mmzset{at end document}

Click here to open the code.

5.2 Configuration

\mmzset{〈options〉}

Update the Memoize configuration.
The 〈options〉 are a comma-separated list of 〈key〉=〈value〉 pairs. They are processed using the
pgfkeys utility of PGF/TikZ (see §87 of the TikZ & PGF manual), with the default path set to
/mmz.
The changes are local to the current TEX group, except for keys where explicitly noted otherwise.

\mmznext{〈options〉}

This command accepts the same 〈options〉 as \mmzset, but interprets them as next-options
— options which will be applied to the next, and only the next, automemoized command or
environment. (Remember that a command or environment is submitted to automemoization by
auto={〈command or environment〉}{memoize,...}; see sections 2.3, 2.4 and 5.6 for details.)
Remarks for the author:

• Key enable has no effect inside \mmznext.
• If \mmznext is used more than once preceding an automemoized command, only the final

invocation takes effect.
• The next-options also apply to commands and environments for which memoization is

autodisabled via auto={〈command or environment〉}{nomemoize,...}.
• It is safe to set the next-options in front of a command submitted to automemoization which

does not actually undergo memoization in this particular instance. In other words, the
absence of memoization will not cause the next-options to “leak” to the next automemoized
command.

• Only the linear (execution) order of \mmznext and the automemoized command matters. Key
\mmznext will correctly apply to a single following automemoized command even if it occurs
outside the group which that command is executed from; and it will apply to the following
automemoized command even if it is called within a group closed before that command is
executed.

Remarks for the programmer:
• The next-options are set globally.
• The effect of \mmznext is not cumulative. Consequently, \mmznext{} clears the next-options.
• The next-options are applied by executing \mmzAutoInit within the advice. Any piece of

advice applying the next options should also clear them when the run conditions are not
met. This is streamlined by style apply options, intended for use within auto declarations.
Out of the box, this style is deployed by memoize, nomemoize and noop, but it may be used
by any piece of advice. Note that the outer handler declared by this style opens a group (to
apply the options in) but leaves it to the (undeclared) inner handler to close that group.

• Key enable has no effect inside \mmznext because when Memoize is disabled upon en-
countering an automemoized command, the advice bails out without ever applying the
next-options. More generally, this applies to any advised command whose run conditions
require \ifmemoize to be true. Key disable, on the other hand, takes effect, because
\ifmemoize is checked within \Memoize as well.

memoize.cfg (file)

The configuration file, loaded just before processing the package options. It will typically contain
a \mmzset command, but it may contain any TEX code.
As for any other file loaded by TEX, the location of the file determines whether it applies system-
wide, user-wide or directory-wide.
This file is also loaded by package nomemoize, on the off chance it defines some commands other
than /mmz keys. (It is not loaded by package memoizable, though).

73

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

\nommzkeys{〈key〉}

In package memoize, this command is a no-op; in packages nomemoize and memoizable, it defines
key /mmz/〈key〉 as a no-op.
As explained in section 2.10, use this command to declare any /mmz keys you have used outside
\mmzset when switching to package nomemoize.

74

5.3 Memoization

5.3.1 Manual memoization commands

\mmz[〈options〉]{〈code〉}
\begin{memoize}[〈options〉]

〈environment body〉
\end{memoize}

Submit 〈code〉 or 〈environment body〉 to memoization.
Prior to memoization, the configuration is locally updated by executing 〈options〉 given as the
optional argument to this command, i.e. the given options take precedence to options previously
set via \mmzset. Note that next-options, set by \mmznext, are not applied.
The effect of the macro and of the environment version of this command is the same, except that
the command version memoizes 〈code〉 exactly as-is, while the environment version trims away any
spaces at the beginning and the end of the code.61 The space-trimming feature of the environment
ensures that you can write \begin{memoize} and \end{memoize} in separate lines (as shown
above), but no extra space will creep into the extern.
The space-trimming feature of the environment, which trims spaces at the beginning and at the
end of the 〈environment body〉, should not be confused with the effect of ignore spaces, which
ignores spaces following the environment end-tag (in LATEX, \end{...}) — and which does not
apply to manual memoization at all!
The argument of \mmz must be enclosed in braces.

\nommz[〈options〉]{〈code〉}
\begin{nomemoize}[〈options〉]

〈environment body〉
\end{nomemoize}

Disable Memoize for the span of the compilation of 〈code〉 or 〈environment body〉.
This command consumes the 〈options〉 in the same way as \mmz/memoize described above. The
macro and the environment version of the command exhibit the same space-trimming behaviour
as their \mmz/memoize counterparts, and the argument of \nommz must be enclosed in braces.

5.3.2 Basic configuration

/mmz/enable
/mmz/disable

Enable or disable the functionality of the package.
What happens when Memoize is enabled depends on the memoization mode (normal, readonly,
recompile) and many other factors. When the package is disabled, it neither creates new memos
and externs, nor uses the existing ones; this applies to both manual and automatic memoization.
The effect is close to not having Memoize loaded, or to loading NoMemoize, but it is not completely
the same; for example, the record file (.mmz) is updated while Memoize is disabled, reflecting the
fact that nothing was memoized (or utilized) in the disabled state.62

If these keys are used in the preamble, their effect is delayed until the beginning of the document,
to ensure that Memoize is never enabled in the preamble. Other than that, all these keys do is set
the TEX conditional \ifmemoize, which you may use in your code to test whether Memoize is
enabled. You may also use \memoizetrue and \memoizefalse, as long as you never enable the
package in the preamble.

61What actually happens is that at the beginning of the environment body, all space tokens will be discarded. At
the end of the body, no spaces are actually discarded; Memoize simply issues an \unskip. This should not matter to a
regular user who simply writes down the environment.

62Cleaning the folder (§5.5.3) after disabling the package for the entire document is thus a bad idea.

75

Key enable cannot be applied to automemoized commands via \mmznext. It will take effect for
manual memoization, though, and key disable will work for both, as expected.

/mmz/normal (the default mode)
/mmz/readonly
/mmz/recompile

Select the memoization mode.
Each piece of code submitted to (either manual or automatic) memoization is associated to several
files: one c-memo, one cc-memo, and some externs (zero or more, typically one). When Memoize
encounters a piece of code submitted to memoization, it takes one of the following actions:
memoization The code is compiled in a special way which produces the associated memos and

externs.

utilization The code is not compiled. Its effect is replicated by processing the cc-memo; typically,
this includes the single extern into the document.

regular compilation The code is compiled as if Memoize was absent or disabled (the memos
and externs are neither utilized nor produced).

The action taken depends on the memoization
mode and on whether all the memos and externs
associated with the code exist, as shown in the
table on the right. Note that a single missing
memo or extern implies the “no” column of
the table, and that memoization will create all
the associated memos and externs, even those
which already exist.

Do the memos and externs exist?

mode yes no

normal utilization memoization
readonly utilization regular compilation
recompile memoization memoization

The memoization mode only has effect when Memoize is enabled. Mode selection is orthogonal
to enabling/disabling the package; for example, if you switch to a new mode while the package is
disabled, the new mode will be in effect once the package is enabled.

/mmz/verbatim (style)
/mmz/verb (style)
/mmz/no verbatim (style)

When verbatim or verb is in effect, the code submitted to memoization is read verbatim; no
verbatim reverts to the normal, non-verbatim collection of the code. This applies to both manual
and automatic memoization.
The long version, verbatim, switches to the full verbatim mode, where all characters are assigned
category code 12 (other). With the short version, verb, the braces, { and }, retain category codes
1 and 2, which can be useful for verbatim collection of optional arguments. For details, see the
documentation of CollArgs’ verbatim in section 5.6.3.
Under the hood, these keys have two effects. First, they are passed on to the argument collector
(typically, \CollectArguments of the auxiliary package CollArgs; for details, see section 5.6),
instructing it to collect the code in the specified fashion, as described above. Second, if the
collected verbatim code is eventually compiled (either regularly, or memoized), Memoize first
rescans it using \scantokens.

76

/mmz/padding left=〈dimension〉 (no default, initially 1 in)
/mmz/padding right=〈dimension〉 (no default, initially 1 in)
/mmz/padding top=〈dimension〉 (no default, initially 1 in)
/mmz/padding bottom=〈dimension〉 (no default, initially 1 in)

Set the left/right/top/bottom padding of the extern in the extern PDF.
Without padding, the (PDF) page holding the extern would tightly fit the bounding box of the
extern. These keys enlarge the extern page by the given amounts, so that any parts of the extern
lying outside the bounding box will be correctly included when using the extern. See section 2.8
for details.
〈dimension〉 is evaluated with ε-TEX’s \dimexpr, and may contain control sequences \width,
\height and \depth, which will refer to the dimensions of the extern. \width and friends behave
like dimension registers, so it is ok to write e.g. padding right=0.5\width.
The default padding is what pdfTEX puts around the page anyway, 1 inch, but we use 1 in rather
than 1 true in, which is the true default value of PDF registers horigin and vorigin, as we
want the padding to adjust with \magnification.

/mmz/padding=〈dimension〉 (style, no default)

Set all the above padding keys to the given value.

/mmz/context=〈tokens〉 (cumulative, no default, initially set by padding to context)
/mmz/clear context

These keys append the given 〈tokens〉 to the context expression, or clear this expression. Memoized
code gets recompiled whenever the expansion of the context expression changes.
The 〈tokens〉 must be fully expandable (modulo protection); in LATEX, they will be expanded by
\protected@edef when calculating the md5sum of the context.
The context expression is evaluated at the end of the memoization, and at utilization attempts
after inputting the c-memo (note that the c-memo contains any additions to the context expression
accumulated during memoization). At evaluation, the given context expression is fully expanded,
yielding the context value, whose md5 sum forms the 〈context md5 sum〉 part of the filename of
the cc-memo and the extern.
These keys may be used both prior to the memoization process, or during memoization. In the
former case, their effect is local to the current group; in the latter case, the effect is global, so that
the changes surely survive until the end of memoization, when the c-memo, where the context
expression is stored, is written into a file.
Under the hood, these keys manipulate token registers \mmzContext and \mmzContextExtra,
changing the contents of the former while not memoizing, and the contents of the latter during
memoization. These token registers may also be manipulated directly by the user, as long as
one keeps to the convention of adjusting \mmzContext locally and only while not memoizing, and
adjusting \mmzContextExtra globally and only during memoization.

/mmz/meaning to context={〈comma-separated list of commands and environment names〉}
/mmz/csname meaning to context={〈control sequence name〉}
/mmz/key meaning to context={〈full path to a pgfkeys command key〉}
/mmz/key value to context={〈full path to a pgfkeys value key〉}

These keys append the definition of the given construct to the context.
Essentially, the “meaning” keys append \meaning〈control sequence〉 to the context, for the
appropriate 〈control sequence〉. For example, meaning to context appends \meaning\foo when
given \foo as in item in the list, and it appends the internal environment macros appropriate
to the format when given an environment name. Similarly, key meaning to context resolves
〈control sequence〉 to the internal macro holding the key command.

77

Key key value to context should be used on keys which store values, e.g. keys initialized by
pgfkeys handler .initial; see §87.3.4 and §87.4.5 of the TikZ & PGF manual.
All the keys prefix the meaning/value by the name of the command/environment/key, in order to
prevent ambiguous contexts, see section 3.3 for details. Furthermore, they all operate through
\csname...\endcsname construct, allowing one to safely add internal commands to the context.

/handlers/.meaning to context
/handlers/.value to context

These are the handler variants of key meaning to context and key value to context.

/mmz/padding to context (style)

This key appends the values of the padding keys to the context, causing the memoized code to be
recompiled whenever the padding values are changed. This key is used to initialize context, so
the author normally shouldn’t have to use this key.

\mmzNoRef{〈reference key〉} (LATEX only)
\mmzForceNoRef{〈reference key〉} (LATEX only)

These macros append the current value of the 〈reference key〉 to the context,63 causing the
memoized code to be recompiled when the reference changes.
If the reference key is undefined, \mmzNoRef aborts memoization, while \mmzForceNoRef uses
\relax as the reference string.
These commands are deployed in the implementation of /mmz/auto/ref, force ref and friends.
If the cross-referencing commands you are using are advised by these keys, you most likely have
no need of these macros.

/mmz/per overlay (style)

This key is only defined in the Beamer class. When in effect, the memoized code will produce a
cc-memo (and extern) for each overlay of the frame. For implementation, see section 4.2.4.

/mmz/capture=hbox|vbox (no default, initially hbox)

Select the capture mode. This setting only applies to the default memoization driver.
By default, it is assumed that the memoized code should be executed in the horizontal mode, so
the default memoization driver captures the output of the memoized code in a \hbox — and also
issues a \quitvmode (both in the document and in the cc-memo), just in case the memoized code
occurs at the start of the paragraph.
Use capture=vbox to execute the memoized code in the vertical mode: Memoize will capture
the output of the memoized code in a \vbox, and avoid issuing \quitvmode. For example, this
capture mode is necessary to memoize a verbatim environment.

63More precisely, it is 〈reference key〉={〈current value〉} which is appended.

78

https://ctan.org/pkg/pgfkeys
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

5.3.3 Inside the memoization process

\mmzAbort

This command aborts the ongoing memoization.
The memoization will proceed as usual (i.e. the extern boxes and the cc-memo code will be
produced), but at the end of this process, no memos will be produced, no externs shipped out to
extern pages, and no record files updated.

\mmzUnmemoizable

This command aborts the ongoing memoization, and marks the submitted code as unmemoizable.
The ongoing memoization produces a c-memo setting conditional \ifmmzUnmemoizable to true.
Upon utilizing this c-memo, the system switches to regular compilation.
For example, if you are automemoizing tcolorboxes of package tcolorbox, you will want to
refrain from memoizing boxes marked as breakable or floating. Simply aborting the memoization
cannot do the trick here, as memoization compiles the submitted code in a TEX box. Marking
a breakable or floating tcolorbox as unmemoizable (either manually using this macro, or
automatically using auto key) makes sure that after the first compilation when memoization is
attempted, the box will be compiled regularly, and will have the intended ability to break across
pages, or float.

\Memoize{〈key〉}{〈code〉}

Depending on various factors, this command either memoizes 〈code〉 under key 〈key〉, utilizes the
results of a previous memoization, or performs a regular compilation of 〈code〉.
The outcome of executing this command — memoization, utilization or regular compilation —
depends upon the Memoize’s state (\ifmemoize, \ifmemoizing) and mode (normal, readonly,
recompile), and the existence of the relevant memos and externs. The decision process is depicted
in section 4.1.
This command expects to be executed in a dedicated group, which it will close itself.
Invoking memoization through \Memoize might be useful for packages which want to save the
results of intensive computations, regardless of whether the author loads (and enables) memoization
or not. However, this usage is not yet officially allowed, because there is currently no way to load
the core memoization routines without loading the entire package, thereby forcing the author to
use Memoize.

/mmz/driver={〈code〉} (no default, initially \mmzSingleExternDriver)

This key sets 〈code〉 as the memoization driver.
Given some code submitted to memoization, the memoization driver should produce the memos
and externs which will replicate the effect of that code (while retaining its regular effect). For
details, see section 4.4.
Typically, the 〈code〉 argument of this key will consist of a single control sequence (the driver
control sequence), but any amount of tokens is allowed. Memoize executes the driver followed by
the code which it is supposed to memoize, in braces, and only cares that the driver consumes that
code.

79

https://ctan.org/pkg/tcolorbox

/mmz/at begin memoization=〈code〉 (cumulative, initially empty)
/mmz/at end memoization=〈code〉 (cumulative, initially empty)
/mmz/after memoization=〈code〉 (cumulative, initially empty)

Use these keys to set up memoization hooks.
These keys may be used both prior to the memoization process, or during memoization. In the
former case, their effect is local to the current group; in the latter case, the code given to at
begin memoization is executed immediately, while the assignment performed by the other two
keys is global, so that the changes surely survive until the end of memoization.
The code given to hook at begin memoization is kept in macro \mmzAtBeginMemoization, while
the content of the other two hooks resides in two macros per hook: \mmzAtEndMemoization and
\mmzAtEndMemoizationExtra, and \mmzAfterMemoization and \mmzAfterMemoizationExtra.
All these macros may be manipulated directly by the user,64 as long as one keeps to the convention
of adjusting the macros without “Extra” locally and only while not memoizing, and adjusting the
macros with “Extra” globally and only during memoization. The “Extra” macros require global
assignments as they might be manipulated by code residing within a TEX group of any depth.
These complications explained, let us take a look at how memoization proceeds to learn when the
hooks are used:

1. Initialize various conditionals, macros and token registers. (Here is where the “Extra” hooks
are cleared.) Remember that at this point, we’re inside a group opened by \Memoize.

2. Execute at begin memoization hook, i.e. the contents of macro \mmzAtBeginMemoization.
3. Execute the memoization driver.
4. Execute at end memoization hook, i.e. the contents of macros \mmzAtEndMemoization and

\mmzAtEndMemoizationExtra (in this order).
5. Write out the memos and ship out the externs to extern pages (unless memoization was

aborted).
6. Close the memoization group.
7. Execute after memoization hook, i.e. the contents of macros \mmzAfterMemoization and

\mmzAfterMemoizationExtra (in this order).

\mmzCMemo (token register, global, empty at the start of memoization)

This token register mediates the construction of the c-memo. During memoization (and only
during memoization), arbitrary code may be added to this register; at the end of memoization,
Memoize writes out its contents to the free-form part of the c-memo.
All assignments to this register should be global. Use \gtoksapp and \xtoksapp to easily append
tokens to the register.

\mmzCCMemo (token register, global, empty at the start of memoization)

This token register mediates the construction of the cc-memo. During memoization, the memoiza-
tion driver should append cc-memo code to \mmzCCMemo; at the end of memoization, Memoize
writes out its contents to the cc-memo (preceded by the list of produced externs).
All assignments to this register should be global. Local assignments would not work, because
the memoized code may contain commands, like \label and \ref, which contribute content to
cc-memo as well, but these commands may appear within a TEX group of any depth.
Use \gtoksapp and \xtoksapp to easily append tokens to the register.

64Use \appto, \eappto, \gappto and \xappto of package etoolbox (loaded by Memoize) to easily append code to
these macros.

80

https://ctan.org/pkg/etoolbox

\toksapp〈token register〉{〈tokens〉}
\gtoksapp〈token register〉{〈tokens〉}
\etoksapp〈token register〉{〈tokens〉}
\xtoksapp〈token register〉{〈tokens〉}

These commands append the given 〈tokens〉 to the 〈token register〉. \etoksapp and \xtoksapp
expand the 〈tokens〉 before appending them; \gtoksapp and \xtoksapp perform a global assign-
ment.
These commands are actually provided by CollArgs, and they are defined only if they don’t already
exist; in particular, note that LuaTEX provides them as primitives.
Unlike the LuaTEX primitive variant, these commands require the 〈token register〉 to be given by
a (\toksdeffed) control sequence; it cannot be given as \toks〈number〉.

\ifmemoize
\memoizetrue
\memoizefalse

Use the TEX-style conditional \ifmemoize to test whether Memoize is currently enabled. Within
the document body, the conditional may be set using \memoizetrue and \memoizefalse, which
are then functionally equivalent to enable and disable. Do not set the conditional in the preamble
of the document (unless you really know what you are doing).

\ifmemoizing (readonly)

Use this TEX-style conditional to test whether Memoize is currently memoizing. It may be only
inspected; you should never set this conditional yourself.

\ifinmemoize (readonly)

Use this TEX-style conditional to test whether Memoize is currently active, in the sense of either
memoizing or regularly compiling some code — so inside a call to \Memoize. The conditional may
be only inspected; you should never set it yourself.

\mmzSingleExternDriver{〈code〉}

This is the default memoization driver, producing exactly one extern containing whatever is
typeset by the submitted 〈code〉.
The 〈code〉 is compiled either within a horizontal or vertical box, depending on the value of key
capture. In the case of a horizontal capture, the driver makes sure that the horizontal mode is
entered prior to both typesetting the resulting box in the document, or utilizing the extern.
For the implementational details, see section 4.4.1.

81

\mmzExternalizeBox{〈box〉}{〈token register〉}

This macro is indended to be called by memoization drivers to produce an extern page. The given
〈box〉 is dumped into the document as a separate extern page, while the 〈token register〉 receives
the cc-memo extern inclusion code.
The 〈box〉 may be given either as a control sequence (declared via \newbox), or as box number.
The resulting extern page will contain a copy of the given box, padded by the padding values in
effect at the time of invocation of \mmzExternalizeBox.
An implementation detail is that \mmzExternalizeBox does not ship out the extern page imme-
diately. This action is delayed until the end of the memoization process; more precisely, it is
carried out (in tandem with writing out the c-memo and the cc-memo) between execution of hooks
at end memoization and after memoization. This delay guarantees that no extern pages are
produced in the event of aborting memoization, even if the abortion is triggered after executing
\mmzExternalizeBox.
The 〈token register〉 may be given either as a control sequence (declared via \newtoks) or as control
sequence \toks followed by the register number. The register will receive the code, which, when
executed from the cc-memo, includes the extern file into the main document. This code consists
of a single invocation of \mmzIncludeExtern. It is the responsibility of the driver to include the
code received by 〈token register〉 in the register \mmzMemo, whose contents are, unless memoization
is aborted, written into the cc-memo. (See \ifmmzkeepexterns and after memoization to learn
about another way to use the code received by 〈token register〉.)
The invocation of \mmzIncludeExtern in the produced extern-inclusion code is adapted to the
type of the box (horizontal or vertical), which is detected automatically — the memoization driver
does not need to inform \mmzExternalizeBox about this type explicitly.65

\ifmmzkeepexterns (initially \iffalse)
\mmzkeepexternstrue
\mmzkeepexternsfalse

Setting this conditional to true makes Memoize keep the extern boxes in the global temporary
storage even after shipping them out as extern pages. (The temporary storage is emptied at the
start of the next memoization.)
The extern inclusion code received by the \mmzCCMemo when executing \mmzExternalizeBox is
primarily meant to be executed by inputting the cc-memo file; i.e. when the cc-memo is input,
\mmzIncludeExtern is defined to include the extern file into the document. However, it sometimes
makes sense to execute the cc-memo contents immediately after memoization; for example, if
memoization produces several externs, intricately integrated into the surrouding environment, it
might be cumbersome to replicate their typesetting both in the memoizing compilation and in
the cc-memo code — easier to build up the cc-memo code and execute it right after memoization.
This is why Memoize, just before executing the contents of after memoization hook, redefines
\mmzIncludeExtern to include externs from the temporary storage rather than from (at that
point still non-existing) extern files. However, as this mechanism requires Memoize to keep the
externs around even after memoization, it is not enabled by default: it must be enabled by setting
conditional \ifmmzkeepexterns to true.

/mmz/auto/integrated driver={〈name〉}

Use this key to easily setup a memoization driver which is integrated into the command itself.

This is an auto-key residing in keypath /mmz/auto.

65This does not negate the need for key capture, which applies to the default — and therefore generic — memoization
driver. This driver cannot know whether the memoized code would prefer to be compiled in a horizontal or vertical box.
It is precisely key capture which gives the user an opportunity to inform Memoize about this preference. Only once the
memoized code is compiled into a box of the appropriate type, it is trivial to detect the type of that box.

82

An integrated driver must have a way of telling whether it is memoizing or regularly compiling the
code. This key declares a driver-specific conditional which may be inspected, using \IfMemoizing,
to determine this. The conditional is set to true by the formal driver of the command (set up by
the invocation of this key), executed at the start of memoization; it should never be set elsewhere.
See section 4.4.3 for details and an example.

\IfMemoizing[〈offset〉]{〈name〉}{〈true code〉}{〈false code〉}

This LATEX-style conditional is meant to be used by the integrated driver with the given 〈name〉.
It tests whether this particular driver is currently memoizing some code.
Potentially recursive commands are supported via the optional argument 〈offset〉. If given, the
conditional will only execute the 〈true code〉 when the current TEX group level matches the TEX
group level at the time of the invocation of the formal driver (held in \memoizinggrouplevel),
plus the 〈offset〉. In effect, the inner invocation of the integrated driver will perform a regular
compilation. For details, see section 4.4.4.

\memoizinggrouplevel (readonly)

During memoization, this macro holds the TEX group level in effect at the start of the memoization.

\mmzRegularPages (readonly counter)

This counter holds the number of pages shipped out (so far) by the format’s regular shipout
routine. Do not change its value!
In LATEX, this counter is synonymous with \ReadonlyShipoutCounter, and in ConTEXt, it is
synonymous with \realpageno. Memoize does not touch its value.
In plain TEX, Memoize hijacks the \shipout control sequence to count (and only to count) regular
shipouts. In order for its value to be realistic, Memoize should be loaded before other packages
which hack \shipout — in particular, before atbegshi.

\mmzExternPages (readonly counter)

This counter holds the number of extern pages Memoize has shipped out (so far). Do not change
its value!
A third-party tool may inspect this counter to have a realistic count of shipped-out pages.

\mmzExtraPages (counter)

This counter holds the number of pages shipped out (so far) in a way not tracked by either
\mmzRegularPages or \mmzExternPages. It should be advanced by any code which performs such
shipouts, or Memoize won’t work correctly.

83

https://ctan.org/pkg/atbegshi

5.3.4 Tracing

/mmz/trace=true | false (default true, initially false)

When tracing is on, Memoize shows information about its decision processes on the terminal. You
can learn whether the memoized code is being memoized, utilized or regularly compiled; find out
the md5sum of the code and which input line it comes from; etc.
This key has the syntax of a conditional, but there is no underlying TEX conditional. The
low-level interface for switching the tracing on and off consists of macros \mmzTracingOn and
\mmzTracingOff.
To learn about tracing the “auto” part of the automemoization process, also \AdviceTracingOn.

/mmz/include source in cmemo=true | false (default true, initially true)

As a courtesy towards a curious user and a debugging aid, Memoize can include a copy of the
memo source in the c-memo. This feature is switched on by default, but as the package itself
never uses that information, it can be safely switched off at any time.

/mmz/include context in ccmemo=true | false (default true, initially false)

When this key is in effect, the expanded context expression is appended to the cc-memo, behind
the \mmzThisContext marker.
Memoize never uses the context information from the cc-memo; this information is only for tracing
purposes.

/mmz/direct ccmemo input=true | false (default true, initially false)

When this key is set to false, a cc-memo is processed indirectly: it is first read into a token register,
and it is the contents of this register which are executed. When the key is set to true, the cc-memo
is simply \inputted.
The indirect execution is implemented to facilitate inverse search. Under the direct cc-memo input,
inverse search pointed at an included extern will visit the cc-memo, which is not practical; under
the indirect regime, the inverse search will work as expected, and this is why the indirect cc-memo
input is the default.
The overhead produced by the default indirect input method seems negligible, but there are other
factors which might make the user switch to the direct input. For one, a cc-memo changing some
category codes will require direct input (no such cc-memos are ever produced out of the box).
Less crucially, sometimes one would like to use the inverse search to figure whether a part of the
document was produced by regular compilation or utilization, and which memos/externs were
utilized if the latter. Figuring this out under the indirect input regime is harder: (i) reading the
tracing information shown by trace is the surest way to learn what’s going on, although (ii) visual
inspection of the externs and (iii) grepping through the .memo.dir folder for particular code often
help, as well.
Both input methods use the same cc-memos; there is no need to recompile the memos when
switching the cc-memo input method. Note that the default indirect input method crucially relies
on cc-memos ending with \mmzEndMemo; this macro should not appear in the cc-memo itself.

84

5.3.5 Internal memo commands

The end-user should never have to use these commands. They are not formally marked as internal by
a @ in their name only because doing so would complicate \inputting the memos due to the category
code changes it would require.

\mmzMemo

This macro marks the beginning of a c-memo and a cc-memo core. Without it, utilization of a
memo will not work.

\mmzSource

This macro marks the beginning of the memoized source in the c-memo. That source is not used
by Memoize in any way. It’s inclusion into the c-memo may be switched off by include source
in cmemo=false.

\mmzResource{〈filename〉}

This is an internal command, which only occurs in a cc-memo. It checks whether file 〈filename〉
exists and is non-empty, and triggers recompilation of the memoized code if the check fails.

\mmzIncludeExtern{〈seq〉}{\hbox|\vbox}{〈expected width〉}{〈expected height〉}{〈expected depth〉}
{〈padding left〉}{〈padding bottom〉}{〈padding right〉}{〈padding top〉}

This is an internal command, which only occurs in a cc-memo. It includes the extern identified
by the sequential number 〈seq〉 into the document as a box of the specified type (horizontal or
vertical). The extern is trimmed by the given padding values. After trimming, the command
checks whether the size of the resulting box matches the given expectations; if it doesn’t, a warning
is yielded.
Before this command is executed, the externs should be listed by a sequence of \mmzResource
commands; 〈seq〉 refers to the sequential number of an extern in this sequence.
This command may also be executed by executing the entire contents of \mmzCCMemo after
memoization.

\mmzLabel{〈label key〉}{〈label value〉}

This is an internal command written into the cc-memo by the auto-handler of \label. It
temporarily stores 〈label value〉 into \@currentlabel and then executes \label{〈label name〉}.

\mmzEndMemo

This macro marks the end of a cc-memo. It is used to grab the cc-memo core (everything between
\mmzMemo and \mmzEndMemo) under the indirect cc-memo input regime, i.e. when direct ccmemo
input is not in effect.

85

5.4 Location of memos and externs

/mmz/memo dir=〈name〉 (style, default \jobname)

A convenient way to store memos and externs in a dedicated directory (and create this directory in
case it does not exist). Without an argument, this key places these files in subdirectory 〈document
name〉.memo.dir of the current directory. See section 2.5 for the tutorial.
This key sets relative to false, dir to 〈name〉.memo.dir, prefix to empty and mkdir to true.
In effect, memos and externs are placed in the subdirectory 〈name〉.memo.dir of the directory
containing the document; their filenames contain no 〈name〉 prefix, as 〈name〉 already occurs in
the directory name. The latter feature also makes it easy for projects (or parts of a project) to
share memos and externs; see section 2.6 for a typical usage case.

/mmz/no memo dir (style)

A convenient way to undo the effect of memo dir and revert to the initial settings where memos
and externs are located in the current directory. See section 2.5 for the tutorial.
This key resets the subkeys of path to their initial values, and sets mkdir to false.

/mmz/path=〈keylist〉 (style)

Set the path prefix to memo and extern files by executing the given 〈keylist〉 in keypath /mmz/path.
The path prefix contains both the location of the memo/extern files (set by relative and dir)
and the initial, fixed part of their filenames (set by prefix):

〈path prefix〉=[./]〈directory〉/〈prefix〉
where “./” is only present when relative is in effect. Given the 〈path prefix〉, this is how the
paths to memos and externs are constructed:

c-memo: 〈path prefix〉〈code md5 sum〉.memo
cc-memo: 〈path prefix〉〈code md5 sum〉-〈context md5 sum〉.memo

extern: 〈path prefix〉〈code md5 sum〉-〈context md5 sum〉-N.pdf
(where “-N” is only present when N 6= 0, i.e. for non-first externs)

For example, the default no memo dir 〈path prefix〉 equals 〈jobname〉. (note the dot), and
after issuing memo dir, the 〈path prefix〉 is 〈jobname〉.memo.dir. Executing path={dir=project-
memo-dir, prefix=\jobname.} would set the memo prefix to ./project-memo-dir/〈jobname〉.,
allowing the author to keep the memo files of all documents compiled from the project directory
in the same place.
The following keys may occur in the 〈keylist〉:

/mmz/path/relative=true | false (default true, initially true)

This key determines whether the location is relative to the current directory, i.e. the directory
where TEX is executed from; usually, this will be the directory where the compiled .tex file
resides. When set to true (the default), the directory set by dir is prefixed by “./”.
You will probably need to set openout_any=a in texmf.cnf to allow writing to an arbitrary
directory — but remember, this might be dangerous!

/mmz/path/dir=〈name〉 (no default, initially empty)

Set the 〈directory〉 where Memoize will search for memos and externs and/or create them in.
Unless relative is set to false, this location is relative to the current directory. Given the
empty default, memos and externs are therefore created in the directory holding the source
file by default.
In principle, the given memo directory must already exist, but see mkdir.

86

/mmz/path/prefix=〈name〉 (no default, initially \jobname.)

Set the 〈prefix〉, i.e. the initial part of the memo/extern filename. Initially, it is set to the
document name.

After processing the 〈keylist〉, path records the new path prefix by invoking prefix, which typically
results in a \mmzPrefix entry in the .mmz file, and attempts to create the 〈directory〉 is mkdir is
in effect — except when path is executed in the document preamble: then, these actions are only
carried out at the beginning of the document, for the final value of the keys.

/mmz/mkdir=true | false (default true, initially false)

When this key is set to true, Memoize will attempt to create the directory set by path if it does
not yet exist. The directory creation takes place at the beginning of the document and at every
subsequent invocation of key path, using the system command specified by mkdir command.

/mmz/mkdir command=〈system command invocation〉 (no default, initially mkdir "#1")

Sets the command used to create dir when mkdir is in effect.
This is a system command, so an appropriate shell escape mode must be in effect to execute it
successfully.
The default should work on Linux, MacOS and Windows. On Linux systems, it makes sense to
change the default (using memoize.cfg) to mkdir -p "#1", which can create parent folders as
necessary.
Note that extraction methods perl and python set mkdir command to memoize-extract.pl
--mkdir and memoize-extract.py --mkdir, respectively. Unlike system mkdir, these commands
are safe in the sense that they conform to the paranoid openout regime (openout_any=p).

/mmz/output-directory=〈directory〉 (no default, initially undefined, as package option only)
\mmzOutputDirectory〈directory〉 (pre-defineable)

If the TEX binary was invoked with option -output-directory, one should use this key or define
this macro to inform Memoize this, as there is no way to learn about it automatically.
The given 〈directory〉 must end with a slash (/).
The key is only allowed as a package option. But I imagine that defining the macro from the
command line, prior to inputting the document source, will be more common:
pdftex -output-directory somedir '\def\mmzOutputDirectory{somedir/}\input doc'

87

5.5 Extern extraction

/mmz/extract={〈extraction method〉} (preamble-only, initially perl, default: see below)

This key selects or executes the extern 〈extraction method〉, i.e. the method which Memoize will
use to extract the extern pages out of the document PDF.
Out of the box, Memoize recognizes the following 〈extraction method〉 keywords: perl, python,
tex and no. The final keyword (not available in plain TEX) instructs Memoize to not perform to
extraction; it should be used when extraction is performed externally (for details, see section 1).
Additional methods may be installed by defining key /mmz/extract/〈extraction method〉.
When invoked from memoize.cfg or used as a package option, this key selects the extraction
method. In this case, the key has no default value, i.e. it is illegal to use it without an argument.
The method selected by the package option overrides the method selected in memoize.cfg, which
in turn overrides the package-initial value perl.
In LATEX and ConTEXt, the selected method is executed at the end of loading the package.
Afterwards, the key is disabled. If you really need to invoke extraction in the preamble, or again,
write extract/〈method〉.
When invoked from a \mmzset in the document preamble, this key immediately executes the given
extraction method. In the preamble incarnation, the key may be invoked without a value to
execute the previously selected method.
As we want to allow a plain TEX author to override the extraction method specified by the package
(perl) or in memoize.cfg, Memoize does not perform extern extraction while loading the package
in this format. In plain TEX, internal extraction can only be triggered by an explicit invocation
of extract in the “document preamble” — i.e. between \input memoize and \mmzset{begin
document}. In this case, the key does not require an argument; invoking it without the argument
will execute either the package-default, perl, or whatever the user had selected in memoize.cfg.
Executing extraction method perl or python has an additional effect of setting the mkdir command
to the extraction script with option --mkdir. This obviates the need to include mkdir among the
restricted shell commands if one is using the restricted shell mode.

5.5.1 Perl- and Python-based extraction

/mmz/perl extraction command=〈system command〉 (no default, initially memoize-extract.pl)
/mmz/perl extraction options=〈options〉 (no default, initially: see below)
/mmz/python extraction command=〈system command〉 (no default, initially memoize-extract.py)
/mmz/python extraction options=〈options〉 (no default, initially: see below)

These keys determine the system calls used for invoking the extraction scripts memoize-extract.pl
and memoize-extract.py. All the details below apply both to the Perl and the Python version.
Use perl/python extraction command to set the name of the extraction script. If necessary,
include the full path to the scrip, or perl/python plus the path to the script. Whatever you set
here must be allowed by the shell escape mode.
Use perl/python extraction options to set the options that the script will receive; consult the
documentation of memoize-extract.pl for their meaning.
The initial value of perl extraction options, shown below, (i) sets embedded mode, which
prefixes each output line with the script name, (ii) requests a log file named 〈jobname〉.mmz.log
(-l; \inputting the log after extraction informs Memoize, and the author, whether extraction was
successful), and (iii) sets the warning template suitable for the format (-w; this way, any warning
messages issued by the script can be reissued by the compilation of the document).
These keys were initialized using pgfkeys handler .initial, so their values may be modified by
handlers .prefix, .append, etc. During the execution of the system call, their values are fully
expanded — thus the \strings in the initial options value below. The guards (%<latex> etc.)
make sure that each format asks for a warning message it understands (the code shown below is
an excerpt from the .dtx file; ultimately, each format receives a single of the three guarded lines).

88

https://ctan.org/pkg/pgfkeys

The initial value of perl extraction options

-e -l "\mmzOutputDirectory\mmzUnquote\jobname.mmz.log" -w
%<latex>"\string\PackageWarning{memoize (perl-based extraction)}{\string\warningtext}"
%<plain>"\string\warning{memoize (perl-based extraction): \string\warningtext}"
%<context>"\string\warning{memoize (perl-based extraction): \string\warningtext}"
"\mmzOutputDirectory\mmzUnquote\jobname.mmz"

memoize-extract.pl [〈options〉] 〈name〉.mmz
memoize-extract.py [〈options〉] 〈name〉.mmz

These scripts extract the new externs recorded in 〈name〉.mmz from 〈name〉.pdf. Memoize invokes
them when loaded with package option extract=perl (the default) or extract=python.
The script inspects the given record file, 〈name〉.mmz, for lines of form \mmzNewExtern{〈extern
filename〉}{〈extern page number〉}{〈expected width〉pt}{〈expected height〉pt}. For each such line,
page number 〈extern page number〉 is extracted from 〈name〉.pdf into 〈extern filename〉. Other
lines are ignored (and so are commented invocations of \mmzNewExtern).
The 〈extern filename〉 may contain a (relative or absolute) path to the new extern file. The relative
paths are relative to the location of the .mmz file, even when the script is invoked from some other
directory.
To guard against extracting a wrong page, the script checks whether the size of each extracted
page matches the 〈expected width〉 and 〈expected height〉.66 If it does not, the script refuses to
extract the page, yields a warning and even removes the extern file if it exist.
The extraction script’s paranoia extends further. It will refuse to extract the page, yielding a
warning, if a (c)c-memo associated to the extern does not exist. And it will refuse (yielding a
runtime error) to write to any file whose absolute path does not occur under the current directory
or the directory set by TEXMFOUTPUT (in texmf.cnf or as an environment variable); TEXMFOUTPUT
is also not allowed to point to the root directory, except on Windows, where it can only point to a
drive root.

-P | --pdf 〈pdf 〉

Extract the externs from the given 〈pdf 〉 instead of the default 〈name〉.mmz. Note that file
〈pdf 〉, despite the different name, should be produced by the same compilation that produced
〈name〉.mmz, otherwise wrong pages might be extracted.

-p | --prune

After extraction, remove the extracted extern pages from the document PDF.

-k | --keep

By default, the script comments out the \mmzNewExtern lines in the .mmz file, to prevent
multiple extractions. Specifying this option prevents this behaviour.

-l | --log 〈filename〉

When given this option, the script creates a log file with the given name. The log will receive
any warnings yielded by the script, see also --warning-template. A well-formed log ends
with \endinput, indicating that the .mmz file was completely processed.
In absence of this option, the warnings are printed to the standard error.

66To avoid false positives, the match need not be exact, a difference up to 0.01pt is tolerated. Some PDF tools,
notably the PDF::API2 library deployed by the Perl version of the script, round the dimensions of a PDF page, recorded
in /MediaBox, to two digits.

89

-w | --warning-template 〈template〉

When this option is given, a warning message is not logged (or printed to standard error)
as-is; it is wrapped by the template given as the argument of this option. More precisely, the
script will log the given 〈template〉, with all occurrences of \warningtext substituted by the
actual warning message.
The option can be used to propagate warnings to the upstream compilation, simply by
setting this option appropriately (see the initial value of python extraction options) and
\inputting the log after extraction.

-f | --force

Force extern extraction even if the size-check fails. The failure will still be logged.

-q | --quiet

Normally, the script prints what it is doing to the standard output; in particular, it prints
out the page number and the filename of each extern it is extracting. This option disables
this behaviour.

-e | --embedded

When given this option, everything printed to the standard output is prefixed by the script
name. The idea is to use this option when calling the script from the TEX compilation, as it
makes it easy to identify the output of the script.

-m | --mkdir

When given this option, the extraction script transforms into a paranoid mkdir (-p). Argument
〈name〉.mmz is interpreted as a path to the directory to create; all other options are ignored.
The ancestors of the directory are created as needed. The script will refuse to create any
directory whose absolute path does not occur under the current directory or a directory listed
in TEXMFOUTPUT (set in texmf.cnf or as an environment variable).
This option exists so that the author using the restricted shell mode does not have to list
mkdir among the restricted shell mode commands (and it is also safer than a plain mkdir).
Memoize automatically uses this script to create the memo directory when option extract is
given value perl or python.

-h | --help

Show help.

-V | --version

Show Memoize version.
Functionally, the Perl (.pl) and the Python (.py) version of the script are almost equivalent.
The minor differences, listed below, are mostly due to the underlying PDF-processing library:
PDF::API2 in Perl, and pdfrw2 in Python.

• The Python script is about twice as fast as the Perl script. However, both scripts are very
fast compared to the TEX-based extraction. On my computer, extracting 160 externs out of
a 400-page book takes 1.4s with Python, 3.7s with Perl, and 65s with TEX. But even when
using TEX-based extraction, externalization using Memoize is extremely fast compared to
the TikZ’s externalization library. Adding the regular compilation time of one minute to
the above numbers, we arrive at the maximum externalization time of about two minues,
whereas my estimate for the production of all 160 externs using TikZ’s externalization would
be an hour or more.

• The Python script cannot extract externs out of PDFs created without stream compression,
i.e. with \pdfvariable compresslevel set to 0.

• Occasionally, the Perl script crashes during extraction externs; see section 6.2 for details.

90

https://metacpan.org/pod/PDF::API2
https://pypi.org/project/pdfrw2/
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf

5.5.2 TEX-based extraction

/mmz/tex extraction command=〈system command〉 (no default, initially pdftex)
/mmz/tex extraction options=〈options〉 (no default, initially: see below)
/mmz/tex extraction script=〈TEX code〉 (no default, initially: see below)

Together, these keys determine the system call used for invoking the TEX-based extraction script,
memoize-extract-one.tex. (They were initialized using pgfkeys handler .initial, so their
values may be modified by handlers .prefix, .append, etc.)
Memoize uses the resulting system call string at the following occasions. First, it executes it, once
for each new extern in the .mmz file, during the internal extraction, i.e. when it is loaded with
package option extract=tex. Second, it uses it to construct record files of types sh, bat and
makefile when recording of these types is requested.
Key tex extraction command sets the TEX binary used for TEX-based internal extraction. By
default, the pdfTEX engine pdftex is used; other sensible values for this key are luatex and
xetex, or the program name including the path. Note that shell escape mode must be configured
appropriately, and that memoize-extract-one.tex must be compiled with the plain TEX format.
The value of key tex extraction options is passed as options to the plain TEX binary. As shown
in the initial value in the frame below, it may use the temporary macro \externbasepath, which
expands to the path to the extern without the .pdf suffix. This macro is available during internal
TEX-based extraction and during the execution of /mmz/record/〈record type〉/new extern key
for and 〈record type〉.

The initial value of tex extraction options

-halt-on-error
-interaction=batchmode
-jobname "\externbasepath"
\ifdefempty\mmzOutputDirectory{}{-output-directory "\mmzOutputDirectory"}

Key tex extraction script defines the command-line script executed to extract the extern.
The default value, shown in the frame below, invokes memoize-extract-one.tex after setting its
parameter macros. Temporary macros \pagenumber, \expectedwidth and \expectedheight are
defined at the same occasions as \externbasepath above, i.e. during internal TEX-based extraction
and during the execution of a new extern key. The initial value requests the extern to be of the
same version as the main document, if possible;67 note that Memoize defines \pdfmajorversion
and \pdfminorversion in LuaTEX.

The initial value of tex extraction script

\def\noexpand\fromdocument{"\mmzOutputDirectory"\jobname.pdf}%
\def\noexpand\pagenumber{\pagenumber}%
\def\noexpand\expectedwidth{\expectedwidth}%
\def\noexpand\expectedheight{\expectedheight}%
\def\noexpand\logfile{\jobname.mmz.log}%
\unexpanded{%
\def\warningtemplate{%
%<latex>\noexpand\PackageWarning{memoize}{\warningtext}%
%<plain>\warning{memoize: \warningtext}%
%<context>\warning{memoize: \warningtext}%

}}%
\ifdef\XeTeXversion{}{%
\def\noexpand\mmzpdfmajorversion{\the\pdfmajorversion}%
\def\noexpand\mmzpdfminorversion{\the\pdfminorversion}%

}%
\noexpand\input memoize-extract-one

67As far as I know, it is impossible to access the version of the PDF being produced in XƎTEX, i.e. there are no
registers \pdfmajorversion and \pdfminorversion. To request production of a specific version of PDF, XƎTEX must be
invoked by with command-line option -output-driver 'xdvipdfmx -V N'.

91

https://ctan.org/pkg/pgfkeys

As the value of tex extraction script is fully expanded when used, the initial value shown
above must prevent the expansion of much code. Furthermore, the initial value varies with the
TEX format, as indicated by the .dtx guards in the definition of \warningtemplate.

(pdf|lua|xe)tex -jobname 〈extern filename〉 "〈parameters〉 \input{memoize-extract-one.tex}"

Compiling memoize-extract-one.tex with plain TEX produces an extern file containing a single
(extern) page extracted from the document PDF.
Memoize invokes this script, once for each new extern appearing in the .mmz file, when loaded
with package option extract=tex.
The desired 〈extern filename〉 is given as the value of option -jobname of the TEX binary. To set
the extraction 〈parameters〉, define the following macros before \inputting the file:

\def\fromdocument{〈document pdf filename〉}

Defining this macro sets the filename of the PDF which the externs will be extracted from.
The filename is relative to the working directory.

\def\pagenumber{〈number〉}

Defining this macro sets the number of the page to extract. The first page has number 1.

\def\expectedwidth{〈dimension〉} (optional)
\def\expectedheight{〈dimension〉} (optional)

Defining these macros sets the expected width and height of the extracted page.
To guard against extracting a wrong page, the dimensions of the extracted page are compared
against the expected width and height. If the size check fails,68 the resulting extern PDF is
empty (which counts as non-existent when Memoize checks for its presence when it attempts
to utilize it), and a warning message (formatted via \warningtemplate) is printed to the log
file, if logging was requested via \logfile.
If any of these macros is undefined, the size check will be skipped.

\def\logfile{〈filename〉} (optional)

Defining this macro sets the name of the log file. If not defined, no log file will be produced.
The log file is intended to be used when the script is invoked from an outer TEX compilation.
In particular, it is intended to be \input by that compilation to see whether the extraction was
successful. Upon a failed size check, it will contain a warning (formatted by \warningtemplate,
if that macro is defined). The log file ends with \endinput to signal that extraction actually
took place.

\def\warningtemplate{〈code〉} (optional)

Defining this macro determines how to log the warning message in the case of a failed size
check. The macro should expand to a TEX format-specific warning message code containing
the warning text given in \warningtext.69

While the script formats the warning message text on its own (“I refuse to extract page …”),
the warning message is not written into the log unadorned. The log file is intended to be
\input by the outer TEX compilation, and the idea is that inputting it should yield a warning
in that compilation (in the case of a failed size check). Therefore, the content of the log file
must contain an invocation of the command used to produce warning messages in the TEX
format used by the outer compilation.
For example, when this script is invoked from within a LATEX compilation, it makes sense to de-
fine something like \def\warningtemplate{\PackageWarning{memoize}{\warningtext}}.

68The match need not be exact, see footnote 66.
69Macro \warningtemplate is passed the warning text by a macro rather than a formal parameter to avoid category

code problems with the parameter character when setting key tex extraction script.

92

\def\force{true | false} (optional)

If this macro is defined to true, extern extraction will be carried out even if the size-check
fails. The failure will still be logged.

\def\mmzpdfmajorversion{〈number〉} (optional)
\def\mmzpdfminorversion{〈number〉} (optional)

Defining (one or both of) these macros requests that the extern PDF be produced with the
given major/minor PDF version, i.e. the extraction script will set registers \pdfmajorversion
and \pdfminorversion.

After extracting the extern, the script will end the compilation, i.e. intentionally, only one page
documents can be produced.

5.5.3 The clean-up scripts

memoize-clean.pl [〈options〉] [〈name〉.mmz …]
memoize-clean.py [〈options〉] [〈name〉.mmz …]

This script removes memo and extern files whose filenames start with 〈path prefix〉es mentioned
in the given .mmz files or by the --prefix option. Unless option --all is given, the script only
deletes the stale files, i.e. the files not mentioned in any of the given .mmz files.
A 〈path prefix〉 of a memo or an extern is what was set by key path, or more commonly, one of the
shortcut keys memo dir and no memo dir; see section 5.4 for details on the form of a memo/extern
filename.
In detail, the script scans the given .mmz files for occurrences of \mmzPrefix, and adds their 〈path
prefix〉 arguments to the list of prefixes given on the command line by option --prefix; a 〈path
prefix〉 occurring in some .mmz file is interpreted relatively to the location of the .mmz file. The
script removes all files whose full pathname (relative to the current directory) matches pattern
〈path prefix〉〈md5sum〉(-〈md5sum〉)(.memo|(-N).pdf|.log),70 except those which occur as the
〈filename〉 argument to one of \mmzUsedCMemo, \mmzUsedCCMemo, \mmzUsedExtern, \mmzNewCMemo,
\mmzNewCCMemo and \mmzNewExtern in one of the .mmz files.
The script is fairly paranoid. It refuses to delete anything if a .mmz file is malformed in any way
(but not if it doesn’t exist or is completely empty, which facilitates its usage in clean-up scripts),
or if it would remove a file not residing under the current directory. Before removing the files, it
lists the files to be removed and asks for confirmation.
Functionally, the Perl (.pl) and the Python (.py) version are completely equivalent.

-p | --prefix 〈path prefix〉

Add 〈path prefix〉 to the list of prefixes; the given prefix is relative to the current directory.
This option may be given multiple times.

-a | --all

When given this option, the script removes all memos and externs belonging to the document,
not just the stale ones, i.e. it effectively ignores the occurences of \mmzUsedCMemo and friends
in the .mmz file.

-y | --yes

When given this option, the script does not ask for confirmation before removing the files.

70The .log files are produced by the TEX-based extraction script.

93

-q | --quiet

Normally, the script prints what it is doing to the standard output; in particular, it prints
out the filename of each file as it is deleting it. This option disables this behaviour.

-h | --help

Show help.

-V | --version

Show Memoize version.

5.5.4 Record files

/mmz/record={〈record type〉} (cumulative, initially mmz, no default)
/mmz/no record

Memoize records which externs were produced and used in the compilation, producing a record
file of every type found in the record-type list. These keys add 〈record type〉 to the record-type
list, or clear this list. See section 4.3 for details.
Note that passing an undefined 〈record type〉 to this key will not yield an error.
Out of the box, the following 〈record type〉s are recognized:

mmz

This record type produces a .mmz file recording new/used externs/c-memos/cc-memos and
changes in the path prefix to these files; see section 4.3.1 for details.
The produced file is named 〈jobname〉.mmz. This name cannot be changed.
The .mmz file is a TEX file, but uses only a simple subset of the TEX syntax, to be easily
parsable by the external scripts such as memoize-extract.pl. Each line of the file consists
of a (possibly commented) invocation of one of the commands listed below; the final line is
\endinput. The 〈path prefix〉 below consists of the path to memos/externs and the immutable
prefix of their filename.

\mmzUsedCMemo{〈filename〉}
\mmzUsedCCMemo{〈filename〉}
\mmzUsedExtern{〈filename〉}

Record that the (c)c-memo or extern residing in file 〈filename〉 was utilized.

\mmzNewCMemo{〈filename〉}
\mmzNewCCMemo{〈filename〉}

Record that a new (c)c-memo residing in file 〈filename〉 was produced.

\mmzNewExtern{〈filename〉}{〈page number〉}{〈expected width〉}{〈expected height〉}

Record that a new extern was produced and dumped as page 〈page number〉 into the
document, that it should be extracted into file 〈filename〉, and that it should be 〈expected
width〉 wide and 〈expected height〉 high (modulo tolerance of 0.01pt, see footnote 66),
where the height is the total height comprising both TEX height and depth.

\mmzPrefix{〈path prefix〉}

Record that the path prefix of memo and extern files was changed.

94

makefile

This record type produces a makefile which, when processed by the make utility, triggers
TEX-based extraction of the new externs.

/mmz/makefile={〈filename〉} (no default, initially memoize-extract.memoize.makefile)

Use this key to change the filename of the produced makefile.

sh
bat

These record types produce a shell script which, when executed, triggers TEX-based extraction
of the new externs.
Use sh on Unix-like systems, and bat on Windows.

/mmz/sh={〈filename〉} (no default, initially memoize-extract.memoize.sh)
/mmz/bat={〈filename〉} (no default, initially memoize-extract.memoize.bat)

Use these keys to change the filename of the produced shell script.

/mmz/record/〈record type〉/begin (definable)
/mmz/record/〈record type〉/prefix={〈path prefix〉} (definable)
/mmz/record/〈record type〉/new extern={〈filename〉} (definable)
/mmz/record/〈record type〉/new cmemo={〈filename〉} (definable)
/mmz/record/〈record type〉/new ccmemo={〈filename〉} (definable)
/mmz/record/〈record type〉/used extern={〈filename〉} (definable)
/mmz/record/〈record type〉/used cmemo={〈filename〉} (definable)
/mmz/record/〈record type〉/used ccmemo={〈filename〉} (definable)
/mmz/record/〈record type〉/end (definable)

A new record type can be implemented by defining these keys in keypath /mmz/record/〈record
type〉 (using the standard pgfkeys handlers such as .code and .style). The keys are invoked by
Memoize where appropriate if recording for the defined type is activated by record=〈record type〉,
just as for the predefined types. Only those keys which are required for implementing the desired
functionality need to be defined.
The following macros are available during the execution of key new extern:

\pagenumber

This macro holds the number of the extern page.

\expectedwidth
\expectedheight

These macros hold the width and the height of the extern page.

\externbasepath

This macro holds the filename of the extern, minus the .pdf suffix (but including the path
leading to the extern).

95

https://ctan.org/pkg/pgfkeys

5.6 Automemoization

5.6.1 Package Advice

Package Advice is a namesake of Emacs’s Advice. As such, it implements a generic framework for
extending the functionality of selected commands and environments. Each advised command and
environment is assigned a piece of advice — a command which is executed instead of the advised
command and environment, and which may, or may not, invoke the original command or environment
during its execution. The package offers an elegant way of declaring advice, setting up the conditions
upon which the advised command will actually be replaced by the advice, collecting the arguments of
the advised command and invoking it, and (de)activating the advice.
Before the advising framework can be used, it must be installed into a selected pgfkeys keypath
(multiple installations into different keypaths are allowed, even if they handle the same commands).
Memoize installs the framework into keypath /mmz and (primarily) uses it to automatically memoize
the results of compilation of selected commands and environments.

/handlers/.install advice={〈configuration keylist〉}

This key is a pgfkeys key handler (see §87.3.5 of the TikZ & PGF manual) which installs the
advising framework into the keypath which it was invoked from — henceforth, the 〈namespace〉.
For example, \pgfkeys{/my/.install advice} installs the framework into keypath /my.
Argument 〈configuration keylist〉 may contain the following keys:

/advice/install/setup key={〈name〉} (no default, initially advice)
This key determines the names of the user-interface keys used to setup advice for commands
and environments in 〈namespace〉.
The keys whose names are determined by this key are the following: 〈name〉, 〈name〉 csname,
〈name〉 key, 〈name〉', 〈name〉 csname' and 〈name〉 key'. Memoize sets setup key=auto,
and thereby defines auto, auto csname, auto key, auto', auto csname' and auto key'.

/advice/install/activation=〈initial activation type〉 (no default, initially immediate)

This key sets the 〈initial activation type〉 for 〈namespace〉.
At the end of the installation, the system will execute 〈namespace〉/activation=〈initial
activation type〉; consequently, 〈initial activation type〉 must be one of immediate and deferred.
In Memoize, the 〈initial activation type〉 is deferred.
Setting the activation type during the installation only matters in LATEX, where the
installation ends by advising \begin to implement advising of environments.

Writing the documentation for Advice, I was faced with a dilemma. Should the docu-
mentation reflect the fact that the full names of keys defined by the package depend on
the installed instance of the framework, in particular on 〈namespace〉 and 〈setup key〉?
For example, should the reference headers contain things like 〈namespace〉/activate and
〈namespace〉/〈setup key〉 csname? In my opinion, this would make the reference hard to
read, so I decided to have the reference headers refer to the Advice keys of the Memoize
installation, where 〈namespace〉=/mmz and 〈setup key〉=auto, resulting in friendlier headers
such as /mmz/activate and /mmz/auto csname. (Consequently, it also made sense to
document Advice within the Memoize documentation.)
The bottomline: if you’re reading this section with a non-Memoize installation in mind, you
have to mentally replace any /mmz and auto in the reference headers with the 〈namespace〉
and the 〈setup key〉 selected by that installation. (Section 5.6.2 is another matter. Keys
described there are only available in Memoize.)

In more detail, key handler .install advice performs the following actions (as explained in the
box above, we assume that the advising framework was installed into keypath /mmz with the setup
key named auto):

96

https://www.gnu.org/software/emacs
https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgfkeys
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf

• It defines the following keys in keypath /mmz: auto, auto csname, auto key, auto', auto
csname', auto key', activation, activate deferred, activate, deactivate, activate
csname, deactivate csname. activate key, deactivate key. force activate, try
activate.

• It defines the following keys in keypath /mmz/auto: run conditions, outer handler,
bailout handler, collector, args, collector options, clear collector options, raw
collector options, clear raw collector options, inner handler, options, clear
options, reset.

• It defines the .unknown key handler for /mmz/auto. This handler appends any unknown keys
(and their values) to options.

• It executes /mmz/activation=〈initial activation type〉.
• In LATEX, it submits \begin to advising, thereby enabling environment support in this format.

Consequently, advising of environments can switched off by writing deactivate=\begin.

The keys installed into keypath 〈namespace〉 are used to declare and (de)activate advice. In
the documentation in this subsection, we assume that 〈namespace〉=/mmz and that 〈setup key〉=auto.
In particular, this also applies to the reference headers.

/mmz/activation=immediate | deferred (style, no default)
/mmz/activate deferred (style)

Key activation selects the activation regime. Under the immediate regime, keys activate,
deactivate, force activate and try activate behave as described in their documentation
below. Under the deferred regime, however, those keys are not executed; rather, their invocations
are appended to style activate deferred. For example, writing activate=\foo in the deferred
activation regime appends activate=\foo to activate deferred. It is up to the user if and
when to execute the keys collected in activate deferred; see the documentation of manual to
learn what Memoize does with the contents of this style.

/mmz/activate={〈list of commands and/or environments〉} (style)
/mmz/deactivate={〈list of commands and/or environments〉} (style)

These keys activate or deactivate the advice for the given commands and environments. When
the advice is activated, it replaces the advised command; when it is deactivated, the command is
reverted to its original definition.
In Memoize, these keys are most commonly used to activate or deactivate automemoization for
the given commands or environments. For example, write deactivate={\tikz,tikzpicture} to
deactivate automemoization of TikZ pictures (which is declared and active by default). The curly
braces may be omitted if the list contains a single command or environment, e.g. deactivate=\tikz
or deactivate=tikzpicture.
(De)activation of a piece of advice is completely orthogonal to its declaration with auto. For
example, there is no need to deactivate a command before redeclaring its advice, and reactivate
it afterwards. A command may be activated even before declaring its advice — however, the
command itself must be defined at the time of activation.
As the advice is normally automatically activated upon declaration with auto, explicit activation
is rarely needed, but see auto'. The effect of these keys under the deffered activation regime is
described in activation.
Note that I sometimes speak of (de)activating a command, and sometimes of (de)activating its
advice. I mean the same thing.

97

https://ctan.org/pkg/pgf

/mmz/activate csname={〈control sequence name〉} (style)
/mmz/deactivate csname={〈control sequence name〉} (style)

These keys activate and deactivate a command given by its 〈control sequence name〉; for example,
activate csname=foo is equivalent to activate=\foo. Note that unlike the regular activate
and deactivate, their csname variants only accept a single command at a time (otherwise,
including a comma in the command name would be impossible).

/mmz/activate key={〈list of full key names〉} (style)
/mmz/deactivate key={〈list of full key names〉} (style)

These keys activate and deactivate pgfkeys keys. Note that full key names must be given, i.e. the
names must include the keypath.
Under the hood, these keys merely execute activate and deactivate on the internal macros
corresponding to the given keys.

/mmz/try activate=true | false (default true, initially false)

When this conditional is set to true, activate will not yield an error if the advice is already
activated, and deactivate will not yield an error if the advice is not yet activated.
This key applies to the next, and only to the next, invocation of key activate or deactivate, i.e.
it is reset back to false after invoking activate or deactivate.

/mmz/force activate=true | false (default true, initially false)

When this conditional is set to true, activate will activate even a previously activated command,
provided that, additionally, the command has been redefined since the prior activation.
In more detail, the original definition of the advised command is saved upon activation (to provide
the possibility of both deactivation and the usage of the original command by the handler).
Consequently, activation of an already activated command would result in the saved original
definition being overwritten by the redefinition made during the first activation. However, if the
handled command was meanwhile redefined by a third party, reactivation makes sense, under the
assumption that the former original definition is obsolete and should be replaced by the (third
party) redefinition. As a safeguard, however, activate requires such reactivation to be explicitly
requested using conditional force activate.71

This key applies to the next, and only to the next, invocation of key activate, i.e. it is reset back
to false after invoking activate. This key does not apply to deactivate.

/mmz/auto={〈command or environment〉}{〈keylist〉} (style)

This key sets up the advice for the given command or environment, or updates the configuration
of an existing piece of advice.
In Memoize, this key is most commonly used to submit a command or environment to automemoiza-
tion. For an environment (say, bar), it suffices to write auto={bar}{memoize}; for a command, we
usually need to include its argument specification: auto=\foo{memoize, args={...}}. Another
common usage is to prevent memoization during the execution of a command or environment:
auto={bar}{nomemoize}. For details, see sections 2.3, 2.4 and 2.9.
The advice is configured by the given 〈keylist〉, which is executed with the default keypath set to
/mmz/auto. Any unknown keys in 〈keylist〉 are passed on to key options; for example, a plain
verbatim or padding=2in have the same effect as options=verbatim or options={padding=2in}.
This key automatically activates the declared advice, unless it is already activated; under the
deferred activation regime, the automatic activation is deferred as well. Use variant auto' when
you don’t want to automatically activate the advice.

71A potential problem, not (yet) addressed, is that the third party might be another incarnation of the advising
framework. In this case, forced reactivation will result in the loss of the original command and a circular dependency
between the two pieces of advice.

98

When this key is used on a command or environment with an existing piece of advice, the advice is
merely updated. This makes it easy to, for example, temporarily switch to verbatim collection of
an environment in Memoize: auto={tcolorbox}{verbatim}. Use key reset to setup the advice
from scratch: auto={...}{reset, ...}.
A piece of advice consists of several interlocked components, declared by keys residing in
path /mmz/auto: run conditions, bailout handler, outer handler, collector and inner
handler. During the execution of the advice, these components are available through the
following macros: \AdviceRunConditions, \AdviceBailoutHandler, \AdviceOuterHandler,
\AdviceCollector and \AdviceInnerHandler. These macros are also defined during setup,
and it is possible to change the configuration by modifying them directly; in that case, it likely
also makes sense to use the low-level variant of this key, macro \AdviceSetup.
Control sequences used in the advice components do not need to be defined at the time of
invoking key auto, or activating the advice; they must only be defined at the time the advice is
actually executed. It is thus perfectly fine to declare inner handler=\myinnerhandler before
defining \myinnerhandler, or to redefine \myinnerhandler between the invocations of the advised
command.
This key configures not only the components, but also the options of the advice. These options are
set by keys args, collector options, raw collector options and options. Whether these
options are used or not depends on the advice components. (Same as the components, the
options have their corresponding low-level macros: \AdviceArgs, \AdviceCollectorOptions,
\AdviceRawCollectorOptions and \AdviceOptions.)
Parameter symbols (i.e. #) are not allowed in advice settings.
A command or environment may be submitted to several instances of the advising framework, i.e.
instances installed under different keypaths. The effect of such chained advice depends on the
order of activation. If advice A is activated before advice B, it will also be applied before B.
The advice setup takes place in a group. Use key after setup to execute code outside this group.
In general, the name of this key equals whatever was submitted to setup key during the installation
of the advising framework via .install advice.

/mmz/auto csname={〈control sequence name〉}{〈keylist〉} (style)

This key is a variant of auto, but with the command of the first argument given as a control
sequence name, i.e. auto csname={foo}{...} is equivalent to auto=\foo{...}.

/mmz/auto key={〈full key〉}{〈keylist〉} (style)

This key is a variant of auto, but it works with pgfkeys keys. The first argument should be a
〈full key〉 like /tcb/float, i.e. it must consist of both the keypath and the keyname.
This key sets up advice for the internal command corresponding to the given 〈full key〉, and also
properly initializes the collector, so that inner handler will “just work.”

/mmz/auto'={〈command or environment〉}{〈keylist〉} (style)
/mmz/auto csname'={〈control sequence name〉}{〈keylist〉} (style)
/mmz/auto key'={〈full key〉}{〈keylist〉} (style)

These keys are variants of auto, auto csname and auto key which do not attempt to activate
the command after setting it up.

\AdviceSetup{〈namespace〉}{〈command or environment〉}{〈setup code〉}

This macro is the low-level variant of key auto. The differences between the two are the following:
• An invocation of the macro must provide the namespace (i.e. the installation keypath) as the

first argument.
• There is no automatic activation at the end of the setup.

99

https://ctan.org/pkg/pgfkeys

• The final argument should not be a keylist (of keys belonging to /mmz/auto) but TEX code ad-
justing the contents of the settings macros \AdviceRunConditions, \AdviceBailoutHandler,
\AdviceOuterHandler, etc. For the full list of available macros, see the documentation of
their corresponding keys below; the setting macros are mentioned at the end of each entry.

\AdviceTracingOn
\AdviceTracingOff

Advice tracing is initially off. When it is on, Advice will show (on the terminal and in the .log
file) which advice components are executed, and what arguments and options they have received.

The keys installed into keypath 〈namespace〉/〈setup key〉 are used to configure advice. They
may only occur within the second argument of the setup key. In the documentation in this subsection,
we assume that 〈namespace〉=/mmz and that 〈setup key〉=auto. In particular, this also applies to the
reference headers.

/mmz/auto/run conditions=〈TEX code〉 (initially and default: \AdviceRuntrue)

This key declares the 〈control sequence〉 as the run conditions component of the advice.
The run conditions macro is executed at the very start of the advice. Its function is to decide
whether we should proceed to advise the command by executing the outer handler, or execute the
original command (after invoking the bailout handler).
The run conditions macro should take no arguments. If it determines that the run conditions are
satisfied, it should set the TEX conditional \ifAdviceRun to true by executing \AdviceRuntrue.
There is no need to execute \AdviceRunfalse when the run conditions are not satisfied.
Initially, the run conditions are set to \AdviceRuntrue, translating to “always run.” For two
non-trivial examples, see run if memoization is possible and run if memoizing. Executing
this key without a value restores it to the initial value.
During advising and advice setup, the run conditions of the advised command are accessible
through \AdviceRunConditions, a parameterless macro expanding to the given 〈TEX code〉.

/mmz/auto/bailout handler=〈TEX code〉 (initially and default: \relax)

This key declares the 〈TEX code〉 as the bailout handler component of the advice.
The bailout handler is executed when the run conditions are not met, just prior to executing the
original definition of the advised command. The bailout handler should take no arguments.
The initial bailout handler, \relax, does nothing. Memoize defines and uses a bailout handler
which clears the next-options. Executing this key without a value restores it to the initial value.
During advising and advice setup, the bailout handler of the handled command is accessible
through \AdviceBailoutHandler, a parameterless macro expanding to the given 〈TEX code〉.

100

/mmz/auto/outer handler=〈TEX code〉 (initially and default: see below)

This key declares the 〈TEX code〉 as the outer handler component of the advice.
The outer handler can be safely imagined as the command which replaces the handled command.
This also holds for handled environments, but with a caveat: for a plain TEX or ConTEXt
environment foo, the outer handler replaces \foo and \startfoo, respectively; in the case of a
LATEX environment, it replaces \begin{foo}.
The outer handler is the first component which has the opportunity to inspect the arguments
given to the handled command. It is invoked just in front of these arguments (which are, in case
TEX hasn’t seen them yet, untokenized), and while it is expected that the advice will consume the
same arguments as the advised command itself would, how precisely that happens may vary from
situation to situation. In particular, the argument structure of the outer handler is not prescribed.
In fact, the outer handler has complete control over the remainder of the advising process. In
situations where advising requires knowledge of the advised command’s arguments as a whole, the
outer handler executes the collector, which in turn invokes the inner handler, which does the real
work; see memoize for the usage case which inspired this design. Sometimes, however, it is the
outer handler which does the real work (and there is thus no inner handler). This is the case in
situations when the arguments of the handled command are irrelevant for the functioning of the
advice, or when the advice needs to inspect some individual argument of the handled command;
for examples of such situations, see abort and ref.
To reiterate the argument situation of the outer handler, it sees the arguments of the handled
command as they were given. The arguments are not collected before invoking the outer handler

— in fact, avoiding the argument collection is the raison d’être of the outer handler! (In the case of
an advised environment, the environment body can be seen as an argument of xparse type +b.)
The outer handler (and any other component of the advice it invokes) has access to the following
auxiliary macros, defined by the framework:

• the macros holding the configuration of the advised command, as set up by auto:
\AdviceRunConditions, \AdviceBailoutHandler and \AdviceOuterHandler are proba-
bly useless, as they refer to components already invoked, but the remaining compo-
nents (\AdviceCollector and \AdviceInnerHandler) and their options (\AdviceArgs,
\AdviceCollectorOptions, \AdviceRawCollectorOptions and \AdviceOptions) should
be commonly used.

• the macros holding information about the namespace and the advised command or environ-
ment: \AdviceNamespace, \AdviceName, \AdviceReplaced and \AdviceOriginal. (Com-
mand \AdviceGetOriginal might also be useful, although using \AdviceOriginal will likely
be more practical.)

This key is initially set to an internal control sequence which merely invokes the collector by
executing \AdviceCollector; in other words, the initial outer handler leaves all the work to the
collector and the inner handler. There is no need to specifically set up the outer handler when
using the inner handler. Executing this key without a value restores it to the initial value.
During advising and advice setup, the outer handler of the advised command is accessible through
\AdviceOuterHandler, a parameterless macro expanding to the given 〈TEX code〉.

/mmz/auto/collector=〈TEX code〉 (initially and default: see below)

This key declares the 〈TEX code〉 as the collector component of the advice.
The collector, if used, is invoked by the outer handler. It is invoked immediately in front of the
advised command’s arguments (which are, in case TEX hasn’t seen them yet, untokenized), and
its function is to collect these arguments and pass them on, as a single argument, to the inner
handler.
While this manual occasionally states that the initial argument collector is \CollectArguments
of package CollArgs, this is, if we’re precise, incorrect on two counts. For one, the initial
collector is not a CollArgs command, but a macro which acts as the “bridge” between Advice and

101

https://ctan.org/pkg/xparse

CollArgs. Second, the initial collector does not really invoke \CollectArguments, but its cousin,
\CollectArgumentsRaw, which allows Advice (and Memoize) to fine tune its behaviour using
the fast low-level (“programmer interface”) commands rather than the slower pgfkeys interface;
clearly, the latter point also provides raison d’être for raw collector options. Summing up, this
key is initially set to an internal control sequence which compiles the settings provided by args,
collector options and raw collector options into an invocation of \CollectArgumentsRaw
of package CollArgs.72 Executing this key without a value restores it to the initial value.
The above-mentioned collector settings were clearly tailored to suit \CollectArgumentsRaw. In
general, a collector might or might not use them, and if it does, it may interpret them in any way.
For example, Advice ships with a \tikz collector, \mmzCollectTikZArguments, which ignores
them completely, as it knows everything about the idiosyncrasies of that command anyway. In-
cidentally, \mmzCollectTikZArguments becomes available upon loading advice-tikz.code.tex
(which Memoize does automatically in the presence of TikZ).
The collector has access to the same auxiliary macros as the outer handler. In particular, it will
have to use \AdviceInnerHandler (followed by the braced collected arguments) to invoke the
inner handler.
During advising and advice setup, the collector of the advised command is accessible through
\AdviceCollector, a parameterless macro expanding to the given 〈TEX code〉.

/mmz/auto/args=〈argument specification〉 (initially and default: unset)

This key describes the 〈argument specification〉 of the advised command.
Assuming that the initial value of collector has not been modified, the given 〈argument
specification〉 is eventually interpreted by command \CollectArguments of package CollArgs,
which expects an argument specification in the format specified by package xparse; the format
is summarized in the frame below for convenience, for details, see the xparse manual. If the
specification is not given, the initial collector assumes that the advised command was defined using
\NewDocumentCommand (or similar) of package xparse, and will attempt to retrieve the argument
specification automatically via \GetDocumentCommandArgSpec.
In general, however, an argument collector may this interpret this setting it in any way it sees fit

— or not at all. For example, in Memoize the value of args is ignored for command \tikz, which
requires a special collector (\mmzCollectTikZArguments).
When setting up advice for a command, this key is initially “unset,” i.e. it holds a special value
indicating that the argument specification is not provided. Note that this special value is not
an empty string — args={}, or simply args=, indicates a command which takes no arguments.
During the execution of the advice, one may use the LATEX-style conditional \AdviceIfArgs{〈true
branch〉}{〈false branch〉} to test whether the argument specification was provided. Executing this
key without a value restores it to the initial, unset value.
When setting up the advice of an environment, this key is initialized to +b (a long environment
body), making it unnecessary to specify this value manually. Note that this holds even for
environments with arguments other that the environment body “argument”: those arguments will
be caught as the start of the body even if not explicitly specified.
During advising and advice setup, the argument specification of the advised command is accessible
through \AdviceArgs, a parameterless macro expanding to the given 〈argument specification〉.

/mmz/auto/collector options={〈keylist〉} (cumulative, initially empty, value required)
/mmz/auto/raw collector options={〈code〉} (cumulative, initially empty, value required)

These keys append the given value to the list of user-friendly and raw collector options, respectively.
A comma is prefixed to the user-friendly 〈keylist〉 before appending it.
Both kinds of collector options are intended to be used by the collector, which may interpret them
in any way it sees fit — or not at all. The initial collector, which invokes \CollectArgumentsRaw

72The initial collector also sets the CollArgs’ option caller to the name of the advised command or environment.

102

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgf
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse

The xparse argument specification (as understood by \CollectArguments)

Mandatory argument types
m standard (a single token or multiple tokens in braces)
r〈token1〉〈token2〉 delimited by 〈token1〉 and 〈token2〉
v verbatim, in the style of \verb
b the body of an environment
Optional argument types
o in square brackets
d〈token1〉〈token2〉 delimited by 〈token1〉 and 〈token2〉
s an optional star
t〈token〉 an optional 〈token〉
e{〈tokens〉} a set of embellishments
Weird argument types
l a mandatory argument until the first begin-group token
u{〈tokens〉} TEX’s delimited argument
g an optional argument inside braces
Modifiers
+ allow the next argument to be long
! disallow spaces before arguments of type d and t
>{〈processor〉} process the next argument
CollArgs extensions
b{〈name〉} set the environment name for this environment
&{〈options〉} apply CollArgs options to the next argument
&&{〈raw options〉} apply raw CollArgs options to the next argument

\CollectArguments can grab an argument of any type in the verbatim mode.
As \CollectArguments does not use the arguments but only collects them, it does not care
about the default values of optional arguments. Therefore, argument types with defaults (O,
D and R) may be substituted by their -NoValue- counterparts (o, d and r) and are therefore
not included in the above table.

of package CollArgs, passes both lists to this command, which interprets collector options as
a user-friendly pgfkeys keylist (which therefore requires a bit of processing) and raw collector
options as plain TEX code (expecting it to contain only the allowed, “programmer’s interface”
macros).73 The raw variant is used internally by both Advice and Memoize, and may be used by a
package deploying the advising framework which wants to save a few processing cycles. In CollArgs,
the two kinds of options are functionally equivalent; both are documented in section 5.6.3.
Initially, the list of collector options is empty, and for commands, so is the list of raw collector
options. For environments, however, the latter list is initialized to set (the raw equivalent of)
environment to the environment name, and end tag to true. The rationale for the latter is
that the environment body containing the end tag (e.g. \end{foo}) is nicely compatible with
\AdviceReplaced (which equals the begin tag, e.g. \begin{foo}) and \AdviceOriginal (which
executes the original definition of e.g. \begin{foo}). For example, thanks to end tag, writing
\AdviceOriginal#1 in the inner handler executes the original environment. Importantly, the
original environment can be executed without explicitly referring to the environment’s name, and
with code that works not only for environments of any TEX format, but is actually the same as
the code which invokes an original command. Consequently, the same inner handler works for
both commands and environments, and in all TEX formats.
Furthermore, the initial collector also sets option caller to the name of the advised command
or environment (however, caller never appears in any of the collector options lists; it is simply
prefixed to them while constructing the invocation of \CollectArgumentsRaw). And in Memoize,

73Clearly, raw collector options are why Advice deploys \CollectArgumentsRaw rather than \CollectArguments.
But how does it then pass the user-friendly collector options to that command? It embeds them in \collargsSet.

103

https://ctan.org/pkg/xparse
https://ctan.org/pkg/pgfkeys

using keys verbatim, verb or no verbatim triggers the addition of the cognominal verbatim,
verb or no verbatim among the collector options.
Precious few CollArgs’ options thus remain to be set by the author. For memoization, the
most likely candidates are ignore nesting and ignore other tags, which could help deal with
unusual environments. Overriding the initial end tag by begin tag, end tag and/or tags might
also be useful on occasion.
During advising and advice setup, the pgfkeys and the raw collector options of the advised
command are accessible through \AdviceCollectorOptions and \AdviceRawCollectorOptions,
both a parameterless macro expanding to the given 〈keylist〉 and 〈code〉, respectively.

/mmz/auto/clear collector options
/mmz/auto/clear raw collector options

These keys empty the list of user-friendly and raw collector options, respectively.

/mmz/auto/inner handler=〈TEX code〉 (initially and default: see below)

This key declares the 〈TEX code〉 as the inner handler component of the advice.
The inner handler is intended to be used in situations which require knowledge of the advised
command’s arguments as a whole. In such situations, the outer handler will normally invoke
the collector, which will in turn execute the inner handler and provide it with a single (braced)
argument, containing the collected arguments of the advised command. See memoize for the usage
case which inspired this design.
The simplest example of an inner handler is a (single-parameter) macro which does nothing.
Surprisingly enough, such an inner handler could be useful. Defining \def\Gobble#1{} and setting
auto=\foo{inner handler=\Gobble, args={...}} with the argument structure appropriate
for \foo could be used to eradicate all invocations of \foo from the document.
The inner handler has access to all the macros available to the outer handler, but given that
most of them have already fulfilled their function, only the following will likely be useful in
the inner handler: \AdviceNamespace, \AdviceName, \AdviceReplaced, \AdviceOriginal, and
\AdviceOptions.
Because there is clearly no reasonable default for the inner handler, this key is initially set to
an internal control sequence producing an “undefined inner handler” error. Note that it is not
necessary to define a dummy inner handler when handling is entirely performed by the outer
handler, i.e. in cases when the inner handler is not invoked. Executing this key without a value
restores it to the initial value.
During advising and advice setup, the inner handler of the advised command is accessible through
\AdviceInnerHandler, a parameterless macro expanding to the given 〈TEX code〉.

/mmz/auto/options={〈keylist〉} (cumulative, initially empty, value required)
/mmz/auto/clear options

The first key appends the given 〈keylist〉 to the list of advice options (after prefixing it by a
comma), and the second one empties this list. For a 〈key〉 undefined in keypath /mmz/auto,
〈key〉=〈value〉 has the same effect as options={〈key〉=〈value〉}.
In Memoize, the options set by this key are known as auto-options — options which are applied
(using \mmzset) at every invocation of the advised command or environment. For example, the
tcolorbox environment of package tcolorbox is used extensively for typesetting this manual,
and I have submitted this environment to automemoization. However, the tcolorboxes in this
manual often include code listings. To memoize such environments successfully, their bodies must
be grabbed verbatim. I have therefore submitted the tcolorbox environment to automemoiza-
tion like this: auto={tcolorbox}{memoize, options=verbatim}; the simpler auto={tcolorbox}
{memoize, verbatim} would work as well.

104

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/tcolorbox

In general, whether to use the options set by this key, and how, remains at the sole discretion of
the advice. Note that they might be used by either the outer or the inner handler, or perhaps
even the collector.
During advising and advice setup, the options of the advised command are accessible through
\AdviceOptions, a parameterless macro expanding to the given 〈keylist〉.

/mmz/auto/reset (style)

Executing this key restores all auto keys to their initial values.
Invoking auto on the same command or environment again updates the advice configuration. Use
this key to start from scratch.

/mmz/auto/after setup (initially empty, cumulative)

The code given to this key will be executed after exiting the group opened by auto. The same
effect may be achieved by appending to macro \AdviceAfterSetup.
For example, integrated driver uses this key to declare a new conditional.

Commands available during the execution of advice
With the exception of \AdviceGetOriginal, the commands listed below only become available in the
outer handler, and if that handler does nothing funky, they should be available in the collector and
the inner handler, as well. However, once the advice yields control to foreign code, these macros are
not guaranteed to hold the expected values anymore, because the foreign code might trigger another
piece of advice. Consequently, these macros should be expanded, once, before integrating them into
arbitrary (non-advice) code; in particular, this applies to \AdviceOriginal.

\AdviceNamespace

This macro holds the 〈namespace〉, i.e. the keypath which this instance of the advising framework
was installed into.

\AdviceName

This macro holds the name of the advised command or environment, i.e. the name which was
used as the first argument to auto. For a command, this will be a control sequence, e.g. \foo; for
environments (in any TEX format), their name, e.g. foo.

\AdviceReplaced

This macro holds the code which was replaced by the outer handler. For commands, this will be
the command itself, e.g. \foo, so \AdviceReplaced will equal \AdviceName. For an environment
foo, \AdviceReplaced is set to \begin{foo} in LATEX, \foo in plain TEX and \startfoo in
ConTEXt.

\AdviceOriginal

This macro executes the original code of the advised command.
This macro is defined as \AdviceGetOriginal{〈namespace〉}{〈name〉}, and therefore acts as
a shortcut for an explicit invocation of \AdviceGetOriginal. When executing the original
command directly from the advice, one may safely write \AdviceOriginal. However, whenever
\AdviceOriginal is embedded in code which might contain other advised commands, it should
be pre-expanded, exactly once.

105

\AdviceGetOriginal{〈namespace〉}{〈control sequence〉}

This command invokes the original definition of the 〈control sequence〉 advised by the 〈namespace〉
instantiation of Advice. It may be safely used outside the advice, even if the advised command is
not activated.
For example, upon executing key /ns/auto=\foo{...}, \AdviceGetOriginal{/ns}{\foo} will
recall the original definition of \foo if \foo is activated, and simply execute \foo otherwise.
The second argument of this command should not be an environment name. To execute the
original environment foo in TEX or ConTEXt, use \AdviceGetOriginal with the appropriate
macro: \AdviceGetOriginal{/ns}{\foo} or \AdviceGetOriginal{/ns}{\startfoo}. In LATEX,
one should use \AdviceGetOriginal{/ns}{\begin}{foo}, which executes the original \begin
and provides it with the environment name.
Within the advice, you will probably never have to use this command directly, but will rather rely
on the (plain or pre-expanded) \AdviceOriginal. However, outside the advice, this command
provides the only means to access the original definition of an advised command. (Unlike the
commands described above, this command is available throughout the document.)

A typo in the invocation of this command may result in an infinite loop. Assume that the
advice for \foo, declared in namespace /mmz, executes \AdviceGetOriginal{/zzm}{\foo},
which incorrectly refers to the non-existing namespace /zzm, and that command \foo is
activated. Executing \foo will eventually execute \AdviceGetOriginal{/zzm}{\foo},
which won’t find the original definition of \foo in the non-existing namespace /zzm
and will thus execute macro \foo (again), which, being advised, will lead to another
\AdviceGetOriginal{/zzm}{\foo}, etc. My advice is to define an abbreviation like
\def\mmzAdviceGetOriginal{\AdviceGetOriginal{/mmz}}. And note that the name-
space is a full keypath, which begins with a slash (/), but has no slash at the end.

Support for specific packages At the moment, Advice only implements specific support for
TikZ, by defining a collector for command \tikz.

\AdviceCollectTikZArguments

This command collects the arguments in the format expected by \tikz, and executes macro
\AdviceInnerHandler with the collected arguments given as a single braced argument. The
collector supports both the group and the semicolor invocation of \tikz, i.e. both \tikz{...}
and \tikz...;.
This command is only available upon \inputting file advice-tikz.code.tex.

5.6.2 Memoization-related additions to the advising framework

In section 5.6.1, we have seen that Memoize installs the advising framework into keypath /mmz, with
setup key name auto. This populates keypaths /mmz and /mmz/auto with various generic advice keys.
However, Memoize installs further advice/automemoization-related keys into these keypaths. It is
these keys which are described in this section.74

Therefore, in contrast to section 5.6.1, /mmz and auto have no secret generic meaning here, i.e. they
should not be generalized to 〈namespace〉 and 〈setup key〉 of .install advice.

74One such key, integrated driver, is actually documented in section 5.3.

106

https://ctan.org/pkg/pgf

command/environment handler notes

\begin custom Only in LATEX; declared by Advice.
\errmessage abort Not available in LuaTEX, where better error-detection is

implemented.
forest memoize
\Forest memoize
\index replicate The argument is expanded prior to replication.
\label custom Globally appends \mmzLabel{〈label key〉}{〈current label〉}

to register \mmzCCMemo; run if memoizing.
\pageref ref
\pdfsavepos abort Not available in LuaTEX.
\pgfsys@getposition abort Available only in TikZ is loaded, it aborts memoization of a

picture which gets accidentally marked as “remembered”.
\ref ref
\savepos abort Available only in LuaTEX.
\tikz memoize
tikzpicture memoize

Table 1: Commands advised by Memoize

Keys residing in /mmz

/mmz/manual=true | false (preamble-only, default true, initially false)

When this conditional is set to true, no commands are activated at the beginning of the document.
The list of commands and environments advised and activated out of the box can be found in
Table 1.
The auto-framework allows the activation to be deferred (see activation and .install advice)
but leaves it open to the specific instance of the framework to use the deferred activation commands
as it sees fit. Normally, Memoize switches to immediate activation at the end of the preamble (hook
begindocument/before) and issues activate deferred at the beginning of the document, more
precisely in hook begindocument/end (afterwards, activate deferred is emptied). However,
when manual is in effect, the deferred activation is suppressed (though it may be still carried out
by the user by executing activate deferred).
In LATEX, manual affects the (internal) activation of \begin as well, which effectively deactivates
handling of all environments.

/mmz/ignore spaces=true | false (default true, initially false)

Ignore any spaces following automemoized code. This key has no effect for manual memoization,
i.e. command \mmz and environment memoize.
It is common practice to conclude the definition of a command by TEX primitive \ignorespaces,
which consumes any following spaces, to prevent unintended blank space after the command’s
invocation. Automemoizing such a command disrupts this behaviour.75 The workaround is to
use this key, normally as an option in the auto declaration; it will work both for automemoized
macros and environments.

75It is clear that \ignorespaces is disrupted during utilization; in this case, the original command, including the
concluding \ignorespaces, is never even executed. However, the disruption also occurs during memoization, and even
during regular compilation. In both cases, the memoized code is embedded in some internal Memoize code. Therefore,
the original \ignorespaces does not occur directly in front of the rest of the document.

107

https://ctan.org/pkg/pgf

Keys residing in /mmz/auto

/mmz/auto/memoize (style)

This key sets up advice which triggers memoization of the command or environment whenever it is
encountered; we often refer to such a command as “automemoized,” or say that it was “submitted
to automemoization.”
An automemoized command will consume the next-options, whether memoization actually occurs
or not.
Under the hood, this key declares both an outer handler and an inner handler. The outer
handler opens the memoization group (so that options can be applied locally), applies the auto-
options (given by options within auto) and the next-options (given by \mmznext) by executing
apply options, and appends the verbatim keys to collector options if necessary. The inner
handler invokes \Memoize (which closes the group opened by the outer handler): the first argument
is \AdviceReplaced, expanded once and followed by the arguments of the handled command; the
second argument is \AdviceOriginal, also expanded once and followed by the arguments of the
handled command. The inner handler also makes sure that ignore spaces is respected.

/mmz/auto/nomemoize (style)

This key installs advice which disables memoization for the space of the command or environment;
we sometimes refer to such commands as “autodisabled.”
This key is merely an abbreviation for noop, options=disable. See the documentation of noop
for further details.

/mmz/auto/noop (style)

This key sets up advice which does nothing.
Ok, not nothing at all. The installed handler applies the auto-options and the next-options by
executing apply options, and makes sure that verbatim and ignore spaces are respected.
For commands and non-LATEX environments, this key declares the same outer handler as memoize,
while the inner handler merely executes the original command (respecting the potential verbatim
mode), closes the group opened by the outer handler, and makes sure that ignore spaces is
respected.
For LATEX environments, which open the group necessary for the local application of options
themselves, this key declares an outer handler which adds the relevant code into the next hook
env/〈environment name〉/begin. There is no need to open a group, collect the environment body,
or make special provisions for the verbatim mode.

/mmz/auto/apply options (style)

This style, used by memoize, nomemoize and noop described above, installs two handlers:
• an outer handler which opens a group, applies auto-options and next-options by executing

\mmzAutoInit, and executes the collector; and
• a bailout handler which clears the next-options.

\mmzAutoInit

This macro applies the auto-options and the next-options.
Additionally, if verbatim, verb or no verbatim was previously executed, this style appends the
corresponding CollArgs key (verbatim, verb or no verbatim) to \AdviceRawCollectorOptions.
In case several of the verbatim keys were executed, the final one takes effect.

108

/mmz/auto/abort (style)

This key sets up advice which aborts any ongoing memoization.
Under the hood, the advice merely executes \mmzAbort followed by \AdviceOriginal. The
advised command does not consume the next-options. Out of the box, we submit two control
sequences to this handler:

• \errmessage: this allows us to detect and abort upon at least some errors.
• \pdfsavepos (in LuaTEX, \savepos): one common effect is that memoization of any TikZ

picture with remember picture set is aborted.

/mmz/auto/unmemoizable (style)

This key sets up advice which aborts the ongoing memoization and marks the automemoized code
as unmemoizable, so that it will be henceforth compiled regularly.
Under the hood, the advice merely executes \mmzUnmemoizable followed by \AdviceOriginal.
The advised command does not consume the next-options.
Out of the box, we submit no control sequences to this advice, but it might make sense to submit
\pdfsavepos/\savepos. Keys abort=\savepos and unmemoizable=\savepos will most often
have the same effect, as far as the author is concerned; the former was chosen as the default
because it does not produce a c-memo; see \mmzUnmemoizable for a situation where unmemoizable
is preferred.

/mmz/auto/ref (style)
/mmz/auto/force ref (style)

These keys set up advice which adds the reference key to the context expression. They are intended
to be used with cross-referencing commands such as \ref and \pageref.
Indeed, \ref and \pageref are submitted to this advice by Memoize, with the effect that standard
cross-referencing inside memoized code “just works.” Note that the stabilization of the document
after changing the reference takes three compilation cycles, i.e. one cycle more than without
memoization.
The advice set up by ref aborts memoization if the reference key is undefined, the rationale being
that the produced memo and extern would most often be useless, and could even obscure an
undefined reference. The force ref handler produces the memo and the extern even when the
reference is undefined.
The reference produced by the advised command should be fully expandable (because it will be
expanded as a part of the context expression).
Typically, a \ref command takes a single argument, the reference key. However, some packages may
define a reference command which takes optional arguments, as well; in particular, the hyperref’s
incarnation of \ref takes an optional star. This advice does not care: it will accept any number of
any kind of optional arguments, as long as the reference key is the first braced argument following
the advised command; for example, \ref*{key}, \ref[opt]{key}, \ref*[opt]{key} etc. will
all be handled correctly, while \ref{mand}{key} will not work. Effectively, it is as if we had set
args=lm — and with the same downside, namely that an unlikely unbraced single-token reference
key, like \ref k, will not work.
Under the hood, these two pieces of advice pass the reference key to macros \mmzNoRef and
\mmzForceNoRef, and it is these commands — which may also be used in user-defined advice or
the document itself — which actually add the reference key to the context expression.

/mmz/auto/refrange (style)
/mmz/auto/force refrange (style)

These keys have the same function as ref and force ref, but they operate on reference-range
commands, such as cleveref’s \crefrange, which take two arguments (the starting and the
ending reference key).

109

https://ctan.org/pkg/pgf
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/cleveref

/mmz/auto/multiref (style)
/mmz/auto/force multiref (style)

These keys have the same function as ref and force ref, but they operate on “multireference”
commands, such as cleveref’s \cref, which allow the author to list several comma-separated
reference keys in a single argument.

/mmz/auto/replicate (style)

This key sets up advice which replicates the invocation of the command in the cc-memo during
memoization.
When using this key, it is necessary to set args as well. For \index, Memoize executes auto=\index
{args=m, replicate}.
This key takes an auto-option, expanded.76 If given, the collected arguments will be expanded
before replicating them in the cc-memo; in LATEX, this expansion is \protected.
In LATEX, Memoize submits \index to this handler (with expansion). Therefore, any \index{key}
in the memoized code gets copied into the cc-memo. Effectively, indexing from within the memoized
code “just works.”
Note that \label, despite essentially requiring replication, cannot use this advice, because it needs
to replicate not only the label key but \@currentlabel as well.

/mmz/auto/run if memoization is possible (style)

Under the run conditions installed by this key, a command is only advised if Memoize is enabled but
we’re not already “within Memoize,” i.e. memoizing or normally compiling some code submitted
to memoization. In code: \ifmemoize\ifinmemoize\else\AdviceRuntrue\fi\fi.
Internally, this key is used by memoize and noop.

/mmz/auto/run if memoizing (style)

Under the run conditions installed by this key, a command is only advised during memoization.
In code: \ifmemoize\ifmemoizing\AdviceRuntrue\fi\fi.
Internally, this key is used by abort, replicate, and ref and friends.

76This option is unrelated to Memoize’s options, settable by \mmzset.

110

https://ctan.org/pkg/cleveref

5.6.3 Package CollArgs

\CollectArguments[〈options〉]{〈argument specification〉}{〈next-code〉}〈tokens〉

This command determines the extent to which the 〈tokens〉 following the the three formal arguments
of the command conform to the given 〈argument specification〉, effectively splitting 〈tokens〉 into
〈argument tokens〉 and the 〈rest〉 of the tokens, and then executes 〈next-code〉 with the 〈argument
tokens〉 provided as a single, braced argument:

〈next-code〉{〈argument tokens〉}〈rest〉
If the initial part of 〈tokens〉 does not conform to 〈argument specification〉, \CollectArguments
throws an error. (In this case, 〈next-code〉 is not executed, and the 〈tokens〉 collected until the
error are thrown away.)
The optional 〈options〉 are processed using the pgfkeys utility of PGF/TikZ (see §87 of the TikZ
& PGF manual), with the default path set to /collargs. The given options apply to all the
arguments in 〈argument specification〉. The recognized keys are listed in the rest of the section.
The 〈argument specification〉 should be given in the xparse format (we summarize this format in
the documentation for args in section 5.6.1), with several extensions:77

• We introduce modifier & taking a mandatory argument specifying the options to apply to the
following argument in the specification. Options given here override the 〈options〉 given as
the optional argument.

• The environment body type b may be followed by an optional braced argument providing the
name of the environment to collect. The name given here overrides the name given by the
environment option.

• The number of collected “arguments” is unlimited.
Also note that the effect of O{〈default〉} is the same as the effect of o, and similarly for other pairs
of types with and without defaults (R and r, D and d, and E and e). CollArgs is dedicated to
collecting the argument tokens precisely as they are given: if an optional argument is missing, its
default value is not inserted among the collected arguments — consequently, \CollectArguments
is utterly uninterested in the default value.
Collection of environments automatically adapts to the format, i.e. given environment body name
foo, \CollectArguments knows to search for \begin{foo} ... \end{foo} in LATEX, \foo ...
\endfoo in plain TEX, and \startfoo ... \stopfoo in ConTEXt. For further information on
environment collection, see keys ignore nesting and tags.

\CollectArgumentsRaw{〈option-setting code〉}{〈argument specification〉}{〈next-code〉}〈tokens〉

This command is the programmer’s interface to CollArgs, intended to be used instead of
\CollectArguments when compilation speed is an issue. The two commands only differ in
how they deal with options.
One difference is that for \CollectArgumentsRaw, the options form a mandatory rather than an
optional argument. More importantly, however, they do not take the form of a keylist, but should
be composed out of low-level option-setting commands. Each key documented in this section has a
corresponding low-level macro; these macros are listed in footnotes alongside the keys. The name
of the macro starts with \collargs and continues with the name of the key, without spaces, each
word capitalized; if the key is boolean, this convention applies to the base of the TEX conditional.
For example,

\CollectArguments[caller=\foo, tags, verbatim]{〈argument specification〉}{〈next-code〉}

is equivalent to

77Collargs internally uses a dot (.) to delimit the argument specification from the following argument tokens. Therefore,
the dot really counts as an extra argument type, in the sense that Collargs will stop working if the dot becomes an
argument type or a modifier in some future release of xparse.

111

https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/pgf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/xparse
https://ctan.org/pkg/xparse

\CollectArgumentsRaw{%
\collargsCaller{\foo}%
\collargsBeginTagtrue\collargsEndTagtrue
\collargsVerbatim

}{〈argument specification〉}{〈next-code〉}

Withing the option-setting code, the programmer may also deploy macro \collargsSet, which
processes the 〈options〉 in the keylist format. One idea could be to execute this macro at the end
of the low-level options; this would set the “defaults” using the fast programmer’s interface, but
still allow for user customization.

78/collargs/caller=〈control sequence (name)〉 (no default, initially \CollectArguments)

Set the control sequence to refer to in error messages.
If 〈tokens〉 do not match the 〈argument specification〉, \CollectArguments throws an error.
By default, the error message contains a reference to \CollectArguments itself, for example
! Argument of \CollectArguments has an extra }. However, this might not be very infor-
mative to the author. When caller=\cs is in effect, the error messages will refer to the given
\cs instead.
If the value of this key is not a control sequence, it is assumed to be an environment name, but
as the caller must be a macro, this name will be converted into a control sequence. Setting
caller=foo will result in error messages referencing \foo in plain TEX, \startfoo in ConTEXt
and \begin{foo} (a single control sequence!) in LATEX.

79/collargs/environment=〈environment name〉 (applicable to type b, no default, initially empty)

Set the name of the environment collected by argument type b.

80/collargs/begin tag=true | false (applicable to type b, default true, initially false)
/collargs/end tag=true | false (applicable to type b, default true, initially false)
/collargs/tags=〈boolean〉 (applicable to type b, style, default true)

When begin tag/end tag is in effect, the begin/end tag will be will be prepended/appended
to the collected environment body. Style tags is a shortcut for setting begin tag and end tag
simultaneously.
In LATEX, using tags will thus dress up the collected body in a pair or \begin{〈environment
name〉} and \end{〈environment name〉}. CollArgs will automatically use the tags appropriate to
the format.
In the verbatim modes, the added tags are verbatim as well, with the detail that in LATEX, there
is a slight difference between the full verbatim and the partial verb mode. In the full verbatim
mode, the braces surrounding the environment name are verbatim (the characters used as braces
are actually determined by key braces). In the partial verbatim, as well as the non-verbatim mode,
the environment name is surrounded by a pair of actual braces of category 1 and 2, regardless of
which characters are of these categories in the calling code.

78The programmer’s interface: \collargsCaller.
79The programmer’s interface: \collargsEnvironment.
80The programmer’s interface: \ifcollargsBeginTag, \ifcollargsEndTag; tags has no corresponding low-level

command.

112

81/collargs/ignore nesting=true | false (applicable to type b, default true, initially false)

When this key is not in effect, CollArgs respects the hierarchical structure created by tag pairs
such as \begin{foo} and \end{foo}. Given the situation below on the left, argument type
b{foo} will collect everything up until the second \end{foo}. Now this is what we usually want,
because LATEX keeps track of environment embedding as well. However, all verbatim environments
I know of, starting with the standard LATEX verbatim, will ignore the nesting and simply scoop
up everything up to the first \end{verbatim}. In CollArgs, we can replicate their behaviour by
setting ignore nesting, as shown below on the right. (Of course we also need to set verbatim if
we want to grab the environment body in the verbatim mode.)
ignore nesting=false

...
\begin{foo}

...
\end{foo}
...

\end{foo}

ignore nesting=true

...
\begin{verbatim}
...

\end{verbatim}
...

\end{verbatim}

This key applies not only to argument type b (in either normal or verbatim mode), but also to the
verbatim argument type v and to argument types m and g in the verbatim (but not normal, or
verb) mode. With these keys, the relevant structure markers are braces, { and }.

82/collargs/ignore other tags=true | false (applicable to type b, default true, initially false)

In LATEX, the environment tags, \begin{〈name〉} and \end{〈name〉}, contain braces, which retain
their usual category codes in the non-verbatim and in the partial verbatim mode. Consequently,
CollArgs cannot easily search for the full tags to delimit the environment.
When this key is not in effect, CollArgs takes the easy path, and determines the end of the
environment only by inspection of \begins and \ends, without reference to what 〈name〉 they
begin or end. Only when this key is in effect does CollArgs inspect these 〈name〉s, effectively
ignoring any \begins and \ends not followed by the name of environment being collected. The
effect of absence vs. presence of this key is shown below, where the shaded area marks the code
collected into environment foo.
ignore other tags=false

\CollectArguments
{\NextCommand}{b{foo}}

...
\end{bar}
...

\end{foo}

ignore other tags=true

\CollectArguments[ignore other tags]
{\NextCommand}{b{foo}}

...
\end{bar}
...

\end{foo}

This key does not have any effect the full verbatim mode, which always behaves as if this key was
set to true, because braces are of category “other” as well. Similarly, it is as if this key was always
true in plain TEX and ConTEXt, simply because environment tags in these formats don’t contain
braces.

83/collargs/append preprocessor=〈code〉 (no default)
/collargs/prepend preprocessor=〈code〉 (no default)
/collargs/append postprocessor=〈code〉 (no default)
/collargs/prepend postprocessor=〈code〉 (no default)

These keys declare processors which will transform the collected argument before appending it to
the argument list.
A collected argument undergoes the following transformations:

81The programmer’s interface: \ifcollargsIgnoreNesting.
82The programmer’s interface: \ifcollargsIgnoreOtherTags.
83The programmer’s interface: \collargsAppendPreprocessor, \collargsPrependPreprocessor,

\collargsAppendPostprocessor, \collargsPrependPostprocessor.

113

• First, the argument is processed by any preprocessors, in the order indicated by append and
prepend.

• Next, the processed argument is dressed up in the delimiters according to its type. For
example, an optional argument of type o will be surrounded by square brackets.

• Finally, the delimited argument is processed by any postprocessors, again in the order
indicated by append and prepend.

〈code〉 will typically consist of a single control sequence pointing to a one-argument macro, which
will receive the collected argument (possibly modified by the processors already applied). In
general, however, the value of this key may be any code; Collargs will execute 〈code〉{〈collected
argument〉}.
The processed argument should be returned by storing it into token register \collargsArg.
The following example illustrates how one could go about reimplementing Bruno Le Floch ingenious
package cprotect.84 We define processor \writetofile which dumps the argument into a file,
replacing it with the \input statement. (Of course, to allow for verbatim content in the footnote,
we also have to mark the argument as verbatim. And we use no delimiters to get rid of the
braces around the footnote text.)

collargs-processor.tex
�

\newwrite\argfile
\newcommand\writetofile[2]{%
\immediate\openout\argfile{#1}%
\newlinechar=13
\immediate\write\argfile{#2}%
\immediate\closeout\argfile
\collargsArg={\input{#1}}%

}
We write the argument of \verb!\footnote! into a file,%
\CollectArguments{
&{verbatim, append preprocessor=\writetofile{_fn.tex}, no delimiters}
m

}{\footnote}{This footnote was read from a file by command \verb!\input!,
so it may contain verbatim material!} and then read it back in.

We write the argument of \footnote into a file,a and then read it back in.
aThis footnote was read from a file by command \input, so it may contain verbatim material!

85/collargs/clear preprocessors
/collargs/clear postprocessors

Clear the list of pre- or post-processors.

86/collargs/append expandable preprocessor=〈code〉 (no default)
/collargs/prepend expandable preprocessor=〈code〉 (no default)
/collargs/append expandable postprocessor=〈code〉 (no default)
/collargs/prepend expandable postprocessor=〈code〉 (no default)

These keys may be used to add fully expandable processors. A processor added with one of these
keys will end up among the processors declared by append preprocessor et al.
A processor declared by one of these keys will define the processed argument as the full expansion
(\edef) of 〈code〉{〈collected argument〉}. 〈code〉 will typically consist of a single control sequence
pointing to a fully expandable one-argument macro.

84This example is merely a proof of concept. For the bells and whistles which would make it useful in real life, see the
documentation of cprotect.

85The programmer’s interface: \collargsClearPreprocessors, \collargsClearPostprocessors.
86The programmer’s interface: \collargsAppendExpandablePreprocessor, \collargsPrependExpandablePreprocessor,

\collargsAppendExpandablePostprocessor, \collargsPrependExpandablePostprocessor.

114

https://ctan.org/pkg/cprotect

\documentclass{article}
\usepackage{collargs}

\newwrite\argfile
\newcommand\writetofile[2]{%
 \immediate\openout\argfile{#1}%
 \newlinechar=13
 \immediate\write\argfile{#2}%
 \immediate\closeout\argfile
 \collargsArg={\input{#1}}%
}

\begin{document}

We write the argument of \verb!\footnote! into a file,%
\CollectArguments{
 &{verbatim, append preprocessor=\writetofile{_fn.tex}, no delimiters}
 m
}{\footnote}{This footnote was read from a file by command \verb!\input!,
 so it may contain verbatim material!} and then read it back in.

\end{document}

Click here to open the code.

https://ctan.org/pkg/cprotect

For example, \trim@spaces@noexp from package trimspaces could be used as an expandable
processor of environment body to remove the spaces around the grabbed environment body.

87/collargs/append prewrap=〈macro definition〉 (no default)
/collargs/prepend prewrap=〈macro definition〉 (no default)
/collargs/append postwrap=〈macro definition〉 (no default)
/collargs/prepend postwrap=〈macro definition〉 (no default)

These keys add processors which transform the collected argument in a single expansion.
The declared processor will use 〈macro definition〉 to define a temporary one-argument 〈macro〉,
and then set the 〈processed argument〉 to be the single expansion of 〈macro〉{〈collected argument〉}.
For example, to add quotes around the collected argument, write append prewrap={``#1''}
(doubling the hash when executing \CollectArguments from a macro, of course). Or, perhaps more
usefully, append prewrap={\scantokens{#1}} can be used to retokenize a verbatim argument
(during the execution of the 〈next-code〉).

88/collargs/no delimiters=true | false (default true, initially false)

When this key is in effect, the collected argument will not be dressed up into delimiters that it was
dressed up in 〈argument tokens〉. For example, an optional argument, encountered as [〈argument〉]
inside 〈argument tokens〉, will be spit out simply as 〈argument〉.
Any user-specified pre- or post-processing will still be applied.

collargs-nodelimiters.tex
�

before
\CollectArguments
{&{no delimiters, append postwrap={{{{#1}}}}}o m}
\ShowArguments
[optional]{mandatory}

after

before {optional}{mandatory} after

89/collargs/verbatim (style)
/collargs/verb (style)
/collargs/no verbatim (style)

Select the full verbatim, the partial verbatim, or the non-verbatim mode of argument collection.
In the full verbatim mode, the arguments are collected under a category code regime in which all
characters are of category 12, “other”. The same goes for the partial verb mode, except that in
this case, the grouping characters — usually the braces { and } — retain their usual category
codes 1 and 2. Key no verbatim selects the normal, non-verbatim mode.
The partial verb mode can be useful for verbatim collection of an optional argument. To pass] as
an optional argument to command \foo, we normally enclose it in braces: \foo[{]}]. However, if
we try to collect [{]}] with \CollectArguments[verbatim]{o}, we will get { (and most likely
an error, as well), because in the verbatim mode, braces do not have their grouping function.
Using the verb mode solves the problem: occuring within braces, the first] is “invisible” to
\CollectArguments[verb], so the optional argument is correctly recognized as ending at the
second].
The partial verb mode is also useful for collecting the bodies of LATEX environments. The full
verbatim mode will only correctly collect these bodies when the relevant \begin and/or \end

87The programmer’s interface: \collargsAppendPrewrap, \collargsPrependPrewrap, \collargsAppendPostwrap,
\collargsPrependPostwrap.

88The programmer’s interface: \ifcollargsNoDelimiters.
89The programmer’s interface: \collargsVerbatim, \collargsVerb, \collargsNoVerbatim. To ensure the same effect as

with the keys, place these macros at the end of the option code.

115

https://ctan.org/pkg/trimspaces

\documentclass{article}
\usepackage{collargs}
\usepackage{xcolor}
\long\def\ShowArguments#1{{\color{green!50!black}\tt\detokenize{#1}}}
\begin{document}
before
\CollectArguments
 {&{no delimiters, append postwrap={{{{#1}}}}}o m}
 \ShowArguments
 [optional]{mandatory}
after
\end{document}

Click here to open the code.

control sequences are followed by the grouped environment name without any intervening spaces.
The partial verb mode has no such restriction.
In the verbatim modes, modifier + has no effect. The arguments are always collected as if they
were long.
To correctly collect arguments in the verbatim modes, CollArgs has to mimic the many details of
TEX’s tokenization and argument delineation. These details depend on the category code regime,
and CollArgs automatically adapts to the “outside” category code regime, i.e. the regime in effect
at the time of invoking \CollectArguments. In particular, CollArgs remembers which characters
were of category codes 0, 1, 2, 5, 10 and 11, and adapts the argument collection accordingly. For
example, it will correctly pick up a control sequence as a single-token m-type (TEX’s undelimited)
argument even when it begins with a non-standard character of category code 0. The single caveat
is that only a single pair of characters can function as the grouping characters in the full verbatim
mode; to compensate for the deficiency, this character pair is customizable via key braces.

90/collargs/fix from verbatim (style)
/collargs/fix from verb (style)
/collargs/fix from no verbatim (style)

Key fix from no verbatim should be used when the first argument should be collected in a
verbatim mode, but the outside code has already tokenized the first character of the subsequent
input stream (most probably by a \futurelet) in the non-verbatim category code regime. Using
this key will trigger a CollArgs’ “mode transition” (described below) which will fix the situation.
(This key is used in the implementation of \mmz.)
The other two keys should be used in the unlikely reverse situation, where the outside code has
tokenized the following character in a verb(atim) mode, while CollArgs is requested to collect the
first argument in the non-verbatim mode.

91/collargs/braces=〈begin-group char〉〈end-group char〉 (no default, for details see below)

This key sets the verbatim begin-group and end-group characters. The setting affects collection of
argument types m, g, v, l, e and (in LATEX) b in the full verbatim mode.92

For example, in the non-verbatim and the partial verbatim mode, an m-type argument may be
delimited by any characters of category code 1 (“begin-group”) and 2 (“end-group”). In the full
verbatim mode, there are of course no characters of these categories, so CollArgs internally assigns
the grouping function to some pair of characters. When entering the full verbatim mode, CollArgs
automatically sets the verbatim grouping characters to characters which were of categories 1
and 2 in the “outside” category code regime, i.e. the regime in effect at the time of invoking
\CollectArguments. However, in contrast to TEX’s internal argument parser, only one pair of
characters may serve as the begin-group and the end-group character in CollArgs’ full verbatim
mode. In case multiple characters were of category 1 or 2 on the outside, CollArgs therefore has
to make a choice, and it chooses the candidate with the lowest character code. This choice may be
overridden by the user by invoking key braces; the user may even choose characters which did
not belong to categories 1 and 2 in the outside regime.
When 〈begin-group char〉 and 〈end-group char〉 are of categories 1 and 2 in the outside category
regime, they must be enclosed in a triple group. For example, if both () and {} have the grouping
function on the outside, and the user wants to select {} as the verbatim grouping characters
(CollArgs would go for (), as this pair has lower character codes), the correct way to invoke this
key is braces={{{{}}}} or braces=((({}))).93

90The programmer’s interface: \collargsFixFromVerbatim, \collargsFixFromVerb, \collargsFixFromNoVerbatim.
91The programmer’s interface: \collargsBraces.
92The choice of the verbatim grouping characters also affects the effect of begin tag and/or end tag; see the

documentation of these keys for details.
93This complication is due to the details of pgfkeys’ keylist processing, and does not apply to \collargsBraces.

116

https://ctan.org/pkg/pgfkeys

94/collargs/verbatim ranges={〈from〉-〈to〉(, 〈from〉-〈to〉)*} (no default, initially 0-255)

If run under the pdfTEX or XƎTEX engine, this key determines which characters will be assigned
category code 12 in the verbatim mode. In pdfTEX, the range should remain at the initial 0-255,
but in XƎTEX, some rare situations might require extending this range (don’t attempt to set the
full range of 0-1114111, as this would be very slow and you would most likely run out of save
stack).
In LuaTEX, we switch the category code regime using category code tables, so this key has another
meaning: it determines the range in which CollArgs will scan for characters of category codes 1, 2
and 14, whose identity it needs to know, for internal reasons.

Mode transition limitations
\CollectArguments has some minor limitations regarding the transition from a verbatim into non-
verbatim mode, or vice versa. The gist of the issue is best illustrated with the optional argument type
o collected in the verbatim mode. CollArgs determines whether an argument of this type is present by
peeking ahead (using TEX’s \futurelet primitive) into the input stream. If the argument is present
(i.e. if the input stream continues with an open bracket, [), all is well. But when the optional argument
is absent, the peek-ahead will tokenize the following character, which presents a problem when no more
arguments are present in the input stream, like in the example below, where the verbatim o is the
(only and) final type in the argument specification. In this case, the peek-ahead “incorrectly” assigns
category code 12 (“other”) to the first $. This character was intended to be tokenized as the math shift
character of category 3, to start the math mode after \CollectArguments is finished, but having been
assigned category code 12, it cannot perform this function, resulting in error ! Missing $ inserted
once TEX encounters the superscript character ^.

collargs-transition-ok.tex
�

\CollectArguments[verbatim]{o}{\ShowArgs}$2^2=4$ Collected: “”22 = 4

Well — this is what would happen if CollArgs didn’t address the transition issue described above. In
fact, the above example compiles just fine, because CollArgs does address this issue, but unfortunately,
certain transition problems simply cannot be resolved — read on to learn what can go wrong.
For example, you can typeset the name of the document author via LATEX’s internal command \@author,
but to use this command in the document, you have to precede it by \makeatletter. As shown by the
first line of the example below, this works rather nicely: \makeatletter sets the category code of @ to
11 (“letter”), so @ may help form the control word \@author — importantly, \makeatletter sets the
category code of @ before control sequence \@author is constructed, even if it precedes it immediately.

collargs-transition-cs.tex
�

\makeatletter\@author\makeatother\par
\CollectArguments[verbatim]{o}{\ShowArgs}\makeatletter\@author\makeatother

Sašo Živanović
Collected: “”author

In the second line of the example, our clever invocation of \@author is immediately preceded by a call
to \CollectArguments, which tries to collect a verbatim argument of type o. It doesn’t find it, which
results in the wrong, verbatim tokenization of the escape character of \makeletter. CollArgs realizes
the problem and tries to fix it. But while it is searching for the end of control sequence \makeletter
(which it successfully constructs), it triggers the tokenization of what follows — which, as @ is at that
point of category 12 (“other”), yields the control symbol \@ (later followed by word “author”, typeset
in the example).
In short, the solution has created another, delayed instance of the problem — an instance which cannot
be addressed any further. But we’re nevertheless better off, as this particular issue will bite only in the
case when the “corrupted” control sequence immediately following the invocation \CollectArguments
changes category codes in a way that affects the tokenization of what immediately follows it.

94The programmer’s interface: \collargsVerbatimRanges.

117

\documentclass{article}
\usepackage{collargs}
\usepackage{xcolor}
\long\def\ShowArgs#1{Collected: ``{\color{red}\tt\detokenize{#1}}''}

\begin{document}

\CollectArguments[verbatim]{o}{\ShowArgs}$2^2=4$

\end{document}

Click here to open the code.

\documentclass{article}
\usepackage{collargs}
\usepackage{xcolor}
\long\def\ShowArgs#1{Collected: ``{\color{red}\tt\detokenize{#1}}''}

\author{Sa\v so \v Zivanovi\'c}

\begin{document}

\makeatletter\@author\makeatother\par
\CollectArguments[verbatim]{o}{\ShowArgs}\makeatletter\@author\makeatother

\end{document}

Click here to open the code.

This was an example of what can go wrong in the transition from the 〈argument tokens〉 to the 〈rest〉
of the tokens following an invocation of \CollectArguments. As the “outside world” is non-verbatim,
this transition can only be problematic if the argument which corrupted the first of the 〈rest〉 tokens
was verbatim, so if the transition was from the verbatim to the non-verbatim mode. Such a transition
can also occur within the 〈argument tokens〉, but the good news here is that CollArgs successfully
solves any problems that occur there, so you should only worry about the end-of-arguments situation.
The other direction of the transition, from the non-verbatim to the verbatim mode, however, can affect
both the internal and the external transitions. Let us illustrate the problem with the internal transition.
Say you want to collect an optional argument (o) in the non-verbatim mode, and then a mandatory
argument (m) in (either full or partial) verbatim mode. In the first invocation of \CollectArguments
below, the optional argument is present, and we get what we expect: the percent sign is collected,
verbatim, into the mandatory argument. In the second invocation, however, the percent character
retains its usual commenting function — despite the fact that we have requested verbatim mode
for the mandatory argument — which results in the group in the second line being picked up as
the mandatory argument. Again, this happens because CollArgs has to peek ahead in the input
stream when determining whether the optional argument is present. Having requested non-verbatim
mode for the optional argument, the peeking is performed in the non-verbatim mode, and as the
optional argument is not present, it finds the comment character, which fulfills its regular function of
disappearing along with the rest of the line. Once CollArgs sets to find the (verbatim) mandatory
argument, the rest of the line is already gone, so it searches for, and finds, this argument in the next
line.

collargs-transition-comment.tex
�

\CollectArguments{o&{verbatim}m}{\ShowArgs}[opt]% comment
{more text}

\CollectArguments{o&{verbatim}m}{\ShowArgs}% comment
{more text}

Collected: “[opt]%” comment more text
Collected: “{more text}”

Nothing can be done here — commenting deletes information, irrevocably — and in a similar fashion,
nothing can be done to catch a verbatim end-of-line character when preceded by an absent optional
argument in the non-verbatim mode (because it was already tokenized into a space token).
Finally, the transition issues are not limited to transits from argument type o. The full list of argument
types which give rise to transition problems (when transiting from arguments of these types) is as
follows: o, d, s, t, g, e.

118

\documentclass{article}
\usepackage{collargs}
\usepackage{xcolor}
\long\def\ShowArgs#1{Collected: ``{\color{red}\tt\detokenize{#1}}''}

\begin{document}

\CollectArguments{o&{verbatim}m}{\ShowArgs}[opt]% comment
{more text}

\CollectArguments{o&{verbatim}m}{\ShowArgs}% comment
{more text}

\end{document}

Click here to open the code.

6 Varia

6.1 Known issues

Bitmap graphics export is coming up in the next release of the package.

Disappearing errors If a non-fatal internal TEX error occurs during memoization, the memos
and externs may be nevertheless produced and utilized in subsequent compilations. In such a case, the
erroneous code won’t be compiled again, and therefore won’t yield any errors, giving the mistaken
impression that the code is error-free.
This problem does not apply to errors which trigger \errmessage, because that control sequence is
advised by abort. Note that internal TEX errors like Undefined control sequence are not reported
through \errmessage, and will therefore cause the issue.
This problem does not affect LuaTEX, because this engine allows Memoize to detect errors and abort
memoization if it encounters any.

A minimal issue with XƎLATEX If the very first page of a document of class minimal, compiled
by XƎLATEX, happens to be an extern page, we have a problem: all the regular pages of the document
will be of the same size as that extern page. pdfLATEX and LuaLATEX do not exhibit this behaviour,
nor do LATEX classes other than minimal, even when compiled with XƎLATEX.

CollArgs
Due to an unfortunate design decision, CollArgs does not accept a dot . as the 〈token〉 argument of
types, r, R, d, D, and t. Furthermore, append prewrap and friends (and their macro counterparts) do
not accept a parameter symbol consistently. These issues will be fixed in the next release.

6.2 Troubleshooting

Extern extraction does not work
If the internal extern extraction does not work, you should have gotten one of the following warnings:

1. Package memoize Warning: Extraction of externs from document "〈jobname〉.pdf" using
method "perl" was unsuccessful. Have you set the shell escape mode as suggested
in chapter 1 of the manual?

This warning is thrown when the extraction log 〈jobname〉.mmz.log, which should be produced
by the extraction script, is incomplete, i.e. it does not finish by \endinput.95 The most likely
reason is that the script was not executed at all, so the question asked in the warning message is
pertinent. However, if all is well with the shell-mode, you have a mystery at your hands. To
gather information, I suggest inspecting:

• 〈jobname〉.log — search for runsystem(memoize-extract.pl ...), it will tell you whether
the script was executed;

• the terminal output — if the script was executed, it should’ve announced itself by Extracting
externs from 〈jobname〉.pdf; are there any further messages between this header and the
warning message?

• 〈the path to the extern〉.log, if you are using the TEX-based extraction (extract=tex).
TEX-based extraction will yield this error even in the case of a missing or corrupted PDF, i.e. in
case 2 below.

95The extraction log will never be absent, because Memoize clears it before executing the extraction script — and clearing
it creates it if it doesn’t exist.

119

2. Package memoize (perl-based extraction) Warning: Cannot read file "〈jobname〉.pdf".
Perhaps you have to load Memoize earlier in the preamble?

Embedded extern extraction requires an intact document PDF from the previous compilation,
so Memoize must be loaded before the document PDF is opened for writing the results of the
ongoing compilation. In particular, the PDF is opened by PGF library fadings, included by
TikZ’s libraries fadings and shadows, so Memoize must be loaded before any of these libraries.
With beamer, the problem is particularly acute because the PDF is opened while loading the
class. In this case, simply moving \usepackage{memoize} up the preamble, as suggested, won’t
help: you have to write \RequirePackage{memoize} before \documentclass{beamer}!

3. Package memoize (perl-based extraction) Warning: I refuse to extract page n from
"〈jobname〉.pdf", because its size (〈width〉 × 〈height〉) is not what I expected
(〈expected width〉 × 〈expected height〉)
If the compilation which produced the offending extern pages yielded any errors, you should
probably disregard this warning, fix the errors, and compile again. Otherwise, you have somehow
winded up with mismatched 〈jobname〉.pdf and 〈jobname〉.mmz (the latter file contains instruc-
tions on which pages to extract, complete with the expected dimensions). Are you sure that they
were produced by the same compilation, and have remained untouched since? Are you perhaps
trying to perform the extraction the second time, after the first extraction --pruned the PDF?
If the warning stubbornly persists, but you are sure that the page the script is refusing to extract
is correct, you can force the extraction by adding option --force to the script invocation, which
can be set by perl extraction options. However, as such a situation probably indicates a
bug in Memoize, please let me know about it.

4. Invalid dictionary key at /.../perl5/site_perl/PDF/API2/Basic/PDF/File.pm line N

This can sometimes happen when extracting with the Perl-based script. The issue might be
related to PDF version — by default, TEX produces PDFs of version 1.5, while the PDF library
PDF::API2 officially only supports versions up to 1.4 — but I’m afraid I haven’t identified the
exact circumstances yet. Possibly, the externalizing a picture containing an embedded PDF
file might be the culprit. The workaround is to use Python- or TEX-based extraction, i.e. load
Memoize with package option extract=python or extract=tex.

The failure to extract externs intentionally doesn’t result in an error, because what if you deleted
the document PDF on purpose? At any rate, the compilation will succeed, it’s just that as Memoize
cannot extract the externs, they will be produced, and dumped into your document, at each and every
compilation.

An extern won’t be included
Did you receive a warning or error message?

1. Package memoize Warning: Unexpected size of extern "〈extern path〉.pdf"; expected
〈expected width〉 × 〈expected height〉, got 〈width〉 × 〈height〉
This warning is related to warning 3 above, only that it occurs once the extern is extracted. The
same investigative methods apply.

2. !pdfTeX error: pdflatex (file 〈extern path〉.pdf): reading image file failed

This is a fatal error. The extern file got corrupted, somehow — inexistent, or even empty, extern
files merely trigger recompilation.

If there was no warning or error — are you certain that Memoize is enabled, and that it is not in
the recompile mode? Remember that these settings can also apply only to a part of the document;
search for any stray \mmzset or \mmznext commands.

Warnings about duplicate labels, indices, etc. may be safely disregarded.
Externalization causes any (non-immediate) \write commands in the extern to be executed twice, once
upon the shipout of the regular page, and once upon the shipout of the extern page. This results in
warnings about doubly defined labels, hyperreferences, indices, etc. For example, you might get LaTeX

120

https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/beamer
https://metacpan.org/pod/PDF::API2

Warning: Label `<name>' multiply defined or warning (pdf backend): ignoring duplicate
destination with the name '<name>'. You can safely disregard these warnings; they will disappear
once the extern is utilized.

Memoization was aborted
This warning means that either:

• you are trying to (auto)memoize a tikzpicture with remember picture set, or more generally,
some code which contains \(pdf)savepos — this can’t be done, see section 3.1; or

• an error occurred during memoization — in this case, Memoize cowardly refuses to proceed with
memoization, see section 6.1 for details.

6.3 License

Copyright © 2020- Sašo Živanović.
This work may be distributed and/or modified under the conditions of the LATEX Project Public License,
either version 1.3c of this license or (at your option) any later version. The latest version of this license
is in https://www.latex-project.org/lppl.txt and version 1.3 or later is part of all distributions
of LATEX version 2008 or later.
This work comprises of the sources, generated files, accompanying scripts, auxiliary files and scripts,
documentation, documentation sources, examples and example sources of packages memoize, nomemoize,
memoizable, auto and collargs. The files belonging to this work and covered by LPPL are listed in
〈texmf 〉/doc/generic/memoize/FILES.
This work has the LPPL maintenance status ‘maintained.’ The Current Maintainer of this work is
Sašo Živanović. The work is available on CTAN at https://ctan.org/pkg/memoize and on GitHub
at https://github.com/sasozivanovic/memoize.

6.4 Changelog

2020/07/17 v0.1 The proof-of-concept, available only at GitHub.

2023/10/10 v1.0.0 A complete, fully documented reimplementation.

6.5 Acknowledgments

First and foremost, my gratitude goes to Stefan Müller of Language Science Press for his encouragement
and patience — without him, this package might’ve remained an idea forever!
But there were others as well. Shunsaku Hirata of the XƎTEX team promptly resolved an issue with
forward references in xdvipdfmx, and thereby made Memoize work with XƎTEX. Joseph Wright kindly
didn’t object to me misappropriating etoolbox for other formats. Petra Rübe-Pugliese (CTAN) and
Karl Berry (TEXLive) offered good advice on packaging the package; I would never get to call Advice
Advice without their advice. Karl also performed a security review of the extraction scripts, providing
some very useful comments along the way, and agreed to include the scripts among the shell escape
commands allowed in TEXLive.
Thank you all!

121

https://www.latex-project.org/lppl.txt
https://ctan.org/pkg/memoize
https://github.com/sasozivanovic/memoize
https://github.com/sasozivanovic/memoize/releases/tag/v0.1
https://github.com/sasozivanovic/memoize/releases/tag/v1.0.0
https://ctan.org/pkg/etoolbox

Index

+ xparse modifier (long), 68, 69, 101, 102, 116
.meaning to context key in /handlers, 14, 78
.value to context key in /handlers, 78
& additional xparse modifier (options), 69, 103, 111

abort key in /mmz/auto, 25, 62, 66, 101, 107, 109,
110, 119

activate key in /mmz, 11, 61, 96, 97, 97, 98, 107
activate csname key in /mmz, 37, 97, 98, 98
activate deferred key in /mmz, 63, 97, 97, 107
activate key key in /mmz, 97, 98
activation key in /advice/install, 96
activation key in /mmz, 63, 96, 97, 97, 107
advice-tikz.code.tex file, 65, 102, 106
\AdviceAfterSetup, 105
\AdviceArgs, 70, 99, 101, 102
\AdviceBailoutHandler, 99, 100, 100, 101
\AdviceCollector, 64, 99, 101, 102
\AdviceCollectorOptions, 99, 101, 104
\AdviceCollectTikZArguments, 65, 106
\AdviceGetOriginal, 64, 101, 105, 106, 106
\AdviceIfArgs, 70, 102
\AdviceInnerHandler, 67, 99, 101, 102, 104, 106
\AdviceName, 70, 101, 104, 105
\AdviceNamespace, 101, 104, 105
\AdviceOptions, 99, 101, 104, 105
\AdviceOriginal, 63, 64, 101, 103, 104, 105, 106,

108, 109
\AdviceOuterHandler, 45, 99, 100, 101
\AdviceRawCollectorOptions, 99, 101, 104, 108
\AdviceReplaced, 63, 64, 101, 103, 104, 105, 108
\AdviceRunConditions, 99, 100, 100, 101
\AdviceRunfalse, 65, 66, 100
\AdviceRuntrue, 65, 66, 100, 110
\AdviceSetup, 45, 99, 99
\AdviceTracingOff, 100
\AdviceTracingOn, 84, 100
after memoization key in /mmz, 40, 53, 55, 80, 82
after setup key in /mmz/auto, 99, 105
--all | -a option of memoize-clean.pl, 51, 93
append expandable postprocessor key in
/collargs, 114

append expandable preprocessor key in
/collargs, 114

append postprocessor key in /collargs, 113
append postwrap key in /collargs, 115
append preprocessor key in /collargs, 113, 114
append prewrap key in /collargs, 115, 119
apply options key in /mmz/auto, 73, 108
args key in /mmz/auto, 11, 36, 37, 61, 70, 97–99,

102, 102, 104, 109–111
at begin memoization key in /mmz, 45, 47, 48, 64,

80, 80
at end memoization key in /mmz, 47, 53, 80, 82
auto key in /mmz, 11, 13, 19, 22, 25, 29, 30, 33, 34,

36, 37, 45, 57, 58, 61, 63, 66, 73, 96, 97, 98,
99–101, 104–108, 110

auto csname key in /mmz, 37, 96, 97, 99
auto csname' key in /mmz, 96, 97, 99

auto key key in /mmz, 79, 96, 97, 99
auto key' key in /mmz, 96, 97, 99
auto' key in /mmz, 96–98, 99

b xparse type (environment body), 68, 69, 101–103,
111, 112, 113, 116

bailout handler key in /mmz/auto, 62, 65, 97, 99,
100

bat key in /mmz, 95
bat value of /mmz/record, 27, 51, 91, 95, 95
\begin LATEX command, 25, 64, 69, 96, 97, 106,

107, 111–113, 115
begin key in /mmz/record/〈record type〉, 52, 95
begin document key in /mmz, 71, 72, 88
begin tag key in /collargs, 104, 112, 116
begindocument LATEX hook, 63
begindocument key in /mmz, 71
begindocument/before key in /mmz, 71, 107
begindocument/end key in /mmz, 71, 107
braces key in /collargs, 112, 116

caller key in /collargs, 70, 102, 103, 112
capture key in /mmz, 24, 41, 53, 54, 78, 81, 82
\catcode TEX primitive, 22
clear collector options key in /mmz/auto, 97,

104
clear context key in /mmz, 56, 77
clear options key in /mmz/auto, 97, 104
clear postprocessors key in /collargs, 114
clear preprocessors key in /collargs, 114
clear raw collector options key in /mmz/auto,

97, 104
/collargs keypath, 111
\collargsAppendExpandablePostprocessor, 114
\collargsAppendExpandablePreprocessor, 114
\collargsAppendPostprocessor, 113
\collargsAppendPostwrap, 115
\collargsAppendPreprocessor, 113
\collargsAppendPrewrap, 115
\collargsArg, 114
\collargsBraces, 116
\collargsCaller, 112
\collargsClearPostprocessors, 114
\collargsClearPreprocessors, 114
\collargsEnvironment, 69, 70, 112
\collargsFixFromNoVerbatim, 116
\collargsFixFromVerb, 116
\collargsFixFromVerbatim, 116
\collargsNoVerbatim, 115
\collargsPrependExpandablePostprocessor,

114
\collargsPrependExpandablePreprocessor, 114
\collargsPrependPostprocessor, 113
\collargsPrependPostwrap, 115
\collargsPrependPreprocessor, 113
\collargsPrependPrewrap, 115
\collargsSet, 70, 103, 112
\collargsVerb, 115
\collargsVerbatim, 115
\collargsVerbatimRanges, 117

122

\CollectArguments, 67–70, 76, 101–103, 111, 111,
112, 115–118

\CollectArgumentsRaw, 67, 69, 70, 102, 103, 111
collector key in /mmz/auto, 61, 62, 65, 70, 97, 99,

101, 102, 106
collector options key in /mmz/auto, 70, 97, 99,

102, 102, 108
compresslevel LuaTEX’s \pdfvariable register,

90
context key in /mmz, 28, 30, 31, 36, 43, 45, 46, 53,

77, 78
\cref command of package cleveref, 29, 110
\crefrange command of package cleveref, 29,

109
csname meaning to context key in /mmz, 77
\currentgrouplevel ε-TEX primitive, 60

D xparse type (optional delimited with default),
103, 111, 119

d xparse type (optional delimited), 103, 111, 118,
119

deactivate key in /mmz, 9–11, 25, 33, 36, 37, 42,
61, 97, 97, 98

deactivate csname key in /mmz, 37, 97, 98
deactivate key key in /mmz, 97, 98
deferred value of /mmz/activation, 96, 97
\depth, 77
dir key in /mmz/path, 15, 18, 41, 43, 51, 86, 87
direct ccmemo input key in /mmz, 59, 84, 85
disable key in /mmz, 12, 13, 18, 23, 25, 71, 73, 75,

81, 108
driver key in /mmz, 53, 55, 58, 78, 79, 80, 81

E xparse type (embellishments with defaults), 111
e xparse type (embellishments), 111, 116, 118
--embedded | -e option of memoize-extract.pl, 90
enable key in /mmz, 13, 23, 65, 73, 75, 76, 81, 120
--enable-write18 option of TEX binaries, 6, 26
\end LATEX command, 25, 111–113, 115
end key in /mmz/record/〈record type〉, 52, 95
end document key in /mmz, 71, 72
end tag key in /collargs, 103, 104, 112, 116
enddocument/afterlastpage key in /mmz, 71
environment key in /collargs, 68–70, 103, 111,

112
\errmessage TEX primitive, 107, 109, 119
\etoksapp, 81, 81
expanded key in /mmz/auto/replicate, 110
\expectedheight defined at TEX extraction, 91
\expectedheight defined at new extern, 52, 95
\expectedheight option of

memoize-extract-one.tex, 92
\expectedwidth defined at TEX extraction, 91
\expectedwidth defined at new extern, 52, 95
\expectedwidth option of

memoize-extract-one.tex, 92
\externbasepath defined at TEX extraction, 91
\externbasepath defined at new extern, 52, 95
extract key in /mmz, 8, 16, 26, 71, 72, 88, 89–92,

119, 120

fix from no verbatim key in /collargs, 116
fix from verb key in /collargs, 116
fix from verbatim key in /collargs, 116

--force | -f option of memoize-extract.pl, 90,
120

\force option of memoize-extract-one.tex, 93
force activate key in /mmz, 97, 98
force multiref key in /mmz/auto, 110
force ref key in /mmz/auto, 30, 65, 78, 109
force refrange key in /mmz/auto, 109
\Forest command of package forest, 107
forest environment of package forest, 107
\fromdocument option of

memoize-extract-one.tex, 92

g xparse type (optional group), 113, 116, 118
\GetDocumentCommandArgSpec LATEX command,

61, 70, 102
\gtoksapp, 80, 81, 81

\hbox TEX primitive, 42, 78, 85
hbox value of /mmz/capture, 54, 78
\height, 77
--help | -h option of memoize-clean.pl, 94
--help | -h option of memoize-extract.pl, 90
horigin LuaTEX’s \pdfvariable register, 77

\ifAdviceRun, 100
\ifcollargsBeginTag, 112
\ifcollargsEndTag, 112
\ifcollargsIgnoreNesting, 113
\ifcollargsIgnoreOtherTags, 113
\ifcollargsNoDelimiters, 115
\ifinmemoize, 65, 81, 110
\ifmemoize, 38, 65, 73, 75, 79, 81, 110
\IfMemoizing, 58, 60, 83, 83
\ifmemoizing, 38, 57, 58, 65, 79, 81, 110
\ifmmzkeepexterns, 56, 82, 82
\ifmmzUnmemoizable, 79
ignore nesting key in /collargs, 104, 111, 113,

113
ignore other tags key in /collargs, 104, 113
ignore spaces key in /mmz, 38, 64, 75, 107, 108
\ignorespaces TEX primitive, 38, 64, 107
immediate value of /mmz/activation, 96, 97
include context in ccmemo key in /mmz, 49, 84
include source in cmemo key in /mmz, 37, 39, 43,

84
\index LATEX command, 62, 107, 110
inner handler key in /mmz/auto, 62, 64, 70, 73,

97, 99, 104, 108
.install advice key in /handlers, 63, 66, 96, 99,

106, 107
integrated driver key in /mmz/auto, 58, 82, 83,

105, 106

--keep | -k option of memoize-extract.pl, 50, 89
key meaning to context key in /mmz, 77, 78
key value to context key in /mmz, 77, 78

l xparse type (up to begin-group), 116
\label LATEX command, 28, 42, 44, 62, 85, 107, 110
\llap plain TEX command, 20
--log | -l option of memoize-extract.pl, 89
\logfile option of memoize-extract-one.tex, 92

m xparse type (mandatory), 11, 113, 116, 118
\mag TEX primitive, 77

123

https://ctan.org/pkg/cleveref
https://ctan.org/pkg/cleveref
https://ctan.org/pkg/forest
https://ctan.org/pkg/forest

majorversion LuaTEX’s \pdfvariable register,
see \pdfmajorversion

makefile key in /mmz, 95
makefile value of /mmz/record, 27, 51, 91, 95
manual key in /mmz, 63, 97, 107, 107
meaning to context key in /mmz, 14, 77
memo dir key in /mmz, 7, 8, 15–18, 23, 71, 86, 93
memoizable package, 34, 58, 72, 73, 74
\Memoize, 38–40, 54, 55, 63–65, 73, 79, 80, 81, 108
memoize environment, 10, 13, 22, 25, 38, 75, 107
memoize key in /mmz/auto, 11, 13, 25, 29, 61–65,

73, 98, 101, 104, 107, 108, 110
memoize package, 23, 26, 34, 71, 74
memoize-clean.pl script, 16, 23, 32, 50, 51, 93
memoize-clean.py script, 93
memoize-extract-one.tex script, 91, 92
memoize-extract.pl script, 6, 16, 26, 27, 50, 87,

88, 89, 94
memoize-extract.py script, 26, 27, 87, 88, 89
memoize.cfg file, 8, 16, 18, 26, 71, 73, 87, 88
\memoizefalse, 75, 81
\memoizetrue, 75, 81
\memoizinggrouplevel, 60, 83
minorversion LuaTEX’s \pdfvariable register,

see \pdfminorversion
--mkdir | -m option of memoize-extract.pl, 87, 88,

90
mkdir key in /mmz, 86, 87, 87
mkdir command key in /mmz, 16, 87, 88
.mmz file, 16, 23, 27, 50, 51, 75, 87, 89, 91–93, 94,

120
/mmz keypath, 7, 19, 22, 23, 47, 64, 73, 74, 96, 97,

100, 106, 107
\mmz, 10, 13, 38–40, 55, 58, 75, 107, 116
mmz value of /mmz/record, 51, 94
/mmz/auto keypath, 63, 82, 97, 98, 100, 104, 106,

108
/mmz/extract keypath, 88
/mmz/path keypath, 86
/mmz/record/〈record type〉 keypath, 52, 95
\mmzAbort, 24, 53, 66, 79, 109
\mmzAfterMemoization, 80
\mmzAfterMemoizationExtra, 55, 80
\mmzAtBeginMemoization, 47, 80
\mmzAtEndMemoization, 80
\mmzAtEndMemoizationExtra, 45, 80
\mmzAutoInit, 73, 108
\mmzCCMemo, 42, 53–55, 80, 82, 85, 107
\mmzCMemo, 43, 80
\mmzCollectTikZArguments, 102
\mmzContext, 43, 53, 77
\mmzContextExtra, 43–45, 53, 77
\mmzEndMemo, 84, 85
\mmzExternalizeBox, 42, 54, 82, 82
\mmzExternPages, 60, 83
\mmzExtraPages, 60, 83
\mmzForceNoRef, 78, 109
\mmzIncludeExtern, 41, 42, 54, 59, 60, 82, 85
\mmzkeepexternsfalse, 82
\mmzkeepexternstrue, 82
\mmzLabel, 42, 85, 107
\mmzMemo, 41, 43, 54, 82, 85
\mmzNewCCMemo, 50, 51, 93, 94

\mmzNewCMemo, 50, 51, 93, 94
\mmzNewExtern, 50, 51, 89, 93, 94
\mmznext, 7, 10, 12, 14, 19, 22, 33, 62, 64, 73, 75,

76, 108, 120
\mmzNoRef, 45, 65, 78, 109
\mmzOutputDirectory, 87
\mmzpdfmajorversion option of

memoize-extract-one.tex, 93
\mmzpdfminorversion option of

memoize-extract-one.tex, 93
\mmzPrefix, 51, 87, 93, 94
\mmzRegularPages, 60, 83
\mmzResource, 41, 54, 85
\mmzset, 7, 8, 10–16, 18, 19, 22, 23, 26, 33, 36, 37,

42, 71, 72, 73, 74, 75, 88, 104, 110, 120
\mmzSingleExternDriver, 42, 53, 54, 79, 81
\mmzSource, 43, 64, 85
\mmzThisContext, 84
\mmzTracingOff, 84
\mmzTracingOn, 84
\mmzUnmemoizable, 79, 109
\mmzUsedCCMemo, 51, 93, 94
\mmzUsedCMemo, 51, 93, 94
\mmzUsedExtern, 51, 93, 94
multiref key in /mmz/auto, 29, 110

new ccmemo key in /mmz/record/〈record type〉, 52,
95

new cmemo key in /mmz/record/〈record type〉, 52,
95

new extern key in /mmz/record/〈record type〉, 52,
60, 91, 95, 123, 125

\NewDocumentCommand LATEX command, 11, 61, 68,
102

no value of /mmz/extract, 16, 26, 88
no delimiters key in /collargs, 114, 115
no memo dir key in /mmz, 15, 86, 93
no record key in /mmz, 51, 94
no verbatim key in /collargs, 104, 108, 115
no verbatim key in /mmz, 22, 76, 104, 108
nomemoize environment, 13, 28, 75
nomemoize key in /mmz/auto, 13, 25, 33, 37, 61, 73,

98, 108
nomemoize package, 23, 34, 71, 72, 73, 74
\nommz, 13, 75
\nommzkeys, 23, 74
noop key in /mmz/auto, 25, 73, 108, 110
normal key in /mmz, 75, 76, 79

O xparse type (standard optional with default),
103, 111

o xparse type (standard optional), 11, 67, 103, 111,
114, 117, 118

options key in /mmz/auto, 97–99, 104, 108
outer handler key in /mmz/auto, 45, 62, 64, 73,

97, 99, 101, 108
output-directory key in /mmz, 87
overlay key in /tikz of package tikz, 20

padding key in /mmz, 20, 21, 30, 42, 56, 77, 78, 82,
98

padding bottom key in /mmz, 21, 77
padding left key in /mmz, 21, 77
padding right key in /mmz, 21, 77, 77

124

https://ctan.org/pkg/tikz

padding to context key in /mmz, 77, 78
padding top key in /mmz, 21, 77
\pagenumber defined at TEX extraction, 91
\pagenumber defined at new extern, 52, 95
\pagenumber option of memoize-extract-one.tex,

92
\pageref LATEX command, 29, 30, 107, 109
path key in /mmz, 15, 18, 41, 43, 51, 52, 86, 87, 93,

94
--pdf | -P option of memoize-extract.pl, 89
\pdfcompresslevel, see compresslevel
\pdfhorigin, see horigin
\pdfmajorversion register, 91, 93
\pdfminorversion register, 91, 93
\pdfprimitive, see \primitive
\pdfsavepos, see \savepos
\pdfvariable LuaTEX primitive, 90, 123, 124, 126
\pdfvorigin, see vorigin
per overlay key in /mmz, 19, 23, 46–48, 78
perl value of /mmz/extract, 6, 16, 26, 71, 87, 88,

89, 90
perl extraction command key in /mmz, 88
perl extraction options key in /mmz, 88, 120
--prefix | -p option of memoize-clean.pl, 93
prefix key in /mmz/path, 15, 18, 41, 43, 51, 86, 87,

94
prefix key in /mmz/record/〈record type〉, 52, 87,

95
prepend expandable postprocessor key in
/collargs, 114

prepend expandable preprocessor key in
/collargs, 114

prepend postprocessor key in /collargs, 113
prepend postwrap key in /collargs, 115
prepend preprocessor key in /collargs, 113
prepend prewrap key in /collargs, 115
\primitive LuaTEX/XƎTEX primitive, 60
--prune | -p option of memoize-extract.pl, 89,

120
python value of /mmz/extract, 16, 26, 87, 88, 89,

90, 120
python extraction command key in /mmz, 88
python extraction options key in /mmz, 88, 90

--quiet | -q option of memoize-clean.pl, 94
--quiet | -q option of memoize-extract.pl, 90
\quitvmode pdfTEX primitive, 41, 54, 78

R xparse type (required delimited with default),
103, 111, 119

r xparse type (required delimited), 103, 111, 119
raw collector options key in /mmz/auto, 70, 97,

99, 102, 102
readonly key in /mmz, 13, 14, 18, 38, 65, 75, 76, 79
\ReadonlyShipoutCounter LATEX command, 60, 83
\realpageno ConTEXt command, 60, 83
recompile key in /mmz, 7, 12, 14, 16, 22, 32, 33, 38,

75, 76, 79, 84, 120
record key in /mmz, 27, 51, 94, 95
\ref LATEX command, 28–31, 44, 63, 65, 107, 109
ref key in /mmz/auto, 29–31, 44, 62, 65, 78, 101,

107, 109, 110
refrange key in /mmz/auto, 29, 109

relative key in /mmz/path, 41, 43, 51, 86
remember picture key in /tikz of package tikz,

3, 24, 53, 109, 121
replicate key in /mmz/auto, 62, 107, 110
reset key in /mmz/auto, 97, 99, 105
\rlap plain TEX command, 20
run conditions key in /mmz/auto, 62, 65, 66, 73,

97, 99, 100
run if memoization is possible key in
/mmz/auto, 64, 65, 100, 110

run if memoizing key in /mmz/auto, 65, 66, 100,
107, 110

s xparse type (optional star), 11, 118
\savepos LuaTEX primitive, 24, 25, 62, 107, 109,

121
\scantokens ε-TEX primitive, 54, 69, 76
setup key key in /advice/install, 66, 96, 99
sh key in /mmz, 95
sh value of /mmz/record, 27, 51, 91, 95, 95
-shell-escape option of TEX binaries, 6, 16, 26
\shipout TEX primitive, 60, 71, 83

t xparse type (optional token), 103, 118, 119
tags key in /collargs, 69, 104, 111, 112
tcblisting environment of package tcolorbox, 22
tex value of /mmz/extract, 16, 26, 88, 91, 92, 119,

120
tex extraction command key in /mmz, 91
tex extraction options key in /mmz, 91
tex extraction script key in /mmz, 91, 92
texmf.cnf file, 17, 86, 89, 90
TEXMFOUTPUT variable in texmf.cnf, 89, 90
\tikz command of package tikz, 22, 61, 65, 102,

106, 107
\tikzexternalize command of package tikz, 71
tikzpicture environment of package tikz, 33, 107,

121
\toksapp, 81
trace key in /mmz, 38, 84
try activate key in /mmz, 97, 98

unmemoizable key in /mmz/auto, 109
\unskip TEX primitive, 75
used ccmemo key in /mmz/record/〈record type〉, 52,

95
used cmemo key in /mmz/record/〈record type〉, 52,

95
used extern key in /mmz/record/〈record type〉, 52,

95
\usepackage LATEX command, 26

v xparse type (verbatim), 69, 113, 116
\vbox TEX primitive, 42, 78, 85
vbox value of /mmz/capture, 24, 78
verb key in /collargs, 69, 104, 108, 112, 113, 115
verb key in /mmz, 22, 76, 104, 108, 115
verbatim LATEX environment, 22, 78, 113
verbatim key in /collargs, 69, 76, 103, 104, 108,

112–114, 115
verbatim key in /mmz, 22, 44, 54, 76, 98, 99, 104,

108, 115
verbatim ranges key in /collargs, 117
--version | -V option of memoize-clean.pl, 94

125

https://ctan.org/pkg/tikz
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/tikz
https://ctan.org/pkg/tikz
https://ctan.org/pkg/tikz

--version | -V option of memoize-extract.pl, 90
vorigin LuaTEX’s \pdfvariable register, 77
\vref command of package varioref, 29

--warning-template | -w option of
memoize-extract.pl, 89, 90

\warningtemplate option of

memoize-extract-one.tex, 92, 92
\warningtext, 90
\width, 77, 77

\xtoksapp, 80, 81, 81

--yes | -y option of memoize-clean.pl, 93

126

https://ctan.org/pkg/varioref

	Before you start
	Installing the extern extraction software
	The configuration commands
	The configuration file

	Your first memoized documents
	Let's see if it works!
	Memoizing by hand
	Memoizing automatically
	Working on a picture
	Keeping a clean house
	Writing a book?
	Writing a presentation?
	When stuff sticks out
	The verbatim mode
	The final version of your document

	Digging deeper
	Good to know
	Extraction methods and modes
	From cross-references to the context
	More on redefinitions and stale externs
	Supporting Memoize in your package
	Loading Memoize?
	Memoizable design

	Under the hood
	The entry point
	Memos
	Cc-memos (and extern inclusion)
	C-memos (and context)
	More on \label
	The Beamer support explained

	Record files
	The .mmz file
	Defining a new record type

	The memoization process
	The default memoization driver
	Pure memoization
	Multiple externs per memo
	Driver-based memoizable design
	Shipout

	Automemoization
	Using package Advice
	Using package CollArgs

	Reference
	Loading
	Configuration
	Memoization
	Manual memoization commands
	Basic configuration
	Inside the memoization process
	Tracing
	Internal memo commands

	Location of memos and externs
	Extern extraction
	Perl- and Python-based extraction
	TeX-based extraction
	The clean-up scripts
	Record files

	Automemoization
	Package Advice
	Memoization-related additions to the advising framework
	Package CollArgs

	Varia
	Known issues
	Troubleshooting
	License
	Changelog
	Acknowledgments

