wbids is an R package to access and analyze the World
Bank’s International
Debt Statistics (IDS). IDS provides creditor-debtor relationships
between countries, regions, and institutions. ‘wbids’ enables users to
download, process and work with IDS series across multiple entities,
counterparts, and time periods.
The wbids package relies on a redefinition of the
original World Bank data: ‘entities’ contain both countries and regions,
while ‘counterparts’ include both counterpart areas and institutions.
wbids provides a consistent mapping of identifiers and
names across these different types. The corresponding package
vignette provides more details on the data model.
The package is part of the EconDataverse family of packages aimed at helping economists and financial professionals work with sovereign-level economic data.
This package is a product of Teal Insights and not sponsored by or affiliated with the World Bank in any way, except for the use of the World Bank IDS API.
You can install wbids from CRAN via:
install.packages("wbids")You can also install the development version of wbids
like this:
# install.packages("pak")
pak::pak("teal-insights/r-wbids")On Linux, you may need to install libcurl4-openssl-dev
as a prerequisite to build the package.
The main function ids_get() provides an interface to
download multiple IDS series for multiple entities and counterparts and
specific date ranges.
library(wbids)
ids_get(
entities = c("ZMB", "ZAF"),
series = c("DT.DOD.DPPG.CD", "BM.GSR.TOTL.CD"),
counterparts = c("216", "231"),
start_year = 2015,
end_year = 2020
)
#> # A tibble: 48 × 5
#> entity_id series_id counterpart_id year value
#> <chr> <chr> <chr> <int> <dbl>
#> 1 ZMB BM.GSR.TOTL.CD 231 2015 NA
#> 2 ZMB BM.GSR.TOTL.CD 216 2015 NA
#> 3 ZMB DT.DOD.DPPG.CD 231 2015 NA
#> 4 ZMB DT.DOD.DPPG.CD 216 2015 193907000
#> 5 ZMB BM.GSR.TOTL.CD 231 2016 NA
#> 6 ZMB BM.GSR.TOTL.CD 216 2016 NA
#> 7 ZMB DT.DOD.DPPG.CD 231 2016 NA
#> 8 ZMB DT.DOD.DPPG.CD 216 2016 180118000
#> 9 ZMB BM.GSR.TOTL.CD 231 2017 NA
#> 10 ZMB BM.GSR.TOTL.CD 216 2017 NA
#> # ℹ 38 more rowsThe package comes with prepared metadata about available series, entities, counterparts, and topics. Please consult the package vignette for details.
ids_list_series()
ids_list_entities()
ids_list_counterparts()
ids_list_series_topics()This data can be used to enrich the IDS series or facilitate data discovery. For further applications, please consult Teal Insights’ Guide to Working with the World Bank International Debt Statistics.
The package also provides a convenience function to download the full
IDS data pre-processed with wbids from the corresponding
EconDataverse dataset on Hugging
Face via the econdatasets
package:
ids_get_ed("debt_statistics")
#> → Reading dataset from
#> https://huggingface.co/datasets/econdataverse/wbids/resolve/main/debt_statistics.parquet
#> ✔ Successfully loaded debt_statistics from wbids
#> # A tibble: 144,526,432 × 5
#> entity_id series_id counterpart_id year value
#> <chr> <chr> <chr> <int> <dbl>
#> 1 AFG DT.DIS.BLAT.PRVG.CD 625 2006 0
#> 2 AFG DT.DIS.BLAT.PRVG.CD 625 2007 0
#> 3 AFG DT.DIS.BLAT.PRVG.CD 625 2008 0
#> 4 AFG DT.DIS.BLAT.PRVG.CD 625 2009 0
#> 5 AFG DT.DIS.BLAT.PRVG.CD 625 2010 0
#> 6 AFG DT.DIS.BLAT.PRVG.CD 625 2011 0
#> 7 AFG DT.DIS.BLAT.PRVG.CD 625 2012 0
#> 8 AFG DT.DIS.BLAT.PRVG.CD 625 2013 0
#> 9 AFG DT.DIS.BLAT.PRVG.CD 625 2014 0
#> 10 AFG DT.DIS.BLAT.PRVG.CD 625 2015 0
#> # ℹ 144,526,422 more rowsThe interface and column names are fully consistent with World
Development Indicators (WDI) data provided through the
wbwdi package. You can find details on github.com/tidy-intelligence/r-wbwdi.
Contributions to wbids are welcome! If you’d like to
contribute, please follow these steps:
For more detailed information on the package structure and development process, please visit the project Wiki.
The package is organized around three main functional groups:
graph TB
A[wbids] --> B[ids_list_*]
A --> C[ids_get]
A --> D[ids_bulk*]
B --> B1[ids_list_counterparts]
B --> B2[ids_list_entities]
B --> B3[ids_list_series]
B --> B4[ids_list_series_topics]
D --> D1[ids_bulk]
D --> D2[ids_bulk_files]
D --> D3[ids_bulk_series]
classDef default fill:#fff,stroke:#333,color:#333
classDef main fill:#f9f,stroke:#333,color:#000,font-weight:bold
classDef group fill:#bbf,stroke:#333,color:#000
class A main
class B,C,D group
class B1,B2,B3,B4,D1,D2,D3 default