
Package ‘vitals’
June 24, 2025

Title Large Language Model Evaluation

Version 0.1.0

Description A port of 'Inspect', a widely adopted 'Python' framework for
large language model evaluation. Specifically aimed at 'ellmer' users
who want to measure the effectiveness of their large language model-based
products, the package supports prompt engineering, tool usage,
multi-turn dialog, and model graded evaluations.

License MIT + file LICENSE

URL https://github.com/tidyverse/vitals, https://vitals.tidyverse.org

BugReports https://github.com/tidyverse/vitals/issues

Depends R (>= 4.1)

Imports cli, dplyr, ellmer (>= 0.2.1), glue, httpuv, jsonlite, purrr,
R6, rlang, rstudioapi, S7, tibble, tidyr, withr

Suggests ggplot2, here, htmltools, knitr, ordinal, rmarkdown, testthat
(>= 3.0.0)

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, rmarkdown, posit-dev/btw,
tidyverse, gt, brms, RcppEigen, broom

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-04-25

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Simon Couch [aut, cre] (ORCID: <https://orcid.org/0000-0001-5676-5107>),
Max Kuhn [ctb],
Hadley Wickham [ctb] (ORCID: <https://orcid.org/0000-0003-4757-117X>),
Mine Cetinkaya-Rundel [ctb] (ORCID:

<https://orcid.org/0000-0001-6452-2420>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

1

https://github.com/tidyverse/vitals
https://vitals.tidyverse.org
https://github.com/tidyverse/vitals/issues
https://orcid.org/0000-0001-5676-5107
https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0001-6452-2420
https://ror.org/03wc8by49

2 are

Maintainer Simon Couch <simon.couch@posit.co>

Repository CRAN

Date/Publication 2025-06-24 09:00:02 UTC

Contents
are . 2
generate . 3
scorer_detect . 4
scorer_model . 6
Task . 8
vitals_bind . 13
vitals_bundle . 14
vitals_log_dir . 16
vitals_view . 17

Index 19

are An R Eval

Description

An R Eval is a dataset of challenging R coding problems. Each input is a question about R code
which could be solved on first-read only by experts and, with a chance to read documentation and
run some code, by fluent data scientists. Solutions are in target() and enable a fluent data scientist
to evaluate whether the solution deserves full, partial, or no credit.

Pass this dataset to Task$new() to situate it inside of an evaluation task.

Usage

are

Format

A tibble with 29 rows and 7 columns:

id Character. Unique identifier/title for the code problem.

input Character. The question to be answered.

target Character. The solution, often with a description of notable features of a correct solution.

domain Character. The technical domain (e.g., Data Analysis, Programming, or Authoring).

task Character. Type of task (e.g., Debugging, New feature, or Translation.)

source Character. URL or source of the problem. NAs indicate that the problem was written origi-
nally for this eval.

knowledge List. Required knowledge/concepts for solving the problem.

generate 3

Source

Posit Community, GitHub issues, R4DS solutions, etc. For row-level references, see source.

Examples

are

dplyr::glimpse(are)

generate Convert a chat to a solver function

Description

generate() is the simplest possible solver one might use with vitals; it just passes its inputs to
the supplied model and returns its raw responses. The inputs are evaluated in parallel, not in
the sense of multiple R sessions, but in the sense of multiple, asynchronous HTTP requests using
ellmer::parallel_chat(). generate()’s output can be passed directory to the solver argument
of Task’s $new() method.

Usage

generate(solver_chat = NULL)

Arguments

solver_chat An ellmer chat object, such as from ellmer::chat_anthropic().

Value

The output of generate() is another function. That function takes in a vector of inputs, as well as
a solver chat by the name of solver_chat with the default supplied to generate() itself.

See the documentation for the solver argument in Task for more information on the return type.

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

4 scorer_detect

create a new Task
tsk <- Task$new(

dataset = simple_addition,
solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)

evaluate the task (runs solver and scorer) and opens
the results in the Inspect log viewer (if interactive)
tsk$eval()

$eval() is shorthand for:
tsk$solve()
tsk$score()
tsk$measure()
tsk$log()
tsk$view()

get the evaluation results as a data frame
tsk$get_samples()

view the task directory with $view() or vitals_view()
vitals_view()

}

scorer_detect Scoring with string detection

Description

The following functions use string pattern detection to score model outputs.

• detect_includes(): Determine whether the target from the sample appears anywhere in-
side the model output. Can be case sensitive or insensitive (defaults to the latter).

• detect_match(): Determine whether the target from the sample appears at the beginning
or end of model output (defaults to looking at the end). Has options for ignoring case, white-
space, and punctuation (all are ignored by default).

• detect_pattern(): Extract matches of a pattern from the model response and determine
whether those matches also appear in target.

• detect_answer(): Scorer for model output that precedes answers with "ANSWER: ". Can
extract letters, words, or the remainder of the line.

• detect_exact(): Scorer which will normalize the text of the answer and target(s) and per-
form an exact matching comparison of the text. This scorer will return CORRECT when the
answer is an exact match to one or more targets.

scorer_detect 5

Usage

detect_includes(case_sensitive = FALSE)

detect_match(
location = c("end", "begin", "end", "any"),
case_sensitive = FALSE

)

detect_pattern(pattern, case_sensitive = FALSE, all = FALSE)

detect_exact(case_sensitive = FALSE)

detect_answer(format = c("line", "word", "letter"))

Arguments

case_sensitive Logical, whether comparisons are case sensitive.

location Where to look for match: one of "begin", "end", "any", or "exact". Defaults
to "end".

pattern Regular expression pattern to extract answer.

all Logical: for multiple captures, whether all must match.

format What to extract after "ANSWER:": "letter", "word", or "line". Defaults to
"line".

Value

A function that scores model output based on string matching. Pass the returned value to $eval(scorer).
See the documentation for the scorer argument in Task for more information on the return type.

See Also

model_graded_qa() and model_graded_fact() for model-based scoring.

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

create a new Task
tsk <- Task$new(

6 scorer_model

dataset = simple_addition,
solver = generate(solver_chat = chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = detect_includes()

)

evaluate the task (runs solver and scorer)
tsk$eval()

}

scorer_model Model-based scoring

Description

Model-based scoring makes use of a model to score output from a solver.

• model_graded_qa() scores how well a solver answers a question/answer task.
• model_graded_fact() determines whether a solver includes a given fact in its response.

The two scorers are quite similar in their implementation, but use a different default template to
evaluate correctness.

Usage

model_graded_qa(
template = NULL,
instructions = NULL,
grade_pattern = "(?i)GRADE\\s*:\\s*([CPI])(.*)$",
partial_credit = FALSE,
scorer_chat = NULL

)

model_graded_fact(
template = NULL,
instructions = NULL,
grade_pattern = "(?i)GRADE\\s*:\\s*([CPI])(.*)$",
partial_credit = FALSE,
scorer_chat = NULL

)

Arguments

template Grading template to use–a glue() string which will take substitutions input,
answer, criterion, instructions.

instructions Grading instructions.
grade_pattern A regex pattern to extract the final grade from the judge model’s response.
partial_credit Whether to allow partial credit.
scorer_chat An ellmer chat used to grade the model output, e.g. ellmer::chat_anthropic().

scorer_model 7

Value

A function that will grade model responses according to the given instructions. See Task’s scorer
argument for a description of the returned function. The functions that model_graded_qa() and
model_graded_fact() output can be passed directly to $eval().

See the documentation for the scorer argument in Task for more information on the return type.

See Also

scorer_detect for string detection-based scoring.

Examples

Quality assurance -----------------------------
if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {

set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

tsk <- Task$new(
dataset = simple_addition,
solver = generate(solver_chat = chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)

tsk$eval()
}

Factual response -------------------------------
if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {

set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

r_history <- tibble(
input = c(

"Who created the R programming language?",
"In what year was version 1.0 of R released?"

),
target = c("Ross Ihaka and Robert Gentleman.", "2000.")

)

tsk <- Task$new(

8 Task

dataset = r_history,
solver = generate(solver_chat = chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_fact()

)

tsk$eval()
}

Task Creating and evaluating tasks

Description

Evaluation Tasks provide a flexible data structure for evaluating LLM-based tools.

1. Datasets contain a set of labelled samples. Datasets are just a tibble with columns input and
target, where input is a prompt and target is either literal value(s) or grading guidance.

2. Solvers evaluate the input in the dataset and produce a final result.

3. Scorers evaluate the final output of solvers. They may use text comparisons (like detect_match()),
model grading (like model_graded_qa()), or other custom schemes.

The usual flow of LLM evaluation with Tasks calls $new() and then $eval(). $eval() just
calls $solve(), $score(), $measure(), $log(), and $view() in order. The remaining methods
are generally only recommended for expert use.

Public fields

dir The directory where evaluation logs will be written to. Defaults to vitals_log_dir().

metrics A named vector of metric values resulting from $measure() (called inside of $eval()).
Will be NULL if metrics have yet to be applied.

Methods

Public methods:
• Task$new()

• Task$eval()

• Task$get_samples()

• Task$solve()

• Task$score()

• Task$measure()

• Task$log()

• Task$view()

• Task$set_solver()

• Task$set_scorer()

• Task$set_metrics()

Task 9

• Task$get_cost()

• Task$clone()

Method new(): The typical flow of LLM evaluation with vitals tends to involve first calling this
method and then $eval() on the resulting object.

Usage:
Task$new(
dataset,
solver,
scorer,
metrics = NULL,
epochs = NULL,
name = deparse(substitute(dataset)),
dir = vitals_log_dir()

)

Arguments:
dataset A tibble with, minimally, columns input and target.
solver A function that takes a vector of inputs from the dataset’s input column as its first

argument and determines values approximating dataset$target. Its return value must be
a list with the following elements:
• result - A character vector of the final responses, with the same length as dataset$input.
• solver_chat - A list of ellmer Chat objects that were used to solve each input, also with

the same length as dataset$input.
Additional output elements can be included in a slot solver_metadata that has the same
length as dataset$input, which will be logged in solver_metadata.
Additional arguments can be passed to the solver via $solve(...) or $eval(...). See the
definition of generate() for a function that outputs a valid solver that just passes inputs to
ellmer Chat objects’ $chat() method in parallel.

scorer A function that evaluates how well the solver’s return value approximates the corre-
sponding elements of dataset$target. The function should take in the $get_samples()
slot of a Task object and return a list with the following elements:
• score - A vector of scores with length equal to nrow(samples). Built-in scorers return

ordered factors with levels I < P (optionally) < C (standing for "Incorrect", "Partially
Correct", and "Correct"). If your scorer returns this output type, the package will auto-
matically calculate metrics.

Optionally:
• scorer_chat - If your scorer makes use of ellmer, also include a list of ellmer Chat

objects that were used to score each result, also with length nrow(samples).
• scorer_metadata - Any intermediate results or other values that you’d like to be stored

in the persistent log. This should also have length equal to nrow(samples).
Scorers will probably make use of samples$input, samples$target, and samples$result
specifically. See model-based scoring for examples.

metrics A named list of functions that take in a vector of scores (as in task$get_samples()$score)
and output a single numeric value.

epochs The number of times to repeat each sample. Evaluate each sample multiple times to
better quantify variation. Optional, defaults to 1L. The value of epochs supplied to $eval()
or $score() will take precedence over the value in $new().

10 Task

name A name for the evaluation task. Defaults to deparse(substitute(dataset)).
dir Directory where logs should be stored.

Returns: A new Task object.

Method eval(): Evaluates the task by running the solver, scorer, logging results, and viewing
(if interactive). This method works by calling $solve(), $score(), $log(), and $view() in
sequence.
The typical flow of LLM evaluation with vitals tends to involve first calling $new() and then this
method on the resulting object.

Usage:
Task$eval(..., epochs = NULL, view = interactive())

Arguments:
... Additional arguments passed to the solver and scorer functions.
epochs The number of times to repeat each sample. Evaluate each sample multiple times to

better quantify variation. Optional, defaults to 1L. The value of epochs supplied to $eval()
or $score() will take precedence over the value in $new().

view Automatically open the viewer after evaluation (defaults to TRUE if interactive, FALSE
otherwise).

Returns: The Task object (invisibly)

Method get_samples(): The task’s samples represent the evaluation in a data frame format.
vitals_bind() row-binds the output of this function called across several tasks.

Usage:
Task$get_samples()

Returns: A tibble representing the evaluation. Based on the dataset, epochs may duplicate
rows, and the solver and scorer will append columns to this data.

Method solve(): Solve the task by running the solver

Usage:
Task$solve(..., epochs = NULL)

Arguments:
... Additional arguments passed to the solver function.
epochs The number of times to repeat each sample. Evaluate each sample multiple times to

better quantify variation. Optional, defaults to 1L. The value of epochs supplied to $eval()
or $score() will take precedence over the value in $new().

Returns: The Task object (invisibly)

Method score(): Score the task by running the scorer and then applying metrics to its results.

Usage:
Task$score(...)

Arguments:
... Additional arguments passed to the scorer function.

Returns: The Task object (invisibly)

Task 11

Method measure(): Applies metrics to a scored Task.

Usage:
Task$measure()

Returns: The Task object (invisibly)

Method log(): Log the task to a directory.
Note that, if an VITALS_LOG_DIR envvar is set, this will happen automatically in $eval().

Usage:
Task$log(dir = vitals_log_dir())

Arguments:

dir The directory to write the log to.

Returns: The path to the logged file, invisibly.

Method view(): View the task results in the Inspect log viewer

Usage:
Task$view()

Returns: The Task object (invisibly)

Method set_solver(): Set the solver function

Usage:
Task$set_solver(solver)

Arguments:

solver A function that takes a vector of inputs from the dataset’s input column as its first
argument and determines values approximating dataset$target. Its return value must be
a list with the following elements:
• result - A character vector of the final responses, with the same length as dataset$input.
• solver_chat - A list of ellmer Chat objects that were used to solve each input, also with

the same length as dataset$input.
Additional output elements can be included in a slot solver_metadata that has the same
length as dataset$input, which will be logged in solver_metadata.
Additional arguments can be passed to the solver via $solve(...) or $eval(...). See the
definition of generate() for a function that outputs a valid solver that just passes inputs to
ellmer Chat objects’ $chat() method in parallel.

Returns: The Task object (invisibly)

Method set_scorer(): Set the scorer function

Usage:
Task$set_scorer(scorer)

Arguments:

scorer A function that evaluates how well the solver’s return value approximates the corre-
sponding elements of dataset$target. The function should take in the $get_samples()
slot of a Task object and return a list with the following elements:

12 Task

• score - A vector of scores with length equal to nrow(samples). Built-in scorers return
ordered factors with levels I < P (optionally) < C (standing for "Incorrect", "Partially
Correct", and "Correct"). If your scorer returns this output type, the package will auto-
matically calculate metrics.

Optionally:

• scorer_chat - If your scorer makes use of ellmer, also include a list of ellmer Chat
objects that were used to score each result, also with length nrow(samples).

• scorer_metadata - Any intermediate results or other values that you’d like to be stored
in the persistent log. This should also have length equal to nrow(samples).

Scorers will probably make use of samples$input, samples$target, and samples$result
specifically. See model-based scoring for examples.

Returns: The Task object (invisibly)

Method set_metrics(): Set the metrics that will be applied in $measure() (and thus $eval()).

Usage:

Task$set_metrics(metrics)

Arguments:

metrics A named list of functions that take in a vector of scores (as in task$get_samples()$score)
and output a single numeric value.

Returns: The Task (invisibly)

Method get_cost(): The cost of this eval This is a wrapper around ellmer’s $token_usage()
function. That function is called at the beginning and end of each call to $solve() and $score();
this function returns the cost inferred by taking the differences in values of $token_usage() over
time.

Usage:

Task$get_cost()

Returns: A tibble displaying the cost of solving and scoring the evaluation by model, separately
for the solver and scorer.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Task$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

generate() for the simplest possible solver, and scorer_model and scorer_detect for two built-in
approaches to scoring.

vitals_bind 13

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

create a new Task
tsk <- Task$new(

dataset = simple_addition,
solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)

evaluate the task (runs solver and scorer) and opens
the results in the Inspect log viewer (if interactive)
tsk$eval()

$eval() is shorthand for:
tsk$solve()
tsk$score()
tsk$measure()
tsk$log()
tsk$view()

get the evaluation results as a data frame
tsk$get_samples()

view the task directory with $view() or vitals_view()
vitals_view()

}

vitals_bind Concatenate task samples for analysis

Description

Combine multiple Task objects into a single tibble for comparison.

This function takes multiple (optionally named) Task objects and row-binds their $get_samples()
together, adding a task column to identify the source of each row. The resulting tibble nests addi-
tional columns into a metadata column and is ready for further analysis.

14 vitals_bundle

Usage

vitals_bind(...)

Arguments

... Task objects to combine, optionally named.

Value

A tibble with the combined samples from all tasks, with a task column indicating the source and a
nested metadata column containing additional fields.

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

tsk1 <- Task$new(
dataset = simple_addition,
solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)
tsk1$eval()

tsk2 <- Task$new(
dataset = simple_addition,
solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = detect_includes()

)
tsk2$eval()

combined <- vitals_bind(model_graded = tsk1, string_detection = tsk2)
}

vitals_bundle Prepare logs for deployment

vitals_bundle 15

Description

This function creates a standalone bundle of the Inspect viewer with log files that can be deployed
statically. It copies the UI viewer files, log files, and generates the necessary configuration files.

Usage

vitals_bundle(log_dir = vitals_log_dir(), output_dir = NULL, overwrite = FALSE)

Arguments

log_dir Path to the directory containing log files. Defaults to vitals_log_dir().

output_dir Path to the directory where the bundled output will be placed.

overwrite Whether to overwrite an existing output directory. Defaults to FALSE.

Value

Invisibly returns the output directory path. That directory contains:

output_dir
|-- index.html
|-- robots.txt
|-- assets

|-- ..
|-- logs

|-- ..

robots.txt prevents crawlers from indexing the viewer. That said, many crawlers only read the
robots.txt at the root directory of a package, so the file will likely be ignored if this folder isn’t
the root directory of the deployed page. assets/ is the bundled source for the viewer. logs/ is the
log_dir as well as a logs.json, which is a manifest file for the directory.

Deployment

This function generates a directory that’s ready for deployment to any static web server such as
GitHub Pages, S3 buckets, or Netlify. If you have a connection to Posit Connect configured, you
can deploy a directory of log files with the following:

tmp_dir <- withr::local_tempdir()
vitals_bundle(output_dir = tmp_dir, overwrite = TRUE)
rsconnect::deployApp(tmp_dir)

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

16 vitals_log_dir

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

tsk <- Task$new(
dataset = simple_addition,
solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)

tsk$eval()

output_dir <- tempdir()
vitals_bundle(output_dir = output_dir, overwrite = TRUE)

}

vitals_log_dir The log directory

Description

vitals supports the VITALS_LOG_DIR environment variable, which sets a default directory to write
logs to in Task’s $eval() and $log() methods.

Usage

vitals_log_dir()

vitals_log_dir_set(dir)

Arguments

dir A directory to configure the environment variable VITALS_LOG_DIR to.

Value

Both vitals_log_dir() and vitals_log_dir_set() return the current value of the environment
variable VITALS_LOG_DIR. vitals_log_dir_set() additionally sets it to a new value.

To set this variable in every new R session, you might consider adding it to your .Rprofile, perhaps
with usethis::edit_r_profile().

vitals_view 17

Examples

vitals_log_dir()

dir <- tempdir()

vitals_log_dir_set(dir)

vitals_log_dir()

vitals_view Interactively view local evaluation logs

Description

vitals bundles the Inspect log viewer, an interactive app for exploring evaluation logs. Supply a path
to a directory of tasks written to json. For individual Task objects, use the $view() method instead.

Usage

vitals_view(dir = vitals_log_dir(), host = "127.0.0.1", port = 7576)

Arguments

dir Path to a directory containing task eval logs.

host Host to serve on. Defaults to "127.0.0.1".

port Port to serve on. Defaults to 7576, one greater than the Python implementation.

Value

The server object (invisibly)

Examples

if (!identical(Sys.getenv("ANTHROPIC_API_KEY"), "")) {
set the log directory to a temporary directory
withr::local_envvar(VITALS_LOG_DIR = withr::local_tempdir())

library(ellmer)
library(tibble)

simple_addition <- tibble(
input = c("What's 2+2?", "What's 2+3?"),
target = c("4", "5")

)

create a new Task
tsk <- Task$new(

dataset = simple_addition,

18 vitals_view

solver = generate(chat_anthropic(model = "claude-3-7-sonnet-latest")),
scorer = model_graded_qa()

)

evaluate the task (runs solver and scorer) and opens
the results in the Inspect log viewer (if interactive)
tsk$eval()

$eval() is shorthand for:
tsk$solve()
tsk$score()
tsk$measure()
tsk$log()
tsk$view()

get the evaluation results as a data frame
tsk$get_samples()

view the task directory with $view() or vitals_view()
vitals_view()

}

Index

∗ datasets
are, 2

are, 2

detect_answer (scorer_detect), 4
detect_exact (scorer_detect), 4
detect_includes (scorer_detect), 4
detect_match (scorer_detect), 4
detect_match(), 8
detect_pattern (scorer_detect), 4

ellmer::chat_anthropic(), 3, 6
ellmer::parallel_chat(), 3

generate, 3
generate(), 9, 11, 12

model-based scoring, 9, 12
model_graded_fact (scorer_model), 6
model_graded_fact(), 5
model_graded_qa (scorer_model), 6
model_graded_qa(), 5, 8

scorer_detect, 4, 7, 12
scorer_model, 6, 12

Task, 3, 5, 7, 8, 13, 16, 17

vitals_bind, 13
vitals_bind(), 10
vitals_bundle, 14
vitals_log_dir, 16
vitals_log_dir_set (vitals_log_dir), 16
vitals_view, 17

19

	are
	generate
	scorer_detect
	scorer_model
	Task
	vitals_bind
	vitals_bundle
	vitals_log_dir
	vitals_view
	Index

