Title: | Analysis and Visualization of Archaeological Count Data |
Version: | 3.3.1 |
Maintainer: | Nicolas Frerebeau <nicolas.frerebeau@u-bordeaux-montaigne.fr> |
Description: | An easy way to examine archaeological count data. This package provides several tests and measures of diversity: heterogeneity and evenness (Brillouin, Shannon, Simpson, etc.), richness and rarefaction (Chao1, Chao2, ACE, ICE, etc.), turnover and similarity (Brainerd-Robinson, etc.). It allows to easily visualize count data and statistical thresholds: rank vs abundance plots, heatmaps, Ford (1962) and Bertin (1977) diagrams, etc. |
License: | GPL (≥ 3) |
URL: | https://codeberg.org/tesselle/tabula, https://packages.tesselle.org/tabula/ |
BugReports: | https://codeberg.org/tesselle/tabula/issues |
Depends: | R (≥ 3.5) |
Imports: | arkhe (≥ 1.11.0), graphics, grDevices, khroma (≥ 1.16.0), methods, stats, utils |
Suggests: | folio (≥ 1.5.0), fontquiver, knitr, markdown, rsvg, svglite, tinysnapshot, tinytest |
VignetteBuilder: | knitr |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2.9000 |
X-schema.org-applicationCategory: | Archaeological Science |
X-schema.org-isPartOf: | https://www.tesselle.org |
X-schema.org-keywords: | archaeological-science, archaeology, data-visualization, diversity-index, r-package |
Collate: | 'AllClasses.R' 'AllGenerics.R' 'coerce.R' 'data.R' 'diversity.R' 'diversity_alpha.R' 'diversity_beta.R' 'diversity_test.R' 'matrigraph.R' 'mutators.R' 'occurrence.R' 'plot_bertin.R' 'plot_diceleraas.R' 'plot_diversity.R' 'plot_ford.R' 'plot_heatmap.R' 'plot_matrix.R' 'plot_rank.R' 'plot_spot.R' 'rarefaction.R' 'reexport.R' 'resample.R' 'seriograph.R' 'show.R' 'similarity.R' 'statistics.R' 'subset.R' 'tabula-deprecated.R' 'tabula-internal.R' 'tabula-package.R' 'validate.R' 'zzz.R' |
NeedsCompilation: | no |
Packaged: | 2025-05-15 11:48:53 UTC; nfrerebeau |
Author: | Nicolas Frerebeau |
Repository: | CRAN |
Date/Publication: | 2025-05-15 13:30:02 UTC |
tabula: Analysis and Visualization of Archaeological Count Data
Description
An easy way to examine archaeological count data. This package provides several tests and measures of diversity: heterogeneity and evenness (Brillouin, Shannon, Simpson, etc.), richness and rarefaction (Chao1, Chao2, ACE, ICE, etc.), turnover and similarity (Brainerd-Robinson, etc.). It allows to easily visualize count data and statistical thresholds: rank vs abundance plots, heatmaps, Ford (1962) and Bertin (1977) diagrams, etc.
Details
Version | 3.3.1 |
License | GPL-3 |
CRAN DOI | doi:10.32614/CRAN.package.tabula |
Zenodo DOI | doi:10.5281/zenodo.1489944 |
JOSS DOI | doi:10.21105/joss.01821 |
Archéosciences Bordeaux (UMR 6034)
Maison de l'Archéologie
Université Bordeaux Montaigne
33607 Pessac cedex
France
Package options
tabula uses the following options()
to configure behavior:
-
tabula.progress
: alogical
scalar. Should progress bars be displayed? Defaults tointeractive()
. -
tabula.verbose
: alogical
scalar. Should R report extra information on progress? Defaults tointeractive()
.
Author(s)
Maintainer: Nicolas Frerebeau nicolas.frerebeau@u-bordeaux-montaigne.fr (ORCID)
Other contributors:
Matthew Peeples matthew.peeples@asu.edu (ORCID) [contributor]
Ben Marwick bmarwick@uw.edu (ORCID) [contributor]
Jean-Baptiste Fourvel jean-baptiste.fourvel@univ-amu.fr (ORCID) [contributor]
Brice Lebrun (ORCID) (Logo designer) [artist]
Université Bordeaux Montaigne (ROR) [funder]
CNRS (ROR) [funder]
See Also
Useful links:
Report bugs at https://codeberg.org/tesselle/tabula/issues
Composition Index
Description
An S4 class to represent an composition measure.
Note
This class inherits from DiversityIndex.
Author(s)
N. Frerebeau
See Also
Other classes:
DiversityIndex-class
,
EvennessIndex-class
,
HeterogeneityIndex-class
,
RarefactionIndex-class
,
RichnessIndex-class
Diversity Index
Description
An S4 class to represent a diversity measure.
Slots
.Data
A
numeric
vector of diversity measures.labels
A
character
vector giving the sample names.size
An
integer
vector giving the sample sizes.data
A
numeric
matrix of count data.method
A
character
string specifying the method used.simulation
A four columns
numeric
matrix giving the diversity measures for the simulated assemblage (samplesize
,mean
estimate,lower
andupper
boundaries of the confidence interval).seed
A
numeric
vector giving the value of .Random.seed before the simulation was started; otherwise it is the user specified value with akind
attribute with valueas.list(
RNGkind()
)
.
Coerce
In the code snippets below, x
is an DiversityIndex
object.
as.data.frame(x)
Coerces to a
data.frame
.
Note
This class inherits from base numeric
.
Author(s)
N. Frerebeau
See Also
Other classes:
CompositionIndex-class
,
EvennessIndex-class
,
HeterogeneityIndex-class
,
RarefactionIndex-class
,
RichnessIndex-class
Evenness Index
Description
An S4 class to represent an evenness measure.
Note
This class inherits from DiversityIndex.
Author(s)
N. Frerebeau
See Also
Other classes:
CompositionIndex-class
,
DiversityIndex-class
,
HeterogeneityIndex-class
,
RarefactionIndex-class
,
RichnessIndex-class
Heterogeneity Index
Description
An S4 class to represent an heterogeneity measure.
Note
This class inherits from DiversityIndex.
Author(s)
N. Frerebeau
See Also
Other classes:
CompositionIndex-class
,
DiversityIndex-class
,
EvennessIndex-class
,
RarefactionIndex-class
,
RichnessIndex-class
Rarefaction Index
Description
An S4 class to represent an rarefaction measure.
Slots
.Data
A
numeric
matrix of count data (expected taxa per fixed number of individuals).labels
A
character
vector giving the sample names.size
An
integer
vector giving the sample sizes.method
A
character
string specifying the method used.
Note
This class inherits from base matrix
.
Author(s)
N. Frerebeau
See Also
Other classes:
CompositionIndex-class
,
DiversityIndex-class
,
EvennessIndex-class
,
HeterogeneityIndex-class
,
RichnessIndex-class
Richness Index
Description
An S4 class to represent a richness measure.
Note
This class inherits from DiversityIndex.
Author(s)
N. Frerebeau
See Also
Other classes:
CompositionIndex-class
,
DiversityIndex-class
,
EvennessIndex-class
,
HeterogeneityIndex-class
,
RarefactionIndex-class
Birds Species and Abundances
Description
A dataset of birds species and abundances in managed and unmanaged areas along the River Wye (UK).
Usage
aves
Format
A data.frame
with 2 rows and 26 variables (bird species).
Source
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
Other datasets:
cantabria
,
pueblo
,
woodland
Bootstrap Estimation
Description
Bootstrap Estimation
Usage
## S4 method for signature 'DiversityIndex'
bootstrap(
object,
n = 1000,
f = NULL,
level = 0.95,
interval = c("basic", "normal", "percentiles"),
seed = NULL,
rare = FALSE
)
Arguments
object |
An R object (typically a DiversityIndex object). |
n |
A non-negative |
f |
A |
level |
A length-one |
interval |
A |
seed |
An object specifying if and how the random number generator
should be initialized (see |
rare |
A |
Details
n
random samples are drawn, each with the same sample size as in the
original sample and with class probabilities proportional to the original
abundances.
Note that the mean of the bootstrapped samples will often be much lower than the observed value. Bootstrapping results must be interpreted with great care.
Value
If f
is NULL
(the default), bootstrap()
returns a numeric
matrix
with the following columns:
original
The observed value.
mean
The bootstrap estimate of mean.
bias
The bootstrap estimate of bias.
error
The bootstrap estimate of standard error.
lower
The lower limit of the bootstrap confidence interval at
level
.upper
The upper limit of the bootstrap confidence interval at
level
.
If f
is a function
, bootstrap()
returns the result of f
applied to
the values computed from the n
replications.
Author(s)
N. Frerebeau
See Also
Other resampling methods:
jackknife()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Shannon diversity index
(h <- heterogeneity(cantabria, method = "shannon"))
## Bootstrap resampling
bootstrap(h)
bootstrap(h, f = summary)
quant <- function(x) quantile(x, probs = c(0.05, 0.95))
bootstrap(h, f = quant)
Early Magdalenian Engraved Bones
Description
A dataset of design elements in engraved bones from Cantabrian Spain.
Usage
cantabria
Format
A data.frame
with 5 rows and 44 variables (designs).
Source
Conkey, M. W. (1980). The Identification of prehistoric hunter-gatherer aggregation sites: The case of Altamira. Current Anthropology, 21(5), 609-630.
Kintigh, K. W. (1989). Sample Size, Significance, and Measures of Diversity. In Leonard, R. D. and Jones, G. T., Quantifying Diversity in Archaeology. New Directions in Archaeology. Cambridge: Cambridge University Press, p. 25-36.
See Also
Other datasets:
aves
,
pueblo
,
woodland
Coerce to a Data Frame
Description
Coerce to a Data Frame
Usage
## S4 method for signature 'DiversityIndex'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
x |
An object. |
row.names , optional |
Currently not used. |
... |
Currently not used. |
Value
A data.frame
.
Author(s)
N. Frerebeau
See Also
Other mutators:
mutators
Alpha Diversity
Description
Computes multiple alpha diversity indices.
Usage
diversity(object, ...)
## S4 method for signature 'matrix'
diversity(object, ..., evenness = FALSE, unbiased = FALSE)
## S4 method for signature 'data.frame'
diversity(object, ..., evenness = FALSE, unbiased = FALSE)
Arguments
object |
A |
... |
Currently not used. |
evenness |
A |
unbiased |
A |
Details
Alpha diversity refers to diversity at the local level, assessed within a delimited system. It is the diversity within a uniform habitat of fixed size.
Diversity measurement assumes that all individuals in a specific taxa are equivalent and that all types are equally different from each other (Peet 1974). A measure of diversity can be achieved by using indices built on the relative abundance of taxa. These indices (sometimes referred to as non-parametric indices) benefit from not making assumptions about the underlying distribution of taxa abundance: they only take relative abundances of the species that are present and species richness into account. Peet (1974) refers to them as indices of heterogeneity.
Diversity indices focus on one aspect of the taxa abundance and emphasize either richness (weighting towards uncommon taxa) or dominance (weighting towards abundant taxa; Magurran 1988).
Evenness is a measure of how evenly individuals are distributed across the sample.
Value
A data.frame
with the following columns:
size
Sample size.
observed
Number of observed taxa/types.
shannon
brillouin
simpson
berger
menhinick
margalef
chao1
ace
squares
Note
The berger
and simpson
methods return a dominance index, not the
reciprocal or inverse form usually adopted, so that an increase in the value
of the index accompanies a decrease in diversity.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
Peet, R. K. (1974). The Measurement of Species Diversity. Annual Review of Ecology and Systematics, 5(1), 285-307. doi:10.1146/annurev.es.05.110174.001441.
See Also
Other diversity measures:
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Alpha diversity
diversity(cantabria)
## Shannon diversity index
(h <- heterogeneity(cantabria, method = "shannon"))
(e <- evenness(cantabria, method = "shannon"))
as.data.frame(h)
Evenness
Description
Computes an evenness measure.
Usage
evenness(object, ...)
## S4 method for signature 'matrix'
evenness(
object,
...,
method = c("shannon", "simpson", "brillouin", "mcintosh")
)
## S4 method for signature 'data.frame'
evenness(
object,
...,
method = c("shannon", "simpson", "brillouin", "mcintosh")
)
Arguments
object |
A |
... |
Further arguments to be passed to internal methods (see below). |
method |
A |
Details
Evenness is a measure of how evenly individuals are distributed across the sample.
The following evenness measures are available (see Magurran 1988 for details):
brillouin
mcintosh
shannon
simpson
Value
An EvennessIndex object.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
index_brillouin()
, index_mcintosh()
, index_shannon()
,
index_simpson()
Other diversity measures:
diversity()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Alpha diversity
diversity(cantabria)
## Shannon diversity index
(h <- heterogeneity(cantabria, method = "shannon"))
(e <- evenness(cantabria, method = "shannon"))
as.data.frame(h)
Heterogeneity
Description
Computes an heterogeneity or a dominance index.
Usage
heterogeneity(object, ...)
## S4 method for signature 'matrix'
heterogeneity(
object,
...,
method = c("shannon", "simpson", "berger", "boone", "brillouin", "mcintosh")
)
## S4 method for signature 'data.frame'
heterogeneity(
object,
...,
method = c("shannon", "simpson", "berger", "boone", "brillouin", "mcintosh")
)
Arguments
object |
A |
... |
Further arguments to be passed to internal methods (see below). |
method |
A |
Details
The following heterogeneity index are available (see Magurran 1988 for details):
berger
boone
brillouin
mcintosh
shannon
simpson
The berger
, mcintosh
and simpson
methods return a dominance index,
not the reciprocal or inverse form usually adopted, so that an increase in
the value of the index accompanies a decrease in diversity.
Value
An HeterogeneityIndex object.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
index_berger()
, index_boone()
, index_brillouin()
,
index_mcintosh()
, index_shannon()
, index_simpson()
Other diversity measures:
diversity()
,
evenness()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Alpha diversity
diversity(cantabria)
## Shannon diversity index
(h <- heterogeneity(cantabria, method = "shannon"))
(e <- evenness(cantabria, method = "shannon"))
as.data.frame(h)
Abundance-based Coverage Estimator
Description
Abundance-based Coverage Estimator
Usage
index_ace(x, ...)
## S4 method for signature 'numeric'
index_ace(x, k = 10, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
k |
A length-one |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Chao, A. & Lee, S.-M. (1992). Estimating the Number of Classes via Sample Coverage. Journal of the American Statistical Association, 87(417), 210-217. doi:10.1080/01621459.1992.10475194.
See Also
Other alpha diversity measures:
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Baxter's Rarefaction
Description
Baxter's Rarefaction
Usage
index_baxter(x, ...)
## S4 method for signature 'numeric'
index_baxter(x, sample, ...)
Arguments
x |
A |
... |
Currently not used. |
sample |
A length-one |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Baxter, M. J. (2001). Methodological Issues in the Study of Assemblage Diversity. American Antiquity, 66(4), 715-725. doi:10.2307/2694184.
See Also
Other alpha diversity measures:
index_ace()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Berger-Parker Dominance Index
Description
Berger-Parker Dominance Index
Usage
index_berger(x, ...)
## S4 method for signature 'numeric'
index_berger(x, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
na.rm |
A |
Details
The Berger-Parker index expresses the proportional importance of the most abundant type. This metric is highly biased by sample size and richness, moreover it does not make use of all the information available from sample.
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Berger, W. H. & Parker, F. L. (1970). Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science, 168(3937), 1345-1347. doi:10.1126/science.168.3937.1345.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Binomial Co-Occurrence Assessment
Description
Binomial Co-Occurrence Assessment
Usage
index_binomial(x, y, ...)
## S4 method for signature 'numeric,numeric'
index_binomial(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Details
This assesses the degree of co-occurrence between taxa/types within a dataset. The strongest associations are shown by large positive numbers, the strongest segregations by large negative numbers.
The Binomial co-occurrence assessment approximates a Z-score.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Kintigh, K. (2006). Ceramic Dating and Type Associations. In J. Hantman and R. Most (eds.), Managing Archaeological Data: Essays in Honor of Sylvia W. Gaines. Anthropological Research Paper, 57. Tempe, AZ: Arizona State University, p. 17-26.
See Also
Other beta diversity measures:
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Boone Heterogeneity Measure
Description
Boone Heterogeneity Measure
Usage
index_boone(x, ...)
## S4 method for signature 'matrix'
index_boone(x, j = NULL, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
j |
An |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Boone, J. L. (1987). Defining and Measuring Midden Catchment. American Antiquity, 52(2), 336-45. doi:10.2307/281785.
Kintigh, K. W. (1989). Sample Size, Significance, and Measures of Diversity. In Leonard, R. D. and Jones, G. T., Quantifying Diversity in Archaeology. New Directions in Archaeology. Cambridge: Cambridge University Press, p. 25-36.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Brainerd-Robinson Quantitative Index
Description
Brainerd-Robinson Quantitative Index
Usage
index_brainerd(x, y, ...)
## S4 method for signature 'numeric,numeric'
index_brainerd(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Details
A city-block metric of similarity between pairs of samples/cases.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Brainerd, G. W. (1951). The Place of Chronological Ordering in Archaeological Analysis. American Antiquity, 16(04), 301-313. doi:10.2307/276979.
Robinson, W. S. (1951). A Method for Chronologically Ordering Archaeological Deposits. American Antiquity, 16(04), 293-301. doi:10.2307/276978.
See Also
Other beta diversity measures:
index_binomial()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Bray-Curtis Similarity
Description
Bray and Curtis modified version of the Dice-Sorensen index.
Usage
index_bray(x, y, ...)
## S4 method for signature 'numeric,numeric'
index_bray(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Bray, J. R. & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. doi:10.2307/1942268.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Brillouin Diversity Index.
Description
Brillouin Diversity Index.
Usage
index_brillouin(x, ...)
## S4 method for signature 'numeric'
index_brillouin(x, evenness = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
na.rm |
A |
Details
The Brillouin index describes a known collection: it does not assume random sampling in an infinite population. Pielou (1975) and Laxton (1978) argues for the use of the Brillouin index in all circumstances, especially in preference to the Shannon index.
Value
A numeric
vector.
Note
Ramanujan approximation is used for x!
computation if x > 170
.
Author(s)
N. Frerebeau
References
Brillouin, L. (1956). Science and information theory. New York: Academic Press.
Laxton, R. R. (1978). The measure of diversity. Journal of Theoretical Biology, 70(1), 51-67. doi:10.1016/0022-5193(78)90302-8.
Pielou, E. C. (1975). Ecological Diversity. New York: Wiley. doi:10.4319/lo.1977.22.1.0174b
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Chao1 Estimator
Description
Chao1 Estimator
Usage
index_chao1(x, ...)
## S4 method for signature 'numeric'
index_chao1(x, unbiased = FALSE, improved = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
unbiased |
A |
improved |
A |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Chao, A. (1984). Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 11(4), 265-270.
Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good-turing frequency formula. Biometrics, 70(3), 671-682. doi:10.1111/biom.12200.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Chao2 Estimator
Description
Chao2 Estimator
Usage
index_chao2(x, ...)
## S4 method for signature 'matrix'
index_chao2(x, unbiased = FALSE, improved = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
unbiased |
A |
improved |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Chao, A. (1987). Estimating the Population Size for Capture-Recapture Data with Unequal Catchability. Biometrics 43(4), 783-791.
Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good-turing frequency formula. Biometrics, 70(3), 671-682. doi:10.2307/2531532.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Cody Measure
Description
Cody Measure
Usage
index_cody(x, ...)
## S4 method for signature 'matrix'
index_cody(x)
Arguments
x |
A |
... |
Currently not used. |
Details
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Cody, M. L. (1975). Towards a theory of continental species diversity: Bird distributions over Mediterranean habitat gradients. In M. L. Cody & J. M. Diamond (Eds.), Ecology and Evolution of Communities. Cambridge, MA: Harvard University Press, p. 214-257.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Hurlbert's Rarefaction
Description
Hurlbert's unbiased estimate of Sander's rarefaction.
Usage
index_hurlbert(x, ...)
## S4 method for signature 'numeric'
index_hurlbert(x, sample, ...)
Arguments
x |
A |
... |
Currently not used. |
sample |
A length-one |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Hurlbert, S. H. (1971). The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology, 52(4), 577-586. doi:10.2307/1934145.
Sander, H. L. (1968). Marine Benthic Diversity: A Comparative Study. The American Naturalist, 102(925), 243-282.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Incidence-based Coverage Estimator
Description
Incidence-based Coverage Estimator
Usage
index_ice(x, ...)
## S4 method for signature 'matrix'
index_ice(x, k = 10, ...)
Arguments
x |
A |
... |
Currently not used. |
k |
A length-one |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Chao, A. & Chiu, C.-H. (2016). Species Richness: Estimation and Comparison. In Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, B., Ruggeri, F. & Teugels, J. L. (Eds.), Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd., 1-26. doi:10.1002/9781118445112.stat03432.pub2
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Jaccard Index
Description
Jaccard Index
Usage
index_jaccard(x, y, ...)
## S4 method for signature 'character,character'
index_jaccard(x, y)
## S4 method for signature 'logical,logical'
index_jaccard(x, y)
## S4 method for signature 'numeric,numeric'
index_jaccard(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Details
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Margalef Richness Index
Description
Margalef Richness Index
Usage
index_margalef(x, ...)
## S4 method for signature 'numeric'
index_margalef(x, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Margalef, R. (1958). Information Theory in Ecology. General Systems, 3, 36-71.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
McIntosh Dominance Index.
Description
McIntosh Dominance Index.
Usage
index_mcintosh(x, ...)
## S4 method for signature 'numeric'
index_mcintosh(x, evenness = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
na.rm |
A |
Details
The McIntosh index expresses the heterogeneity of a sample in geometric
terms. It describes the sample as a point of a S
-dimensional
hypervolume and uses the Euclidean distance of this point from the origin.
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain Concepts to Diversity. Ecology, 48(3), 392-404. doi:10.2307/1932674.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Menhinick Richness Index
Description
Menhinick Richness Index
Usage
index_menhinick(x, ...)
## S4 method for signature 'numeric'
index_menhinick(x, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Menhinick, E. F. (1964). A Comparison of Some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology, 45(4), 859-861. doi:10.2307/1934933.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()
Morisita-Horn Quantitative Index
Description
Horn modified version of the Morisita overlap index.
Usage
index_morisita(x, y, ...)
## S4 method for signature 'numeric,numeric'
index_morisita(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Horn, H. S. (1966). Measurement of "Overlap" in Comparative Ecological Studies. The American Naturalist, 100(914): 419-424. doi:10.1086/282436.
Mosrisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University, Series E, 3:65-80.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Routledge Measures
Description
Routledge Measures
Usage
index_routledge1(x, ...)
index_routledge2(x, ...)
index_routledge3(x, ...)
## S4 method for signature 'matrix'
index_routledge1(x)
## S4 method for signature 'matrix'
index_routledge2(x)
## S4 method for signature 'matrix'
index_routledge3(x)
Arguments
x |
A |
... |
Currently not used. |
Details
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Routledge, R. D. (1977). On Whittaker's Components of Diversity. Ecology, 58(5), 1120-1127. doi:10.2307/1936932.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_sorensen()
,
index_whittaker()
,
index_wilson()
Shannon-Wiener Diversity Index
Description
Shannon-Wiener Diversity Index
Usage
index_shannon(x, ...)
## S4 method for signature 'numeric'
index_shannon(
x,
evenness = FALSE,
unbiased = FALSE,
ACE = FALSE,
base = exp(1),
na.rm = FALSE,
...
)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
unbiased |
A |
ACE |
A |
base |
A positive |
na.rm |
A |
Details
The Shannon index assumes that individuals are randomly sampled from an infinite population and that all taxa are represented in the sample (it does not reflect the sample size). The main source of error arises from the failure to include all taxa in the sample: this error increases as the proportion of species discovered in the sample declines (Peet 1974, Magurran 1988). The maximum likelihood estimator (MLE) is used for the relative abundance, this is known to be negatively biased by sample size.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Peet, R. K. (1974). The Measurement of Species Diversity. Annual Review of Ecology and Systematics, 5(1), 285-307. doi:10.1146/annurev.es.05.110174.001441.
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_simpson()
,
index_squares()
,
observed()
Simpson Dominance Index
Description
Simpson Dominance Index
Usage
index_simpson(x, ...)
## S4 method for signature 'numeric'
index_simpson(x, evenness = FALSE, unbiased = FALSE, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
evenness |
A |
unbiased |
A |
na.rm |
A |
Details
The Simpson index expresses the probability that two individuals randomly
picked from a finite sample belong to two different types. It can be
interpreted as the weighted mean of the proportional abundances. This
metric is a true probability value, it ranges from 0
(all taxa are
equally present) to 1
(one taxon dominates the community completely).
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. doi:10.1038/163688a0.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_squares()
,
observed()
Dice-Sorensen Qualitative Index
Description
Dice-Sorensen Qualitative Index
Usage
index_sorensen(x, y, ...)
## S4 method for signature 'logical,logical'
index_sorensen(x, y)
## S4 method for signature 'numeric,numeric'
index_sorensen(x, y)
Arguments
x , y |
A |
... |
Currently not used. |
Details
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3): 297-302. doi:10.2307/1932409
Sorensen, T. (1948). A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Kongelige Danske Videnskabernes Selskab, 5(4): 1-34.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_whittaker()
,
index_wilson()
Squares Estimator
Description
Squares Estimator
Usage
index_squares(x, ...)
## S4 method for signature 'numeric'
index_squares(x, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
na.rm |
A |
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Alroy, J. (2018). Limits to Species Richness in Terrestrial Communities. Ecology Letters, 21(12), 1781-1789. doi:10.1111/ele.13152.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
observed()
Whittaker Measure
Description
Whittaker Measure
Usage
index_whittaker(x, ...)
## S4 method for signature 'matrix'
index_whittaker(x)
Arguments
x |
A |
... |
Currently not used. |
Details
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279-338. doi:10.2307/1943563.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_wilson()
Wilson Measure
Description
Wilson Measure
Usage
index_wilson(x, ...)
## S4 method for signature 'matrix'
index_wilson(x)
Arguments
x |
A |
... |
Currently not used. |
Details
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
References
Wilson, M. V., & Shmida, A. (1984). Measuring Beta Diversity with Presence-Absence Data. The Journal of Ecology, 72(3), 1055-1064. doi:10.2307/2259551.
See Also
Other beta diversity measures:
index_binomial()
,
index_brainerd()
,
index_bray()
,
index_cody()
,
index_jaccard()
,
index_morisita()
,
index_routledge
,
index_sorensen()
,
index_whittaker()
Jackknife Estimation
Description
Jackknife Estimation
Usage
## S4 method for signature 'DiversityIndex'
jackknife(object, f = NULL)
Arguments
object |
An R object (typically a DiversityIndex object). |
f |
A |
Value
If f
is NULL
(the default), jackknife()
returns a numeric
matrix
with the following columns:
original
The observed value.
mean
The jackknife estimate of mean.
bias
The jackknife estimate of bias.
error
The jackknife estimate of standard error.
If f
is a function
, jackknife()
returns the result of f
applied to
the leave-one-out values.
Author(s)
N. Frerebeau
See Also
Other resampling methods:
bootstrap()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Shannon diversity index
(h <- heterogeneity(cantabria, method = "shannon"))
## Jackknife resampling
jackknife(h)
jackknife(h, f = summary)
Matrigraph
Description
-
matrigraph()
produces a heatmap highlighting the deviations from independence. -
pvi()
computes for each cell of a numeric matrix the percentage to the column theoretical independence value.
Usage
matrigraph(object, ...)
pvi(object, ...)
## S4 method for signature 'matrix'
pvi(object)
## S4 method for signature 'data.frame'
pvi(object)
## S4 method for signature 'matrix'
matrigraph(object, reverse = FALSE, axes = TRUE, ...)
## S4 method for signature 'data.frame'
matrigraph(object, reverse = FALSE, ...)
Arguments
object |
A |
... |
Currently not used. |
reverse |
A |
axes |
A |
Details
PVI (in french "pourcentages de valeur d'indépendance") is calculated for
each cell as the percentage to the column theoretical independence value:
PVI greater than 1
represent positive deviations from the
independence, whereas PVI smaller than 1
represent negative
deviations (Desachy 2004).
The PVI matrix allows to explore deviations from independence (an
intuitive approach to \chi^2
), in such a way that a
high-contrast matrix has quite significant deviations,
with a low risk of being due to randomness (Desachy 2004).
matrigraph()
displays the deviations from independence:
If the PVI is equal to
1
(statistical independence), the cell of the matrix is filled in grey.If the PVI is less than
1
(negative deviation from independence), the size of the grey square is proportional to the PVI (the white margin thus represents the fraction of negative deviation).If the PVI is greater than
1
(positive deviation), a black square representing the fraction of positive deviations is superimposed. For large positive deviations (PVI greater than2
), the cell in filled in black.
If reverse
is TRUE
, the fraction of negative deviations is displayed
as a white square.
Value
-
matrigraph()
is called for its side-effects: it results in a graphic being displayed (invisibly returnsobject
).
Author(s)
N. Frerebeau
References
Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation graphique pour tableaux de comptages. Revue archéologique de Picardie, 3(1), 39-56. doi:10.3406/pica.2004.2396.
See Also
Other plot methods:
plot_bertin()
,
plot_diceleraas()
,
plot_ford()
,
plot_heatmap()
,
plot_rank()
,
plot_spot()
,
seriograph()
Examples
## Data from Desachy 2004
data("compiegne", package = "folio")
## Matrigraph
matrigraph(compiegne)
matrigraph(compiegne, reverse = TRUE)
## Compute PVI
counts_pvi <- pvi(compiegne)
plot_heatmap(counts_pvi, col = khroma::color("iridescent")(12))
Get or Set Parts of an Object
Description
Getters and setters to extract or replace parts of an object.
Usage
get_method(x)
## S4 method for signature 'DiversityIndex'
labels(object, ...)
## S4 method for signature 'RarefactionIndex'
labels(object, ...)
## S4 method for signature 'DiversityIndex'
get_method(x)
Arguments
object , x |
An R object from which to get or set element(s). |
... |
Currently not used. |
Value
-
labels()
returns a suitable set of labels from an object for use in printing or plotting.
Author(s)
N. Frerebeau
See Also
Other mutators:
data.frame
Number of Observed Species
Description
Number of Observed Species
Usage
observed(x, ...)
singleton(x, ...)
doubleton(x, ...)
## S4 method for signature 'numeric'
observed(x, na.rm = FALSE, ...)
## S4 method for signature 'numeric'
singleton(x, na.rm = FALSE, ...)
## S4 method for signature 'numeric'
doubleton(x, na.rm = FALSE, ...)
Arguments
x |
A |
... |
Currently not used. |
na.rm |
A |
Value
A numeric
vector.
See Also
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
Co-Occurrence
Description
Co-Occurrence
Usage
occurrence(object, ...)
## S4 method for signature 'matrix'
occurrence(object, method = c("absolute", "relative", "binomial"))
## S4 method for signature 'data.frame'
occurrence(object, method = c("absolute", "relative", "binomial"))
Arguments
object |
A |
... |
Currently not used. |
method |
A |
Details
absolute
Count how many times each pairs of types occur together in at least one sample (absolute frequencies).
relative
Count how many times each pairs of types occur together in at least one sample (relative frequencies).
binomial
Value
A stats::dist object.
Author(s)
N. Frerebeau
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Plot spot diagram of a co-occurrence matrix
occ_abs <- occurrence(cantabria, method = "absolute") # Absolute frequencies
plot_spot(occ_abs)
occ_rel <- occurrence(cantabria, method = "relative") # Relative frequencies
plot_spot(occ_rel)
## Binomial co-occurrence (similarity between types)
occ_bin <- occurrence(cantabria, method = "binomial")
plot_spot(occ_bin)
Diversity Plot
Description
Diversity Plot
Usage
## S4 method for signature 'DiversityIndex,missing'
plot(
x,
log = "x",
col.mean = "#DDAA33",
col.interval = "#004488",
lty.mean = "solid",
lty.interval = "dashed",
lwd.mean = 1,
lwd.interval = 1,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
...
)
Arguments
x |
A DiversityIndex object to be plotted. |
log |
A |
col.mean , col.interval |
A |
lty.mean , lty.interval |
A |
lwd.mean , lwd.interval |
A non-negative |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
... |
Further graphical parameters to be passed to
|
Value
plot()
is called for its side-effects: it results in a graphic being
displayed (invisibly returns x
).
Author(s)
N. Frerebeau
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Assemblage diversity size comparison
## Warning: this may take a few seconds!
h <- heterogeneity(cantabria, method = "shannon")
h_sim <- simulate(h)
plot(h_sim)
r <- richness(cantabria, method = "observed")
r_sim <- simulate(r)
plot(r_sim)
Rarefaction Plot
Description
Rarefaction Plot
Usage
## S4 method for signature 'RarefactionIndex,missing'
plot(
x,
color = NULL,
symbol = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "topleft"),
...
)
Arguments
x |
A RarefactionIndex object to be plotted. |
color |
A vector of colors (will be mapped to the rownames of |
symbol |
A specification for the line type (will be mapped to
the names of |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
legend |
A |
... |
Further graphical parameters to be passed to
|
Value
plot()
is called for its side-effects: it results in a graphic being
displayed (invisibly returns x
).
Author(s)
N. Frerebeau
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Replicate fig. 3 from Baxter 2011
rare <- rarefaction(cantabria, sample = 23, method = "baxter")
plot(rare, panel.first = graphics::grid())
## Change graphical parameters
plot(rare, color = color("bright")(5), symbol = 1:5)
Bertin Diagram
Description
Plots a Bertin diagram.
Usage
plot_bertin(object, ...)
## S4 method for signature 'matrix'
plot_bertin(
object,
threshold = NULL,
freq = FALSE,
margin = 1,
color = c("white", "black"),
flip = TRUE,
axes = TRUE,
...
)
## S4 method for signature 'data.frame'
plot_bertin(
object,
threshold = NULL,
freq = FALSE,
margin = 1,
color = c("white", "black"),
flip = TRUE,
axes = TRUE,
...
)
Arguments
object |
A |
... |
Currently not used. |
threshold |
A |
freq |
A |
margin |
An |
color |
A vector of colors or a |
flip |
A |
axes |
A |
Details
As de Falguerolles et al. (1997) points out: "In abstract terms, a Bertin matrix is a matrix of displays. [...] To fix ideas, think of a data matrix, variable by case, with real valued variables. For each variable, draw a bar chart of variable value by case. High-light all bars representing a value above some sample threshold for that variable."
Value
plot_bertin()
is called for its side-effects: it results in a graphic
being displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Bertin, J. (1977). La graphique et le traitement graphique de l'information. Paris: Flammarion. Nouvelle Bibliothèque Scientifique.
de Falguerolles, A., Friedrich, F. & Sawitzki, G. (1997). A Tribute to J. Bertin's Graphical Data Analysis. In W. Badilla & F. Faulbaum (eds.), SoftStat '97: Advances in Statistical Software 6. Stuttgart: Lucius & Lucius, p. 11-20.
See Also
Other plot methods:
matrigraph()
,
plot_diceleraas()
,
plot_ford()
,
plot_heatmap()
,
plot_rank()
,
plot_spot()
,
seriograph()
Examples
## Data from Lipo et al. 2015
data("mississippi", package = "folio")
## Plot a Bertin diagram...
## ...without threshold
plot_bertin(mississippi)
## ...with the variable mean as threshold
plot_bertin(mississippi, threshold = mean)
## Plot conditional proportions
plot_bertin(mississippi, freq = TRUE, margin = 1)
plot_bertin(mississippi, freq = TRUE, margin = 2)
Dice-Leraas Diagram
Description
Plots a Dice-Leraas diagram.
Usage
plot_diceleraas(object, ...)
## S4 method for signature 'matrix'
plot_diceleraas(
object,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = FALSE,
panel.first = NULL,
panel.last = NULL,
...
)
## S4 method for signature 'data.frame'
plot_diceleraas(
object,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = FALSE,
panel.first = NULL,
panel.last = NULL,
...
)
Arguments
object |
A |
... |
Further graphical parameters. |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
Details
In a Dice-Leraas diagram, the horizontal line represents the range of data (min-max) and the small vertical line indicates the mean. The black rectangle is twice the standard error on the mean, while the white rectangle is one standard deviation on either side of the mean.
Value
plot_diceleraas()
is called for its side-effects: it results in a
graphic being displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Dice, L. R., & Leraas, H. J. (1936). A Graphic Method for Comparing Several Sets of Measurements. Contributions from the Laboratory of Vertebrate Genetics, 3: 1-3.
Hubbs, C. L., & C. Hubbs (1953). An Improved Graphical Analysis and Comparison of Series of Samples. Systematic Biology, 2(2): 49-56. doi:10.2307/sysbio/2.2.49.
Simpson, G. G., Roe, A., & Lewontin, R. C. Quantitative Zoology. New York: Harcourt, Brace and Company, 1960.
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_ford()
,
plot_heatmap()
,
plot_rank()
,
plot_spot()
,
seriograph()
Examples
## Data from Desachy 2004
data("compiegne", package = "folio")
## Plot a Dice-Leraas diagram
plot_diceleraas(compiegne)
Ford Diagram
Description
Plots a Ford (battleship curve) diagram.
Usage
plot_ford(object, ...)
## S4 method for signature 'matrix'
plot_ford(
object,
weights = FALSE,
EPPM = FALSE,
fill = "darkgrey",
border = NA,
axes = TRUE,
...
)
## S4 method for signature 'data.frame'
plot_ford(
object,
weights = FALSE,
EPPM = FALSE,
fill = "darkgrey",
border = NA,
axes = TRUE,
...
)
Arguments
object |
A |
... |
Currently not used. |
weights |
A |
EPPM |
A |
fill |
The color for filling the bars. |
border |
The color to draw the borders. |
axes |
A |
Value
plot_ford()
is called for its side-effects: it results in a graphic
being displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Ford, J. A. (1962). A quantitative method for deriving cultural chronology. Washington, DC: Pan American Union. Technical manual 1.
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_diceleraas()
,
plot_heatmap()
,
plot_rank()
,
plot_spot()
,
seriograph()
Examples
## Data from Lipo et al. 2015
data("mississippi", package = "folio")
## Plot a Ford diagram
plot_ford(mississippi)
plot_ford(mississippi, weights = TRUE)
Heatmap
Description
Plots a heatmap.
Usage
plot_heatmap(object, ...)
## S4 method for signature 'matrix'
plot_heatmap(
object,
color = NULL,
diag = TRUE,
upper = TRUE,
lower = TRUE,
freq = FALSE,
margin = 1,
fixed_ratio = TRUE,
axes = TRUE,
legend = TRUE,
...
)
## S4 method for signature 'data.frame'
plot_heatmap(
object,
color = NULL,
diag = TRUE,
upper = TRUE,
lower = TRUE,
freq = FALSE,
margin = 1,
fixed_ratio = TRUE,
axes = TRUE,
legend = TRUE,
...
)
## S4 method for signature 'dist'
plot_heatmap(
object,
color = NULL,
diag = FALSE,
upper = FALSE,
lower = !upper,
axes = TRUE,
legend = TRUE,
...
)
Arguments
object |
A |
... |
Currently not used. |
color |
A vector of colors or a |
diag |
A |
upper |
A |
lower |
A |
freq |
A |
margin |
An |
fixed_ratio |
A |
axes |
A |
legend |
A |
Value
plot_heatmap()
is called for its side-effects: it results in a graphic
being displayed (invisibly returns object
).
Author(s)
N. Frerebeau
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_diceleraas()
,
plot_ford()
,
plot_rank()
,
plot_spot()
,
seriograph()
Examples
## Data from Lipo et al. 2015
data("mississippi", package = "folio")
## Plot raw data
plot_heatmap(mississippi)
## Change colors
plot_heatmap(mississippi, color = color("iridescent"))
## Plot conditional proportions
plot_heatmap(mississippi, freq = TRUE, margin = 1)
plot_heatmap(mississippi, freq = TRUE, margin = 2)
Matrix Plot
Description
Matrix Plot
Usage
plot_matrix(
object,
panel,
diag = TRUE,
upper = TRUE,
lower = TRUE,
freq = FALSE,
margin = 1,
scale = TRUE,
drop_zero = TRUE,
color = graphics::par("fg"),
midpoint = NULL,
axes = TRUE,
legend = TRUE,
asp = 1,
...
)
Arguments
object |
A |
panel |
A |
diag |
A |
upper |
A |
lower |
A |
freq |
A |
margin |
An |
scale |
A |
drop_zero |
A |
color |
A vector of colors or a |
midpoint |
A |
axes |
A |
legend |
A |
asp |
A length-one |
... |
Further arguments to be passed to |
Rank Plot
Description
Plots a rank vs relative abundance diagram.
Usage
plot_rank(object, ...)
## S4 method for signature 'matrix'
plot_rank(
object,
log = NULL,
color = NULL,
symbol = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "topright"),
...
)
## S4 method for signature 'data.frame'
plot_rank(
object,
log = NULL,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "topright"),
...
)
Arguments
object |
A |
... |
Further graphical parameters. |
log |
A |
color |
A vector of colors (will be mapped to the rownames of |
symbol |
A specification for the line type (will be mapped to
the rownames of |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
legend |
A |
Value
plot_rank()
is called for its side-effects: it results in a graphic
being displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_diceleraas()
,
plot_ford()
,
plot_heatmap()
,
plot_spot()
,
seriograph()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Plot rank vs abundance
plot_rank(cantabria)
## Change graphical parameters
plot_rank(cantabria, color = color("bright"), symbol = 15:19)
Spot Plot
Description
Plots a spot matrix.
Usage
plot_spot(object, ...)
## S4 method for signature 'matrix'
plot_spot(
object,
type = c("ring", "plain"),
color = NULL,
diag = TRUE,
upper = TRUE,
lower = TRUE,
freq = FALSE,
margin = 1,
axes = TRUE,
legend = TRUE,
...
)
## S4 method for signature 'data.frame'
plot_spot(
object,
type = c("ring", "plain"),
color = NULL,
diag = TRUE,
upper = TRUE,
lower = TRUE,
freq = FALSE,
margin = 1,
axes = TRUE,
legend = TRUE,
...
)
## S4 method for signature 'dist'
plot_spot(
object,
type = c("ring", "plain"),
color = NULL,
diag = FALSE,
upper = FALSE,
lower = !upper,
axes = TRUE,
legend = TRUE,
...
)
Arguments
object |
A |
... |
Currently not used. |
type |
A |
color |
A vector of colors or a |
diag |
A |
upper |
A |
lower |
A |
freq |
A |
margin |
An |
axes |
A |
legend |
A |
Details
The spot matrix can be considered as a variant of the Bertin diagram where the data are first transformed to relative frequencies.
Value
plot_spot()
is called for its side-effects: it results in a graphic
being displayed (invisibly returns object
).
Note
Adapted from Dan Gopstein's original idea.
Author(s)
N. Frerebeau
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_diceleraas()
,
plot_ford()
,
plot_heatmap()
,
plot_rank()
,
seriograph()
Examples
## Data from Huntley 2004, 2008
data("pueblo")
## Plot spot diagram of count data
plot_spot(pueblo, type = "ring")
plot_spot(pueblo, type = "plain")
## Plot conditional proportions
plot_spot(pueblo, freq = TRUE, margin = 1)
plot_spot(pueblo, freq = TRUE, margin = 2)
Diversity Profiles
Description
Diversity Profiles
Usage
profiles(object, ...)
## S4 method for signature 'matrix'
profiles(
object,
alpha = seq(from = 0, to = 4, by = 0.04),
color = NULL,
symbol = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "topright"),
...
)
## S4 method for signature 'data.frame'
profiles(
object,
alpha = seq(from = 0, to = 4, by = 0.04),
color = NULL,
symbol = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "topright"),
...
)
Arguments
object |
A |
... |
Further graphical parameters to be passed to
|
alpha |
A |
color |
A vector of colors (will be mapped to the rownames of |
symbol |
A specification for the line type (will be mapped to
the rownames of |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
legend |
A |
Details
If the profiles cross, the diversities are non-comparable across samples.
Value
profiles()
is called for its side-effects: it results in a graphic being
displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Tóthmérész, B. (1995). Comparison of Different Methods for Diversity Ordering. Journal of Vegetation Science, 6(2), 283-290. doi:10.2307/3236223.
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Replicate fig. 1 of Tóthmérész 1995
spc <- matrix(
data = c(33, 29, 28, 5, 5, 0, 0, 42, 30, 10,
8, 5, 5, 0, 32, 21, 16, 12, 9, 6, 4),
nrow = 3, byrow = TRUE, dimnames = list(c("Z", "B", "C"), NULL)
)
profiles(spc, color = color("bright"))
Pueblo IV Period Ceramics
Description
A dataset of ceramic counts from the Zuni region.
Usage
pueblo
Format
A data.frame
with 9 rows and 5 variables (compositional groups).
Source
Huntley, D. L. (2004). Interaction, Boundaries, and Identities: A Multiscalar Approach to the Organizational Scale of Pueblo IV Zuni Society. Ph.D. Dissertation, Arizona State University.
Huntley, D. L. (2022). Ancestral Zuni Glaze-Decorated Pottery: Viewing Pueblo IV Regional Organization through Ceramic Production and Exchange. Anthropological Papers of the University of Arizona 72. Tucson: University of Arizona Press. doi:10.2307/j.ctv2ngx5n8.
See Also
Other datasets:
aves
,
cantabria
,
woodland
Rarefaction
Description
Rarefaction
Usage
rarefaction(object, ...)
## S4 method for signature 'matrix'
rarefaction(object, sample = NULL, method = c("hurlbert", "baxter"), step = 1)
## S4 method for signature 'data.frame'
rarefaction(object, sample = NULL, method = c("hurlbert", "baxter"), step = 1)
Arguments
object |
A |
... |
Currently not used. |
sample |
A length-one |
method |
A |
step |
An |
Value
A RarefactionIndex object.
Rarefaction Measures
The following rarefaction measures are available for count data:
baxter
hurlbert
Hurlbert's unbiased estimate of Sander's rarefaction.
Details
The number of observed taxa, provides an instantly comprehensible
expression of diversity. While the number of taxa within a sample
is easy to ascertain, as a term, it makes little sense: some taxa
may not have been seen, or there may not be a fixed number of taxa
(e.g. in an open system; Peet 1974). As an alternative, richness
(S
) can be used for the concept of taxa number (McIntosh 1967).
It is not always possible to ensure that all sample sizes are equal
and the number of different taxa increases with sample size and
sampling effort (Magurran 1988). Then, rarefaction
(E(S)
) is the number of taxa expected if all samples were of a
standard size (i.e. taxa per fixed number of individuals).
Rarefaction assumes that imbalances between taxa are due to sampling and
not to differences in actual abundances.
Author(s)
N. Frerebeau
See Also
index_baxter()
, index_hurlbert()
, plot()
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Replicate fig. 3 from Baxter 2011
rare <- rarefaction(cantabria, sample = 23, method = "baxter")
plot(rare, panel.first = graphics::grid())
## Change graphical parameters
plot(rare, color = color("bright")(5), symbol = 1:5)
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
Richness
Description
-
richness()
computes sample richness. -
composition()
computes asymptotic species richness.
Usage
richness(object, ...)
composition(object, ...)
## S4 method for signature 'matrix'
richness(object, ..., method = c("observed", "margalef", "menhinick"))
## S4 method for signature 'data.frame'
richness(object, ..., method = c("observed", "margalef", "menhinick"))
## S4 method for signature 'matrix'
composition(object, ..., method = c("chao1", "ace", "squares", "chao2", "ice"))
## S4 method for signature 'data.frame'
composition(object, ..., method = c("chao1", "ace", "squares", "chao2", "ice"))
Arguments
object |
A |
... |
Further arguments to be passed to internal methods (see below). |
method |
A |
Value
-
richness()
returns a RichnessIndex object. -
composition()
returns a CompositionIndex object.
Details
The number of observed taxa, provides an instantly comprehensible
expression of diversity. While the number of taxa within a sample
is easy to ascertain, as a term, it makes little sense: some taxa
may not have been seen, or there may not be a fixed number of taxa
(e.g. in an open system; Peet 1974). As an alternative, richness
(S
) can be used for the concept of taxa number (McIntosh 1967).
It is not always possible to ensure that all sample sizes are equal
and the number of different taxa increases with sample size and
sampling effort (Magurran 1988). Then, rarefaction
(E(S)
) is the number of taxa expected if all samples were of a
standard size (i.e. taxa per fixed number of individuals).
Rarefaction assumes that imbalances between taxa are due to sampling and
not to differences in actual abundances.
Richness Measures
The following richness measures are available for count data:
observed
Number of observed taxa/types.
margalef
menhinick
Asymptotic Species Richness
The following measures are available for count data:
ace
chao1
(improved/unbiased) Chao1 estimator.
squares
The following measures are available for replicated incidence data:
ice
chao2
(improved/unbiased) Chao2 estimator.
Author(s)
N. Frerebeau
References
Kintigh, K. W. (1989). Sample Size, Significance, and Measures of Diversity. In Leonard, R. D. and Jones, G. T., Quantifying Diversity in Archaeology. New Directions in Archaeology. Cambridge: Cambridge University Press, p. 25-36.
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
Magurran, A E. & Brian J. McGill (2011). Biological Diversity: Frontiers in Measurement and Assessment. Oxford: Oxford University Press.
McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain Concepts to Diversity. Ecology, 48(3), 392-404. doi:10.2307/1932674.
Peet, R. K. (1974). The Measurement of Species Diversity. Annual Review of Ecology and Systematics, 5(1), 285-307. doi:10.1146/annurev.es.05.110174.001441.
See Also
index_margalef()
, index_menhinick()
, index_ace()
,
index_chao1()
, index_squares()
, index_ice()
, index_chao2()
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Magurran 1988, p. 128-129
trap <- matrix(data = c(9, 3, 0, 4, 2, 1, 1, 0, 1, 0, 1, 1,
1, 0, 1, 0, 0, 0, 1, 2, 0, 5, 3, 0),
nrow = 2, byrow = TRUE, dimnames = list(c("A", "B"), NULL))
## Margalef and Menhinick index
richness(trap, method = "margalef") # 2.55 1.88
richness(trap, method = "menhinick") # 1.95 1.66
## Data from Chao & Chiu 2016
brazil <- matrix(
data = rep(x = c(1:21, 23, 25, 27, 28, 30, 32, 34:37, 41,
45, 46, 49, 52, 89, 110, 123, 140),
times = c(113, 50, 39, 29, 15, 11, 13, 5, 6, 6, 3, 4,
3, 5, 2, 5, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1,
0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0)),
nrow = 1, byrow = TRUE
)
## Chao1-type estimators (asymptotic species richness)
composition(brazil, method = c("chao1"), unbiased = FALSE) # 461.625
composition(brazil, method = c("ace"), k = 10) # 445.822
Seriograph
Description
-
seriograph()
produces a Ford diagram highlighting the relationships between rows and columns. -
eppm()
computes for each cell of a numeric matrix the positive difference from the column mean percentage.
Usage
seriograph(object, ...)
eppm(object, ...)
## S4 method for signature 'matrix'
eppm(object)
## S4 method for signature 'data.frame'
eppm(object)
## S4 method for signature 'matrix'
seriograph(
object,
weights = FALSE,
fill = "darkgrey",
border = NA,
axes = TRUE,
...
)
## S4 method for signature 'data.frame'
seriograph(
object,
weights = FALSE,
fill = "darkgrey",
border = NA,
axes = TRUE,
...
)
Arguments
object |
A |
... |
Currently not used. |
weights |
A |
fill |
The color for filling the bars. |
border |
The color to draw the borders. |
axes |
A |
Details
The positive difference from the column mean percentage (in french "écart positif au pourcentage moyen", EPPM) represents a deviation from the situation of statistical independence. As independence can be interpreted as the absence of relationships between types and the chronological order of the assemblages, EPPM is a useful tool to explore significance of relationship between rows and columns related to seriation (Desachy 2004).
seriograph()
superimposes the frequencies (grey) and EPPM values (black)
for each row-column pair in a Ford diagram.
Value
-
seriograph()
is called for its side-effects: it results in a graphic being displayed (invisibly returnsobject
).
Author(s)
N. Frerebeau
References
Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation graphique pour tableaux de comptages. Revue archéologique de Picardie, 3(1), 39-56. doi:10.3406/pica.2004.2396.
See Also
Other plot methods:
matrigraph()
,
plot_bertin()
,
plot_diceleraas()
,
plot_ford()
,
plot_heatmap()
,
plot_rank()
,
plot_spot()
Examples
## Data from Desachy 2004
data("compiegne", package = "folio")
## Seriograph
seriograph(compiegne)
seriograph(compiegne, weights = TRUE)
## Compute EPPM
counts_eppm <- eppm(compiegne)
plot_heatmap(counts_eppm, col = khroma::color("YlOrBr")(12))
SHE Analysis
Description
SHE Analysis
Usage
she(object, ...)
## S4 method for signature 'matrix'
she(
object,
unbiased = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "right"),
...
)
## S4 method for signature 'data.frame'
she(
object,
unbiased = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
legend = list(x = "right"),
...
)
Arguments
object |
A |
... |
Further graphical parameters to be passed to
|
unbiased |
A |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
legend |
A |
Details
If samples are taken along a gradient or stratigraphic section, breaks in the curve may be used to infer discontinuities.
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Value
she()
is called for its side-effects: it results in a graphic being
displayed (invisibly returns object
).
Author(s)
N. Frerebeau
References
Buzas, M. A. & Hayek, L.-A. C. (1998). SHE analysis for biofacies identification. Journal of Foraminiferal Research, 1998, 28(3), 233-239.
Hayek, L.-A. C. & Buzas, M. A. (2010). Surveying Natural Populations: Quantitative Tools for Assessing Biodiversity. Second edition. New York: Columbia University Press.
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
similarity()
,
simulate()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## SHE analysis
she(cantabria)
Similarity
Description
Similarity
Usage
similarity(object, ...)
## S4 method for signature 'matrix'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorensen")
)
## S4 method for signature 'data.frame'
similarity(
object,
method = c("brainerd", "bray", "jaccard", "morisita", "sorensen")
)
Arguments
object |
A |
... |
Currently not used. |
method |
A |
Details
\beta
-diversity can be measured by addressing similarity
between pairs of samples/cases.
bray
, jaccard
, morisita
and sorensen
indices provide a scale of
similarity from 0
-1
where 1
is perfect similarity and
0
is no similarity.
brainerd
is scaled between 0
and 200
.
brainerd
bray
Bray-Curtis similarity (a.k.a. Dice-Sorensen quantitative index).
jaccard
morisita
sorensen
For jaccard
and sorensen
, data are standardized on a presence/absence
scale (0
/1
) beforehand.
Value
A stats::dist object.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
See Also
index_binomial()
, index_brainerd()
, index_bray()
,
index_jaccard()
, index_morisita()
, index_sorensen()
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
simulate()
,
turnover()
Examples
## Data from Huntley 2004, 2008
data("pueblo")
## Brainerd-Robinson measure
(C <- similarity(pueblo, "brainerd"))
plot_spot(C)
## Data from Magurran 1988, p. 166
data("aves")
## Jaccard measure (presence/absence data)
similarity(aves, "jaccard") # 0.46
# Bray and Curtis modified version of the Sorensen index (count data)
(sim <- similarity(aves, "bray")) # 0.44
# Bray and Curtis dissimilarity
1 - sim
Measure Diversity by Comparing to Simulated Assemblages
Description
Measure Diversity by Comparing to Simulated Assemblages
Usage
## S4 method for signature 'DiversityIndex'
simulate(
object,
nsim = 1000,
seed = NULL,
step = 1,
level = 0.8,
interval = "percentiles",
progress = getOption("tabula.progress"),
...
)
Arguments
object |
A DiversityIndex object. |
nsim |
A non-negative |
seed |
An object specifying if and how the random number generator
should be initialized (see |
step |
An |
level |
A length-one |
interval |
A |
progress |
A |
... |
Currently not used. |
Value
Returns a DiversityIndex object.
Author(s)
N. Frerebeau
References
Baxter, M. J. (2001). Methodological Issues in the Study of Assemblage Diversity. American Antiquity, 66(4), 715-725. doi:10.2307/2694184.
Kintigh, K. W. (1984). Measuring Archaeological Diversity by Comparison with Simulated Assemblages. American Antiquity, 49(1), 44-54. doi:10.2307/280511.
See Also
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
turnover()
Examples
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Assemblage diversity size comparison
## Warning: this may take a few seconds!
h <- heterogeneity(cantabria, method = "shannon")
h_sim <- simulate(h)
plot(h_sim)
r <- richness(cantabria, method = "observed")
r_sim <- simulate(r)
plot(r_sim)
Deprecated Functions in tabula
Description
These functions still work but will be removed (defunct) in the next version.
Usage
index_sorenson(x, y, ...)
## S4 method for signature 'logical,logical'
index_sorenson(x, y)
## S4 method for signature 'numeric,numeric'
index_sorenson(x, y)
resample(object, ...)
## S4 method for signature 'numeric'
resample(object, do, n, size = sum(object), ..., f = NULL)
Diversity Test
Description
Compares Shannon/Simpson diversity between samples.
Usage
test_shannon(x, y, ...)
test_simpson(x, y, ...)
## S4 method for signature 'numeric,numeric'
test_shannon(x, y, ...)
## S4 method for signature 'matrix,missing'
test_shannon(x, adjust = "holm", ...)
## S4 method for signature 'data.frame,missing'
test_shannon(x, adjust = "holm", ...)
## S4 method for signature 'numeric,numeric'
test_simpson(x, y, adjust = "holm", ...)
## S4 method for signature 'matrix,missing'
test_simpson(x, adjust = "holm", ...)
## S4 method for signature 'data.frame,missing'
test_simpson(x, adjust = "holm", ...)
Arguments
x , y |
A |
... |
Further arguments to be passed to internal methods. |
adjust |
A |
Value
If x
and y
are numeric
vectors, returns a list
containing the
following components:
statistic
The value of the t-statistic.
parameter
The degrees of freedom for the t-statistic.
p.value
The p-value for the test.
If x
is a matrix
or a data.frame
, returns a table of adjusted p-values
in lower triangular form.
Functions
-
test_shannon(x = matrix, y = missing)
: Produces two sided pairwise comparisons. -
test_shannon(x = data.frame, y = missing)
: Produces two sided pairwise comparisons. -
test_simpson(x = matrix, y = missing)
: Produces two sided pairwise comparisons. -
test_simpson(x = data.frame, y = missing)
: Produces two sided pairwise comparisons.
Author(s)
N. Frerebeau
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.
Examples
## Data from Magurran 1988, p. 145-149
oakwood <- c(35, 26, 25, 21, 16, 11, 6, 5, 3, 3,
3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0)
spruce <- c(30, 30, 3, 65, 20, 11, 0, 4, 2, 14,
0, 3, 9, 0, 0, 5, 0, 0, 0, 0, 1, 1)
test_shannon(oakwood, spruce)
test_simpson(oakwood, spruce)
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
test_shannon(cantabria)
test_simpson(cantabria)
Turnover
Description
Returns the degree of turnover in taxa composition along a gradient or transect.
Usage
turnover(object, ...)
## S4 method for signature 'matrix'
turnover(
object,
...,
method = c("whittaker", "cody", "routledge1", "routledge2", "routledge3", "wilson")
)
## S4 method for signature 'data.frame'
turnover(
object,
...,
method = c("whittaker", "cody", "routledge1", "routledge2", "routledge3", "wilson")
)
Arguments
object |
A |
... |
Further arguments to be passed to internal methods. |
method |
A |
Details
The following methods can be used to ascertain the degree of turnover
in taxa composition along a gradient (\beta
-diversity) on qualitative
(presence/absence) data:
cody
routledge1
routledge2
routledge3
Routledge third measure (exponential form of the second measure).
whittaker
wilson
This assumes that the order of the matrix rows (from 1
to n
)
follows the progression along the gradient/transect.
Data are standardized on a presence/absence scale (0
/1
)
beforehand.
Value
A numeric
vector.
Author(s)
N. Frerebeau
See Also
index_cody()
, index_routledge1()
, index_routledge2()
,
index_routledge3()
, index_whittaker()
, index_wilson()
Other diversity measures:
diversity()
,
evenness()
,
heterogeneity()
,
occurrence()
,
plot.DiversityIndex()
,
plot.RarefactionIndex()
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
Examples
## Data from Magurran 1988, p. 162
data("woodland")
## Whittaker's measure
turnover(woodland, "whittaker") # 1
## Cody's measure
turnover(woodland, "cody") # 3
## Routledge's measures
turnover(woodland, "routledge1") # 0.29
turnover(woodland, "routledge2") # 0.56
turnover(woodland, "routledge3") # 1.75
## Wilson and Shmida's measure
turnover(woodland, "wilson") # 1
Trees Incidences
Description
A dataset of presence or absence of trees in six (10 x 10 m) quadarts along a transect through a deciduous woodland.
Usage
woodland
Format
A data.frame
with 6 rows (quadarts) and 6 variables (tree species).
Source
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0.