The sjPlot
R package is a great package for visualizing results.
However, the tables created using the functions sjPlot::tab_model
or sjPlot::tab_xtab
return HTML tables and are not straightforward to use in R, especially when trying to integrate them into pdf- or word-documents using Rmarkdown.
Various approaches/ tutorials exist to convert sjPlot
HTML tables to R data.frame
objects:
- https://stackoverflow.com/questions/63053465/how-to-convert-an-html-sjtable-from-the-sjplot-package-to-latex
- https://stackoverflow.com/questions/47744396/how-to-format-an-sjplot-in-pdf-rmarkdown
- https://stackoverflow.com/questions/62197268/knitting-output-from-sjplottab-model-or-other-html-tables-into-pdf-document
- https://stackoverflow.com/questions/65274404/how-to-extract-lme4-output-to-latex-tables
None of these approaches converts sjPlot
HTML tables to R data.frame
objects or integrates well with knitr::kable
or the kableExtra
R package.
The sjtable2df
R package’s goal is to overcome this and to provide an easy interface for converting sjPlot
’s HTML tables to data.frame
, data.table
, or kable
objects for further usage in R or Rmarkdown.
Currently, sjtable2df
provides two functions to convert tables created from sjPlot
’s functions tab_model
and tab_xtab
: sjtable2df::mtab2df
and sjtable2df::xtab2df
.
Example: Contingency-Tables
Data Preprocessing
library(sjtable2df)
library(mlbench)
library(magrittr)
# load data
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 %>%
data.table::as.data.table()
# create new binary variable
dataset[, ("preg_gt_4") := ifelse(get("pregnant") > 4, 1, 0) %>% factor()]
Create Contingency Table
xtab <- sjPlot::tab_xtab(
var.row = dataset$diabetes,
var.col = dataset$preg_gt_4,
show.summary = TRUE,
use.viewer = FALSE
)
diabetes |
preg_gt_4 |
Total |
0 |
1 |
neg |
356 |
144 |
500 |
pos |
136 |
132 |
268 |
Total |
492 |
276 |
768 |
χ2=30.823 · df=1 · &phi=0.203 · p=0.000 |
Convert Contingency Table to data.frame
xtab_df <- sjtable2df::xtab2df(xtab = xtab, output = "data.frame")
class(xtab_df)
diabetes preg_gt_4 0 preg_gt_4 1 Total
1 neg 356 144 500
2 pos 136 132 268
3 Total 492 276 768
4 χ2=30.823 · df=1 · &phi=0.203 · p=0.000
Convert Contingency Table to kable
xtab_kbl <- sjtable2df::xtab2df(
xtab = xtab,
output = "kable",
caption = "Diabetes vs. preg>4",
col.names = c("Diabetes", "No", "Yes", "Total")
)
class(xtab_kbl)
[1] "kableExtra" "knitr_kable"
xtab_kbl %>%
kableExtra::add_header_above(
header = c(" " = 1, "Pregnant > 4" = 2, " " = 1)
)
Diabetes vs. preg>4
Diabetes |
No |
Yes |
Total |
neg |
356 |
144 |
500 |
pos |
136 |
132 |
268 |
Total |
492 |
276 |
768 |
$χ2=30.823 · df=1 · &phi=0.203 · p=0.000$ |
|
|
|
Percentages in cells
This function also extracts further statistics from cells and writes them to parentheses:
xtab <- sjPlot::tab_xtab(
var.row = dataset$diabetes,
var.col = dataset$preg_gt_4,
show.summary = TRUE,
show.col.prc = TRUE,
use.viewer = FALSE
)
diabetes |
preg_gt_4 |
Total |
0 |
1 |
neg |
356 72.4 % |
144 52.2 % |
500 65.1 % |
pos |
136 27.6 % |
132 47.8 % |
268 34.9 % |
Total |
492 100 % |
276 100 % |
768 100 % |
χ2=30.823 · df=1 · &phi=0.203 · p=0.000 |
Convert Contingency Table to data.frame
xtab_df <- sjtable2df::xtab2df(xtab = xtab, output = "data.frame")
xtab_df
diabetes preg_gt_4 0 preg_gt_4 1 Total
1 neg 356 (72.4 %) 144 (52.2 %) 500 (65.1 %)
2 pos 136 (27.6 %) 132 (47.8 %) 268 (34.9 %)
3 Total 492 (100 %) 276 (100 %) 768 (100 %)
4 χ2=30.823 · df=1 · &phi=0.203 · p=0.000
Example: Model Tables: Linear Regression
Create Three Models
m0 <- lm(
pressure ~ 1,
data = dataset
)
m1 <- lm(
pressure ~ glucose,
data = dataset
)
m2 <- lm(
pressure ~ glucose + diabetes,
data = dataset
)
Create Model Table
m_table <- sjPlot::tab_model(
m0, m1, m2,
show.aic = TRUE
)
|
pressure |
pressure |
pressure |
Predictors |
Estimates |
CI |
p |
Estimates |
CI |
p |
Estimates |
CI |
p |
(Intercept) |
72.41 |
71.51 – 73.30 |
<0.001 |
61.46 |
57.85 – 65.06 |
<0.001 |
62.65 |
58.85 – 66.44 |
<0.001 |
glucose |
|
|
|
0.09 |
0.06 – 0.12 |
<0.001 |
0.07 |
0.04 – 0.11 |
<0.001 |
diabetes [pos] |
|
|
|
|
|
|
2.06 |
-0.06 – 4.18 |
0.056 |
Observations |
733 |
728 |
728 |
R2 / R2 adjusted |
0.000 / 0.000 |
0.050 / 0.049 |
0.055 / 0.052 |
AIC |
5771.995 |
5697.909 |
5696.248 |
Convert Model Table to data.frame
mtab_df <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "data.frame"
)
class(mtab_df)
Predictors Estimates CI p Estimates
1 (Intercept) 72.41 71.51 – 73.30 <0.001 61.46
2 glucose 0.09
3 diabetes [pos]
4 Observations 733 728
5 R2 / R2 adjusted 0.000 / 0.000 0.050 / 0.049
6 AIC 5771.995 5697.909
CI p Estimates CI p
1 57.85 – 65.06 <0.001 62.65 58.85 – 66.44 <0.001
2 0.06 – 0.12 <0.001 0.07 0.04 – 0.11 <0.001
3 2.06 -0.06 – 4.18 0.056
4 728
5 0.055 / 0.052
6 5696.248
Convert Model Table to kable
mtab_kbl <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "kable"
)
class(mtab_kbl)
[1] "kableExtra" "knitr_kable"
Predictors |
Estimates |
CI |
p |
Estimates |
CI |
p |
Estimates |
CI |
p |
(Intercept) |
72.41 |
71.51 – 73.30 |
<0.001 |
61.46 |
57.85 – 65.06 |
<0.001 |
62.65 |
58.85 – 66.44 |
<0.001 |
glucose |
|
|
|
0.09 |
0.06 – 0.12 |
<0.001 |
0.07 |
0.04 – 0.11 |
<0.001 |
diabetes [pos] |
|
|
|
|
|
|
2.06 |
-0.06 – 4.18 |
0.056 |
Observations |
733 |
|
|
728 |
|
|
728 |
|
|
$R^2$ / $R^2$ adjusted |
0.000 / 0.000 |
|
|
0.050 / 0.049 |
|
|
0.055 / 0.052 |
|
|
AIC |
5771.995 |
|
|
5697.909 |
|
|
5696.248 |
|
|
Example: Model Tables: Logistic Regression
Create Three Models
m0 <- stats::glm(
diabetes ~ 1,
data = dataset,
family = binomial(link = "logit")
)
m1 <- stats::glm(
diabetes ~ glucose,
data = dataset,
family = binomial(link = "logit")
)
m2 <- stats::glm(
diabetes ~ glucose + pressure,
data = dataset,
family = binomial(link = "logit")
)
Create Model Table
m_table <- sjPlot::tab_model(
m0, m1, m2,
show.aic = TRUE
)
|
diabetes |
diabetes |
diabetes |
Predictors |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
(Intercept) |
0.54 |
0.46 – 0.62 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
glucose |
|
|
|
1.04 |
1.03 – 1.05 |
<0.001 |
1.04 |
1.03 – 1.05 |
<0.001 |
pressure |
|
|
|
|
|
|
1.01 |
1.00 – 1.03 |
0.060 |
Observations |
768 |
763 |
728 |
R2 Tjur |
0.000 |
0.249 |
0.246 |
AIC |
995.484 |
790.560 |
754.636 |
Convert Model Table to data.frame
mtab_df <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "data.frame"
)
class(mtab_df)
Predictors Odds Ratios CI p Odds Ratios CI p
1 (Intercept) 0.54 0.46 – 0.62 <0.001 0.00 0.00 – 0.01 <0.001
2 glucose 1.04 1.03 – 1.05 <0.001
3 pressure
4 Observations 768 763
5 R2 Tjur 0.000 0.249
6 AIC 995.484 790.560
Odds Ratios CI p
1 0.00 0.00 – 0.01 <0.001
2 1.04 1.03 – 1.05 <0.001
3 1.01 1.00 – 1.03 0.060
4 728
5 0.246
6 754.636
Convert Model Table to kable
mtab_kbl <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "kable"
)
class(mtab_kbl)
[1] "kableExtra" "knitr_kable"
Predictors |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
(Intercept) |
0.54 |
0.46 – 0.62 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
glucose |
|
|
|
1.04 |
1.03 – 1.05 |
<0.001 |
1.04 |
1.03 – 1.05 |
<0.001 |
pressure |
|
|
|
|
|
|
1.01 |
1.00 – 1.03 |
0.060 |
Observations |
768 |
|
|
763 |
|
|
728 |
|
|
$R^2$ Tjur |
0.000 |
|
|
0.249 |
|
|
0.246 |
|
|
AIC |
995.484 |
|
|
790.560 |
|
|
754.636 |
|
|
Example: Model Tables: GLMM
Create Three Models
set.seed(1)
dataset$city <- sample(
x = paste0("city_", 1:7),
size = nrow(dataset),
replace = TRUE
)
m0 <- lme4::glmer(
diabetes ~ 1 + (1 | city),
data = dataset,
family = binomial(link = "logit")
)
boundary (singular) fit: see help('isSingular')
m1 <- lme4::glmer(
diabetes ~ mass + (1 | city),
data = dataset,
family = binomial(link = "logit")
)
m2 <- lme4::glmer(
diabetes ~ mass + log(pressure) + (1 | city),
data = dataset,
family = binomial(link = "logit")
)
Create Model Table
m_table <- sjPlot::tab_model(
m0, m1, m2,
show.aic = TRUE
)
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
|
diabetes |
diabetes |
diabetes |
Predictors |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
(Intercept) |
0.54 |
0.46 – 0.62 |
<0.001 |
0.02 |
0.01 – 0.04 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
mass |
|
|
|
1.11 |
1.08 – 1.14 |
<0.001 |
1.10 |
1.07 – 1.13 |
<0.001 |
pressure [log] |
|
|
|
|
|
|
3.31 |
1.26 – 8.67 |
0.015 |
Random Effects |
σ2 |
3.29 |
3.29 |
3.29 |
τ00 |
0.00 city |
0.01 city |
0.00 city |
ICC |
0.00 |
0.00 |
0.00 |
N |
7 city |
7 city |
7 city |
Observations |
768 |
757 |
729 |
Marginal R2 / Conditional R2 |
0.000 / 0.000 |
0.133 / 0.135 |
0.137 / 0.137 |
AIC |
997.484 |
910.822 |
871.890 |
Convert Model Table to data.frame
mtab_df <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "data.frame"
)
class(mtab_df)
Predictors Odds Ratios CI p Odds Ratios
1 (Intercept) 0.54 0.46 – 0.62 <0.001 0.02
2 mass 1.11
3 pressure [log]
4 Random Effects
5 σ2 3.29 3.29
6 τ00 0.00 city 0.01 city
7 ICC 0.00 0.00
8 N 7 city 7 city
9 Observations 768 757
10 Marginal R2 / Conditional R2 0.000 / 0.000 0.133 / 0.135
11 AIC 997.484 910.822
CI p Odds Ratios CI p
1 0.01 – 0.04 <0.001 0.00 0.00 – 0.01 <0.001
2 1.08 – 1.14 <0.001 1.10 1.07 – 1.13 <0.001
3 3.31 1.26 – 8.67 0.015
4
5 3.29
6 0.00 city
7 0.00
8 7 city
9 729
10 0.137 / 0.137
11 871.890
Convert Model Table to kable
mtab_kbl <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "kable"
)
class(mtab_kbl)
[1] "kableExtra" "knitr_kable"
Predictors |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
Odds Ratios |
CI |
p |
(Intercept) |
0.54 |
0.46 – 0.62 |
<0.001 |
0.02 |
0.01 – 0.04 |
<0.001 |
0.00 |
0.00 – 0.01 |
<0.001 |
mass |
|
|
|
1.11 |
1.08 – 1.14 |
<0.001 |
1.10 |
1.07 – 1.13 |
<0.001 |
pressure [log] |
|
|
|
|
|
|
3.31 |
1.26 – 8.67 |
0.015 |
Random Effects |
|
|
|
|
|
|
|
|
|
σ2 |
3.29 |
|
|
3.29 |
|
|
3.29 |
|
|
τ00 |
0.00 city |
|
|
0.01 city |
|
|
0.00 city |
|
|
ICC |
0.00 |
|
|
0.00 |
|
|
0.00 |
|
|
N |
7 city |
|
|
7 city |
|
|
7 city |
|
|
Observations |
768 |
|
|
757 |
|
|
729 |
|
|
Marginal $R^2$ / Conditional $R^2$ |
0.000 / 0.000 |
|
|
0.133 / 0.135 |
|
|
0.137 / 0.137 |
|
|
AIC |
997.484 |
|
|
910.822 |
|
|
871.890 |
|
|