Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.
Version: | 1.0.0 |
Depends: | R (≥ 4.0.0) |
Imports: | gsl, progress, rlang, utils, methods, torch |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2025-01-30 |
DOI: | 10.32614/CRAN.package.shrinkGPR |
Author: | Peter Knaus |
Maintainer: | Peter Knaus <peter.knaus at wu.ac.at> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
SystemRequirements: | torch backend, for installation guide see https://cran.r-project.org/web/packages/torch/vignettes/installation.html |
CRAN checks: | shrinkGPR results |
Reference manual: | shrinkGPR.pdf |
Package source: | shrinkGPR_1.0.0.tar.gz |
Windows binaries: | r-devel: shrinkGPR_1.0.0.zip, r-release: shrinkGPR_1.0.0.zip, r-oldrel: shrinkGPR_1.0.0.zip |
macOS binaries: | r-devel (arm64): shrinkGPR_1.0.0.tgz, r-release (arm64): shrinkGPR_1.0.0.tgz, r-oldrel (arm64): shrinkGPR_1.0.0.tgz, r-devel (x86_64): shrinkGPR_1.0.0.tgz, r-release (x86_64): shrinkGPR_1.0.0.tgz, r-oldrel (x86_64): shrinkGPR_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=shrinkGPR to link to this page.
mirror server hosted at Truenetwork, Russian Federation.