sharp version 1.4.8
sharp version 1.4.7
- Add reference to the publication in the Journal of Statistical
Software
 
sharp version 1.4.6
sharp version 1.4.5
- Allow for alternative optimisation methods implemented in
nloptr
 
- Update parallelisation, now using the future package
 
- Fix the formatting of continuous outcome in VariableSelection()
 
- Update the vignette
 
sharp version 1.4.4
- Update references with published articles
 
sharp version 1.4.3
- Add sparse K means from the R package sparcl
 
- Allow for missing values in proportions for more flexibility
 
sharp version 1.4.2
- Remove functions depending on regsem (removed from CRAN)
 
- Fix the use of packages in Suggests in the examples
 
sharp version 1.4.1
- Add package vignette
 
- Use Ridge regression calibrated by cross validation instead of
unpenalised regression in Refit(), ExplanatoryPerformance() and
Incremental()
 
- Add new S3 class structural_model
 
- Fix inclusion of unpenalised predictors in Incremental()
 
- Fix clustering of rows in Clustering()
 
sharp version 1.4.0
- Update the stability score used by default (n_cat=NULL), previous
score can be used with n_cat=3
 
- Add new functions for structural equation modelling including
StructuralModel(), PenalisedSEM(), PenalisedOpenMx(),
PenalisedLinearSystem(), LavaanModel(), LavaanMatrix(), OpenMxModel(),
OpenMxMatrix() and LinearSystemMatrix()
 
- Add new function CART() for classification and regression trees
 
- Add the option to run randomised or adaptive lasso in
PenalisedRegression()
 
- Fix a bug when running multinomial lasso with predictors with null
variance in the subsamples
 
- Fix a bug where additional parameters in … were used in
glm.control() within Refit()
 
sharp version 1.3.0
- Add new functions for consensus clustering including Clustering(),
Clusters(), ConsensusMatrix(), ClusteringPerformance() and more
 
- Add new print(), plot() and summary() functions
 
- Update plotting functions
 
- Fix parallelisation using argument n_cores in main functions
 
- Remove duplicated messages in ExplanatoryPerformance()
 
- Allow for factor ydata in VariableSelection() and related
functions
 
sharp version 1.2.1
- Update examples for use with fake 1.3.0
 
- Fix requirements on input data format in Refitting()
 
- Add resampling argument in Explanatory()
 
- Add optional beep at the end of the run in main functions
 
- Increase igraph vertex size in Graph() and plot()
 
sharp version 1.2.0
- Add the functions Ensemble() and EnsemblePredictions() to build and
predict from an ensemble model for VariableSelection()
 
- Add S3 classes including coef() and predict() for
VariableSelection()
 
- Rename Recalibrate() as Refit()
 
- Fix use of CPSS in GraphicalModel()
 
- Fix maximisation of the contrast
 
- Add simulation functions to the companion R package fake
 
sharp version 1.1.0
First release of stability selection methods and simulation
models.