library(serosv)
Currently, serosv
only has models under parametric
Bayesian framework
Proposed approach
Prevalence has a parametric form \(\pi(a_i, \alpha)\) where \(\alpha\) is a parameter vector
One can constraint the parameter space of the prior distribution \(P(\alpha)\) in order to achieve the desired monotonicity of the posterior distribution \(P(\pi_1, \pi_2, ..., \pi_m|y,n)\)
Where:
Refer to Chapter 10.3.1
Proposed model
The model for prevalence is as followed
\[ \pi (a) = 1 - exp\{ \frac{\alpha_1}{\alpha_2}ae^{-\alpha_2 a} + \frac{1}{\alpha_2}(\frac{\alpha_1}{\alpha_2} - \alpha_3)(e^{-\alpha_2 a} - 1) -\alpha_3 a \} \]
For likelihood model, independent binomial distribution are assumed for the number of infected individuals at age \(a_i\)
\[ y_i \sim Bin(n_i, \pi_i), \text{ for } i = 1,2,3,...m \]
The constraint on the parameter space can be incorporated by assuming truncated normal distribution for the components of \(\alpha\), \(\alpha = (\alpha_1, \alpha_2, \alpha_3)\) in \(\pi_i = \pi(a_i,\alpha)\)
\[ \alpha_j \sim \text{truncated } \mathcal{N}(\mu_j, \tau_j), \text{ } j = 1,2,3 \]
The joint posterior distribution for \(\alpha\) can be derived by combining the likelihood and prior as followed
\[ P(\alpha|y) \propto \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) \prod^3_{i=1}-\frac{1}{\tau_j}\text{exp}(\frac{1}{2\tau^2_j} (\alpha_j - \mu_j)^2) \]
Where the flat hyperprior distribution is defined as followed:
\(\mu_j \sim \mathcal{N}(0, 10000)\)
\(\tau^{-2}_j \sim \Gamma(100,100)\)
The full conditional distribution of \(\alpha_i\) is thus \[ P(\alpha_i|\alpha_j,\alpha_k, k, j \neq i) \propto -\frac{1}{\tau_i}\text{exp}(\frac{1}{2\tau^2_i} (\alpha_i - \mu_i)^2) \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) \]
Fitting data
To fit Farrington model, use
hierarchical_bayesian_model()
and define
type = "far2"
or type = "far3"
where
type = "far2"
refers to Farrington model with 2
parameters (\(\alpha_3 = 0\))
type = "far3"
refers to Farrington model with 3
parameters (\(\alpha_3 >
0\))
<- mumps_uk_1986_1987
df <- hierarchical_bayesian_model(df, type="far3")
model #>
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1: Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1: Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1: Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1: Stan can't start sampling from this initial value.
#> Chain 1:
#> Chain 1: Gradient evaluation took 6.6e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.66 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 5000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 5000 [ 10%] (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%] (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%] (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%] (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%] (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%] (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%] (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%] (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.576 seconds (Warm-up)
#> Chain 1: 0.485 seconds (Sampling)
#> Chain 1: 2.061 seconds (Total)
#> Chain 1:
#> Warning: There were 1729 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.28, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
$info
model#> mean se_mean sd 2.5%
#> alpha1 1.359200e-01 1.718392e-03 6.634252e-03 1.267890e-01
#> alpha2 1.950533e-01 1.140411e-03 8.105212e-03 1.809270e-01
#> alpha3 7.567629e-03 3.736334e-04 5.954382e-03 6.839367e-04
#> tau_alpha1 3.526243e-01 1.867970e-01 9.495085e-01 4.317908e-06
#> tau_alpha2 1.668595e+00 1.274720e+00 3.000895e+00 9.079584e-06
#> tau_alpha3 8.960579e-02 4.787153e-02 2.607501e-01 3.228223e-06
#> mu_alpha1 -5.020807e+00 3.040566e+00 3.468501e+01 -9.811121e+01
#> mu_alpha2 1.092032e-01 1.214227e+00 2.812453e+01 -6.665632e+01
#> mu_alpha3 -9.867857e+00 8.021242e+00 4.499586e+01 -9.719373e+01
#> sigma_alpha1 7.096216e+01 1.549036e+01 3.165892e+02 5.643009e-01
#> sigma_alpha2 5.147320e+01 1.300805e+01 2.839421e+02 3.507393e-01
#> sigma_alpha3 4.555268e+02 3.579400e+02 9.370173e+03 9.808250e-01
#> lp__ -2.535145e+03 6.460925e-01 3.605881e+00 -2.543527e+03
#> 25% 50% 75% 97.5% n_eff
#> alpha1 1.305291e-01 1.337552e-01 1.408133e-01 1.504679e-01 14.905261
#> alpha2 1.912298e-01 1.929279e-01 1.984758e-01 2.153343e-01 50.513286
#> alpha3 3.710596e-03 6.979474e-03 8.457078e-03 2.479728e-02 253.969761
#> tau_alpha1 1.000828e-03 2.804623e-02 7.209248e-02 3.140354e+00 25.837941
#> tau_alpha2 3.931032e-03 7.702037e-02 1.193477e+00 8.128890e+00 5.542067
#> tau_alpha3 2.567107e-04 5.291966e-04 1.052404e-02 1.039482e+00 29.668421
#> mu_alpha1 -5.232470e+00 -2.381782e+00 7.419195e-01 6.725207e+01 130.129197
#> mu_alpha2 -1.684258e+00 3.198146e-01 2.342777e+00 6.354279e+01 536.500895
#> mu_alpha3 -4.227952e+01 -3.980619e+00 5.248327e+00 9.663215e+01 31.467480
#> sigma_alpha1 3.724389e+00 5.971215e+00 3.160979e+01 4.812418e+02 417.704858
#> sigma_alpha2 9.153621e-01 3.603273e+00 1.594949e+01 3.318847e+02 476.469754
#> sigma_alpha3 9.747849e+00 4.347019e+01 6.241343e+01 5.565829e+02 685.290783
#> lp__ -2.537527e+03 -2.533755e+03 -2.532478e+03 -2.529927e+03 31.148233
#> Rhat
#> alpha1 1.1107023
#> alpha2 1.0246646
#> alpha3 0.9997907
#> tau_alpha1 1.0059599
#> tau_alpha2 1.3294355
#> tau_alpha3 1.0125176
#> mu_alpha1 1.0224104
#> mu_alpha2 1.0010558
#> mu_alpha3 1.0505264
#> sigma_alpha1 1.0025618
#> sigma_alpha2 1.0075432
#> sigma_alpha3 1.0011065
#> lp__ 1.1035163
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
Proposed approach
The model for seroprevalence is as followed
\[ \pi(a) = \frac{\beta a^\alpha}{1 + \beta a^\alpha}, \text{ } \alpha, \beta > 0 \]
The likelihood is specified to be the same as Farrington model (\(y_i \sim Bin(n_i, \pi_i)\)) with
\[ \text{logit}(\pi(a)) = \alpha_2 + \alpha_1\log(a) \]
The prior model of \(\alpha_1\) is specified as \(\alpha_1 \sim \text{truncated } \mathcal{N}(\mu_1, \tau_1)\) with flat hyperprior as in Farrington model
\(\beta\) is constrained to be positive by specifying \(\alpha_2 \sim \mathcal{N}(\mu_2, \tau_2)\)
The full conditional distribution of \(\alpha_1\) is thus
\[ P(\alpha_1|\alpha_2) \propto -\frac{1}{\tau_1} \text{exp} (\frac{1}{2 \tau_1^2} (\alpha_1 - \mu_1)^2) \prod_{i=1}^m \text{Bin}(y_i|n_i,\pi(a_i, \alpha_1, \alpha_2) ) \]
And \(\alpha_2\) can be derived in the same way
Fitting data
To fit Log-logistic model, use
hierarchical_bayesian_model()
and define
type = "log_logistic"
<- rubella_uk_1986_1987
df <- hierarchical_bayesian_model(df, type="log_logistic")
model #>
#> SAMPLING FOR MODEL 'log_logistic' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 5000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 5000 [ 10%] (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%] (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%] (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%] (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%] (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%] (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%] (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%] (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.345 seconds (Warm-up)
#> Chain 1: 0.262 seconds (Sampling)
#> Chain 1: 0.607 seconds (Total)
#> Chain 1:
#> Warning: There were 587 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
$type
model#> [1] "log_logistic"
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.