| Title: | Multivariate ANalysis of VAriance with Ridge Regularization for Semicontinuous High-Dimensional Data | 
| LazyLoad: | yes | 
| Version: | 0.2 | 
| Depends: | R (≥ 2.15.1) | 
| Imports: | matrixcalc, mvtnorm | 
| Date: | 2025-06-11 | 
| Description: | Implements Multivariate ANalysis Of VAriance (MANOVA) parameters' inference and test with regularization for semicontinuous high-dimensional data. The method can be applied also in presence of low-dimensional data. The p-value can be obtained through asymptotic distribution or using a permutation procedure. The package gives also the possibility to simulate this type of data. Method is described in Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054. DOI <doi:10.1002/bimj.70054>, arXiv DOI <doi:10.48550/arXiv.2401.04036>. | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-06-11 12:06:20 UTC; claudio | 
| Author: | Elena Sabbioni  | 
| Maintainer: | Elena Sabbioni <elena.sabbioni@stats.ox.ac.uk> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-06-11 16:00:02 UTC | 
Multivariate ANalysis Of VAriance Inference and Test with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVA performs Multivariate ANalysis Of VAriance (MANOVA) inference and test with ridge regularization in presence of 
semicontinuous high-dimensional data. The test is based on a Likelihood Ratio Test statistic 
and the p-value can be computed using either asymptotic distribution (p.value.perm = FALSE) 
or via permutation procedure (p.value.perm = TRUE). There is the possibility to provide 
as input the regularization parameters or to choose them through an optimization procedure. 
Usage
scMANOVA(x, n, lambda = NULL, lambda0 = NULL, lambda.step = 0.1,
  ident = FALSE, tol = 1e-08, penalty = function(n, p) log(n),
  B = 500, p.value.perm = FALSE, fixed.lambda = FALSE,
  fixed.lambda0 = FALSE, ...)
Arguments
x | 
 
  | 
n | 
 
  | 
lambda | 
 
  | 
lambda0 | 
 
  | 
lambda.step | 
 scalar. Step size used in the optimization procedure to find the smallest value of   | 
ident | 
 
  | 
tol | 
 scalar. Used in the optimization procedure to find the smallest value of   | 
penalty | 
 
  | 
B | 
 scalar. Number of permutations to run in the permutation test  | 
p.value.perm | 
 
  | 
fixed.lambda | 
 
  | 
fixed.lambda0 | 
 
  | 
... | 
 further parameters passed to function   | 
Value
An object of class scMANOVA which is a list with the following components  
pi | 
 
  | 
mu | 
 
  | 
sigmaRidge | 
 
  | 
sigma | 
 
  | 
pi0 | 
 
  | 
mu0 | 
 
  | 
sigma0Ridge | 
 
  | 
sigma0 | 
 
  | 
removed.vars | 
 
  | 
logLikPi | 
 scalar. Log-likelihood for the discrete part of the model  | 
logLik | 
 scalar. Log-likelihood  | 
logLikPi0 | 
 scalar. Log-likelihood for the discrete part of the model under the null hypothesis  | 
logLik0 | 
 scalar. Log-likelihood under null hypothesis  | 
statistic | 
 scalar. Wilks statistics  | 
lambda | 
 scalar. Regularization parameter  | 
lambda0 | 
 scalar. Regularization parameter under null hypothesis  | 
df | 
 scalar. Model degree of freedom  | 
df0 | 
 scalar. Model degree of freedom under null hypothesis  | 
aic | 
 scalar. Information criteria  | 
aic0 | 
 scalar. Information criteria under null hypothesis  | 
p.value | 
 scalar. p-value of the Wilks statistic  | 
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVAestimation and scMANOVApermTest
Examples
  set.seed(1234)
  n <- c(5,5)
  p <- 20
  pmiss <- 0.1
  x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
  res.asy <- scMANOVA(x=x, n=n) # Asymptotic p.value
  res.asy
  
    res.perm <- scMANOVA(x=x, n=n, p.value.perm=TRUE) # p-value by permutation test 
    res.perm
  
Multivariate ANalysis Of VAriance Maximum Likelihood Estimation with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVAestimation computes the regularized Multivariate ANalysis Of
VAriance (MANOVA) maximum likelihood estimates for semicontinuous
high-dimensional data. The estimation can be performed also for
low-dimensional data. The regularization parameters are provided as input
and the user can decide to perform the regularization adding the identity
matrix to the raw estimated covariance matrix (default, ident=TRUE)
or adding the diagonal values of the raw estimated covariance matrix
(ident=FALSE). 
Usage
  scMANOVAestimation(x, n, lambda = NULL, lambda0 = NULL,
    ident = TRUE, posdef.check = TRUE, rm.vars = NA)
Arguments
x | 
 
  | 
n | 
 
  | 
lambda | 
 scalar. Ridge regularization parameter  | 
lambda0 | 
 scalar. Ridge regularization parameter under null hypothesis  | 
ident | 
 
  | 
posdef.check | 
 
  | 
rm.vars | 
 
  | 
Value
An object of class scMANOVAestimation which is a list with the following components  
pi | 
 
  | 
mu | 
 
  | 
sigmaRidge | 
 
  | 
sigma | 
 
  | 
pi0 | 
 
  | 
mu0 | 
 
  | 
sigma0Ridge | 
 
  | 
sigma0 | 
 
  | 
removed.vars | 
 
  | 
logLikPi | 
 scalar. Log-likelihood for the discrete part of the model  | 
logLik | 
 scalar. Log-likelihood  | 
logLikPi0 | 
 scalar. Log-likelihood for the discrete part of the model under the null hypothesis  | 
logLik0 | 
 scalar. Log-likelihood under null hypothesis  | 
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
Examples
  set.seed(1234)
  n <- c(5,5)
  p <- 20
  pmiss <- 0.1
  x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
  res <- scMANOVAestimation(x=x, n=n, lambda=3.59, lambda0=3.13)
  res
Multivariate ANalysis Of VAriance log-likelihood Test with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVApermTest uses a permutation procedure to perform a test
based on a Multivariate ANalysis Of VAriance(MANOVA) Likelihood Ratio test statistic with a ridge
regularization. The statistic is developed for semicontinuous and
high-dimensional data, but can be used also in low-dimensional scenarios.
Usage
scMANOVApermTest(x, n, lambda = NULL, lambda0 = NULL, lambda.step = 0.1,
  ident = FALSE, tol = 1e-08, penalty = function(n, p) log(n), B = 500,
  parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL,
  only.pvalue = TRUE, rm.vars = NA, ...)
Arguments
x | 
 
  | 
n | 
 
  | 
lambda | 
 scalar or a   | 
lambda0 | 
 
  | 
lambda.step | 
 scalar. Step size used in the optimization procedure to find the smallest value of   | 
ident | 
 
  | 
tol | 
 scalar. Used in the optimization procedure to find the smallest value of   | 
penalty | 
 
  | 
B | 
 scalar. Number of permutations to run in the permutation test  | 
parallel | 
 The type of parallel operation to be used (if any)  | 
ncpus | 
 
  | 
cl | 
 An optional   | 
only.pvalue | 
 
  | 
rm.vars | 
 
  | 
... | 
 Further parameters passed to   | 
Value
If only.pvalue=TRUE (default) a scalar which is the p-value of the Wilks statistic obtain by a permutation procedure, otherwise an object of class htest  
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVA and scMANOVAestimation
Examples
  set.seed(1234)
  n <- c(5,5)
  p <- 20
  pmiss <- 0.1
  x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
  res <- scMANOVApermTest(x=x, n=n, lambda=3.59, lambda0=3.13,
    only.pvalue=FALSE)
  res
Simulation of datasets for a semicontinuous scenarios
Description
Simulation of dataset of semicontinuous data coming from different groups, with specific marginal probabilities of a missing value, specific mean vectors and common covariance matrix.
Usage
scMANOVAsimulation(n, p, pmiss = 0, rho = 0, mu = NULL,
  sigma = NULL, only.data = TRUE)
Arguments
n | 
 
  | 
p | 
 scalar. Number of variables (columns)  | 
pmiss | 
 scalar or   | 
rho | 
 scalar. If   | 
mu | 
 
  | 
sigma | 
 
  | 
only.data | 
 
  | 
Value
If only.data=TRUE an object of class matrix is reported otherwise a list with the following components
x | 
 
  | 
y | 
 
  | 
original | 
 
  | 
mu | 
 
  | 
sigma | 
 
  | 
n | 
 As in input  | 
p | 
 As in input  | 
pmiss | 
 
  | 
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVAestimation and scMANOVApermTest
Examples
  set.seed(1234)
  n <- c(5,5)
  p <- 20
  pmiss <- 0.1
  x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)