rmweather: Tools to Conduct Meteorological Normalisation and Counterfactual Modelling for Air Quality Data

An integrated set of tools to allow data users to conduct meteorological normalisation and counterfactual modelling for air quality data. The meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random forest models can also be used for counterfactual or business as usual (BAU) modelling by using the models to predict, from the model's perspective, the future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.

Version: 0.2.6
Depends: R (≥ 3.2.0)
Imports: dplyr (≥ 1.0.1), ggplot2, lubridate, magrittr, pdp, purrr (≥ 1.0.0), ranger, stringr, strucchange, tibble, viridis, tidyr, cli
Suggests: testthat, openair
Published: 2024-06-04
DOI: 10.32614/CRAN.package.rmweather
Author: Stuart K. Grange ORCID iD [cre, aut]
Maintainer: Stuart K. Grange <stuart.grange at york.ac.uk>
BugReports: https://github.com/skgrange/rmweather/issues
License: GPL-3 | file LICENSE
URL: https://github.com/skgrange/rmweather
NeedsCompilation: no
Citation: rmweather citation info
CRAN checks: rmweather results

Documentation:

Reference manual: rmweather.pdf

Downloads:

Package source: rmweather_0.2.6.tar.gz
Windows binaries: r-devel: rmweather_0.2.6.zip, r-release: rmweather_0.2.6.zip, r-oldrel: rmweather_0.2.6.zip
macOS binaries: r-release (arm64): rmweather_0.2.6.tgz, r-oldrel (arm64): rmweather_0.2.6.tgz, r-release (x86_64): rmweather_0.2.6.tgz, r-oldrel (x86_64): rmweather_0.2.6.tgz
Old sources: rmweather archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rmweather to link to this page.

mirror server hosted at Truenetwork, Russian Federation.