| Title: | Analysis of Honeycomb Selection Designs | 
| Version: | 2.3.4 | 
| Description: | A useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>. | 
| Depends: | R (≥ 4.2) | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| Suggests: | knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| LazyData: | true | 
| Imports: | stats, utils, graphics | 
| NeedsCompilation: | no | 
| Packaged: | 2023-08-23 18:31:51 UTC; Windows | 
| Author: | Anastasios Katsileros [aut], Nikos Antonetsis [aut, cre], Marietta Gkika [aut], Eleni Tani [aut], Ioannis Tokatlidis [aut], Penelope Bebeli [aut] | 
| Maintainer: | Nikos Antonetsis <stud610027@aua.gr> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-08-23 18:50:02 UTC | 
Construction of the honeycomb selection design.
Description
This function creates a data frame of a honeycomb selection design.
Usage
HSD(E, K, rows, plpr, distance, poly = TRUE, control = FALSE)
Arguments
E | 
 The number of entries.  | 
K | 
 The k parameter.  | 
rows | 
 The number of rows.  | 
plpr | 
 The number of plants per row.  | 
distance | 
 The plant-to-plant distance in meters.  | 
poly | 
 If TRUE the polygon pattern is displayed.  | 
control | 
 Convert the design to controlled.  | 
Value
A dataframe.
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
HSD(7,2,10,10,1)
Construction of the honeycomb selection design without control.
Description
This function creates a data frame of a honeycomb selection design (one entry, without control).
Usage
HSD0(rows, plpr, distance, poly = TRUE)
Arguments
rows | 
 The number of rows.  | 
plpr | 
 The number of plants per row.  | 
distance | 
 The plant-to-plant distance in meters.  | 
poly | 
 If TRUE set polygon pattern is displayed.  | 
Value
A dataframe.
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
HSD0(10,10,1)
Construction of the honeycomb selection design with one control.
Description
This function creates a data frame of a honeycomb selection design (one entry, one control).
Usage
HSD01(K, rows, plpr, distance, poly = TRUE)
Arguments
K | 
 The K parameter.  | 
rows | 
 The number of rows.  | 
plpr | 
 The number of plants per row.  | 
distance | 
 Distance between plants in meters.  | 
poly | 
 If TRUE the polygon pattern is displayed.  | 
Value
A dataframe.
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
HSD01(1,10,10,1) 
Construction of the honeycomb selection design with three controls.
Description
This function creates a data frame of a honeycomb selection design (one entry, three controls).
Usage
HSD03(K, rows, plpr, distance, poly = TRUE)
Arguments
K | 
 The k parameter.  | 
rows | 
 The number of rows.  | 
plpr | 
 The number of plants per row.  | 
distance | 
 Distance between plants in meters.  | 
poly | 
 If TRUE the polygon pattern is displayed.  | 
Value
A dataframe
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
HSD03(1,10,10,1)
Analysis of honeycomb selection design based on blocks of unique nearby entries.
Description
A Function to analyze blocks of entries. The "central" plant in each position is not calculated.
Usage
analize_blocks(
  Main_Data_Frame = NULL,
  observation = NULL,
  row_element = NULL,
  plant_element = NULL,
  CRS,
  rep_unrep
)
Arguments
observation | 
 A vector containing the observations.  | 
row_element | 
 The row of the element which the block it belongs to will be displayed.  | 
plant_element | 
 The position of the element in the row which the block it belongs to will be displayed.  | 
CRS | 
 Number of top plants used for the CRS index.  | 
rep_unrep | 
 Replicated of unreplicated design.  | 
Value
A dataframe.
Analysis of the honeycomb selection design.
Description
This function analyzes the response variable of the data frame.
Usage
analysis(
  Main_Data_Frame = NULL,
  Response_Vector = NULL,
  circle = 6,
  blocks = FALSE,
  row_element = NULL,
  plant_element = NULL,
  CRS = NULL
)
Arguments
Main_Data_Frame | 
 A data frame generated by one of the functions HSD(), HSD0(), HSD01() and HSD03().  | 
Response_Vector | 
 A vector containing the response variable data.  | 
circle | 
 The number of plants per moving ring.  | 
blocks | 
 The moving circular block.  | 
row_element | 
 The position of the plant (number of row) in the center of a moving ring/circular block.  | 
plant_element | 
 The position of the plant (number of plant) in the center of a moving ring/circular block.  | 
CRS | 
 The number of selected plants used for the CRS index.  | 
Value
A list.
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
main_data<-HSD(7,2,10,10,1)
main_data$Data<-wheat_data$total_yield
analysis(main_data,"Data",6)
Available honeycomb selection designs.
Description
This function is used to generate the available honeycomb selection designs including k parameters.
Usage
generate(E_gen = NULL)
Arguments
E_gen | 
 A single number or a vector of entries.  | 
Value
A dataframe.
References
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
Examples
generate(1:50)
This function returns a plot.
Description
It prints a graphic.
Usage
plot_convert(dataf, poly = TRUE, y_rev = TRUE, x_rev = FALSE, rep_unrep = NULL)
Arguments
dataf | 
 Data frame containing information about the experiment.  | 
poly | 
 If TRUE set the polygon pattern.  | 
y_rev | 
 Reverse the y axis.  | 
x_rev | 
 Reverse the x axis.  | 
rep_unrep | 
 Replicated or unreplicated selection design.  | 
Value
A dataframe.
This function returns only the grouped replicated selection designs.
Description
It calls the check for R function and keeps only the grouped selection designs.
Usage
return_grouped(R_gen)
Arguments
R_gen | 
 A single number or vector containing the replicated selection designs for testing.  | 
Value
A dataframe.
This function returns only the ungrouped replicated selection designs.
Description
It calls the check for R function and keeps only the Ungrouped selection designs.
Usage
return_ungrouped(R_gen)
Arguments
R_gen | 
 A single number or vector containing the replicated selection designs for testing.  | 
Value
A dataframe.
Tests if a selection design exists and returns its X and Y values.
Description
It is used to return the X and Y values of a replicated selection design if it exists.
Usage
test_for_R(R_gen)
Arguments
R_gen | 
 A single number or vector containing the replicated selection designs for testing.  | 
Value
A dataframe.
A dataset
Description
A dataset containing observations from an R7 honeycomb selection design.
Usage
wheat_data
Format
- wheat_data$main_spike_weight
 The weight (g) of the main spike of a single plant.
- wheat_data$tillers_spike_weight
 The weight (g) of tillers' spikes of a single plant.
- wheat_data$total_yield
 The total yield (g) of a single plant.