Type: | Package |
Title: | Power and Reversal Power Distributions |
Version: | 0.1.4 |
Author: | Susan Anyosa [aut, cre], Jorge Luis Bazán Guzmán [aut], Artur Lemonte [aut] |
Maintainer: | Susan Anyosa <susanaliciach@gmail.com> |
Imports: | stats, rmutil, gamlss.dist, normalp |
Depends: | R (≥ 3.1.0) |
Description: | Density, distribution function, quantile function and random generation for the family of power and reversal power distributions. |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 6.0.1 |
NeedsCompilation: | no |
Packaged: | 2017-11-23 11:28:14 UTC; susan |
Repository: | CRAN |
Date/Publication: | 2017-11-23 11:41:38 UTC |
Power and reversal power distributions
Description
The powdist package enables to compute the probability density function, cumulative distribution function, quantile function and generate random numbers for the following distributions: power Logistic (plogis), reversal power Logistic (rplogis), power Normal (pnorm), reversal power Normal (rpnorm), power Cauchy (pcauchy), reversal power Cauchy (rpcauchy), power reversal-Gumbel (prgumbel), power Student T (pt), reversal power Student T (rpt), power Laplace (plaplace), reversal power Laplace (rplaplace), power exponential power (pexpow) and reversal power exponential power (rpexpow).
The Exponential Power Distribution
Description
Density, distribution function, quantile function and random generation for the exponential power distribution with parameters mu, sigma and k.
Usage
dexpow(x, mu = 0, sigma = 1, k = 0, log = FALSE)
pexpow(q, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE)
qexpow(p, mu = 0, sigma = 1, k = 0, lower.tail = TRUE, log.p = FALSE)
rexpow(n, mu = 0, sigma = 1, k = 0)
Arguments
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. |
k |
shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Exponential distribution has density
f\left(x\right)=\left[\frac{e^{-\left(\frac{x-\mu}{\sigma}\right)}}{\left(1+e^{-\left(\frac{x-\mu}{\sigma}\right)}\right)^{2}}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and k the shape parameter.
References
Lemonte A. and Bazán J.L.
Examples
dexpow(1, 3, 4, 1)
pexpow(1, 3, 4, 1)
qexpow(0.2, 3, 4, 1)
rexpow(5, 3, 4, 1)
The Gumbel Distribution
Description
Density, distribution function, quantile function and random generation for the Gumbel distribution with parameters mu and sigma.
Usage
dgumbel(x, mu = 0, sigma = 1, log = FALSE)
pgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Gumbel distribution has density
f(x)=\left[\frac{1}{\sigma}e^{\left(-\frac{x-\mu}{\sigma}\right)-e^{\left(-\frac{x-\mu}{\sigma}\right)}}\right]
,
where -\infty<\mu<\infty
is the location paramether and \sigma^2>0
is the scale parameter.
Examples
dgumbel(1, 3, 4)
pgumbel(1, 3, 4)
qgumbel(0.2, 3, 4)
rgumbel(5, 3, 4)
The Power Cauchy Distribution
Description
Density, distribution function, quantile function and random generation for the power Cauchy distribution with parameters mu, sigma and lambda.
Usage
dpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
ppcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rpcauchy(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Cauchy distribution has density
f(x)=\lambda\left [\frac{1}{\pi}\arctan\left ( \frac{x-\mu}{\sigma} \right )+\frac{1}{2} \right ]^{\lambda -1} \left[ \frac{1}{\pi\sigma\left( 1+\left (\frac{x-\mu}{\sigma} \right )^{2} \right)} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
dpcauchy(1, 1, 3, 4)
ppcauchy(1, 1, 3, 4)
qpcauchy(0.2, 1, 3, 4)
rpcauchy(5, 2, 3, 4)
The Power Exponential Power Distribution
Description
Density, distribution function, quantile function and random generation for the power exponential power distribution with parameters mu, sigma, lambda and k.
Usage
dpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE)
ppexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE,
log.p = FALSE)
qpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE,
log.p = FALSE)
rpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
Arguments
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. |
k , lambda |
shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power exponential power distribution has density
f\left(x\right)=\frac{\lambda}{\sigma}\left[\frac{e^{-\left(\frac{x-\mu}{\sigma}\right)}}{\left(1+e^{-\left(\frac{x-\mu}{\sigma}\right)}\right)^{2}}\right]\left[\frac{e^{\left(\frac{x-\mu}{\sigma}\right)}}{1+e^{\left(\frac{x-\mu}{\sigma}\right)}}\right]^{\lambda-1}
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
and k the shape parameters.
References
Lemonte A. and Bazán J.L.
Examples
dpexpow(1, 1, 3, 4, 1)
ppexpow(1, 1, 3, 4, 1)
qpexpow(0.2, 1, 3, 4, 1)
rpexpow(5, 2, 3, 4, 1)
The Power Laplace Distribution
Description
Density, distribution function, quantile function and random generation for the power Laplace distribution with parameters mu, sigma and lambda.
Usage
dplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
pplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rplaplace(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Laplace distribution has density
f(x)=\lambda\left[\frac{1}{2}+\frac{\left(1-e^{-\frac{\left|x-\mu\right|}{\sigma}}\right)}{2}\textrm{sign}\left(\frac{x-\mu}{\sigma}\right)\right]^{\lambda-1}\left[\frac{e^{-\frac{\left|x-\mu\right|}{\sigma}}}{2\sigma}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
Examples
dplaplace(1, 1, 3, 4)
pplaplace(1, 1, 3, 4)
qplaplace(0.2, 1, 3, 4)
rplaplace(5, 2, 3, 4)
The Power Logistic Distribution
Description
Density, distribution function, quantile function and random generation for the power logistic distribution with parameters mu, sigma and lambda.
Usage
dplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
pplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rplogis(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Logistic distribution has density
f(x)=\lambda \left [\frac{1}{1+e^{-\left ( \frac{x-\mu}{\sigma} \right )} }\right ]^{\lambda-1}\left[\frac{ e^{-\left ( \frac{x-\mu}{\sigma} \right )} }{\sigma\left ( 1+e^{-\left ( \frac{x-\mu}{\sigma} \right )} \right )^2}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Lemonte, A. J. and Bazán, J. L. (2017) New links for binary regression: an application to coca cultivation in Peru. TEST.
Nadarajah, S. (2009) The skew logistic distribution. AStA Advances in Statistical Analysis, 93, 187-203.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
Examples
dplogis(1, 1, 3, 4)
pplogis(1, 1, 3, 4)
qplogis(0.2, 1, 3, 4)
rplogis(5, 2, 3, 4)
The Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the power normal distribution with parameters mu, sigma and lambda.
Usage
dpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
ppnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rpnorm(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Normal distribution has density
f(x)=\lambda \left [ \Phi \left ( \frac{x-\mu}{\sigma} \right ) \right]^{\lambda - 1} \left[\frac{e^{ -\frac{1}{2}\left ( \frac{x-\mu}{\sigma} \right )^2}}{\sigma\sqrt{2\pi}} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
Gupta, R. D. and Gupta, R. C. (2008) Analyzing skewed data by power normal model. Test 17, 197–210.
Kundu, D. and Gupta, R. D. (2013) Power-normal distribution. Statistics 47, 110–125.
Examples
dpnorm(1, 1, 3, 4)
ppnorm(1, 1, 3, 4)
qpnorm(0.2, 1, 3, 4)
rpnorm(5, 2, 3, 4)
The Power Reversal-Gumbel Distribution
Description
Density, distribution function, quantile function and random generation for the power Reversal-Gumbel distribution with parameters mu, sigma and lambda.
Usage
dprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
pprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rprgumbel(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power reverlsa-Gumbel distribution has density
f(x)=\lambda \left[1-e^{-e^{\left(\frac{x-\mu}{\sigma}\right)}}\right]^{\lambda-1}\left[\frac{1}{\sigma}e^{\left(\frac{x-\mu}{\sigma}\right)-e^{\left(\frac{x-\mu}{\sigma}\right)}} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Abanto -Valle, C. A., Bazán, J. L. and Smith, A. C. (2014) State space mixed models for binary responses with skewed inverse links using JAGS. Rio de Janeiro, Brazil.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
dprgumbel(1, 1, 3, 4)
pprgumbel(1, 1, 3, 4)
qprgumbel(0.2, 1, 3, 4)
rprgumbel(5, 2, 3, 4)
The Power Student t Distribution
Description
Density, distribution function, quantile function and random generation for the power Student t distribution with parameters mu, sigma, lambda and df.
Usage
dpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE)
ppt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE,
log.p = FALSE)
qpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE,
log.p = FALSE)
rpt(n, lambda = 1, mu = 0, sigma = 1, df)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
df |
degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The power Student t distribution has density
f(x)=[\lambda/\sigma][f((x-\mu)/\sigma)][F((x-\mu)/\sigma)] ^(\lambda-1)
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Lemonte A. and Bazán J.L.
Examples
dpt(1, 1, 3, 4, 1)
ppt(1, 1, 3, 4, 1)
qpt(0.2, 1, 3, 4, 1)
rpt(5, 2, 3, 4, 1)
The Reversal-Gumbel Distribution
Description
Density, distribution function, quantile function and random generation for the Reversal-Gumbel distribution with parameters mu and sigma.
Usage
drgumbel(x, mu = 0, sigma = 1, log = FALSE)
prgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qrgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rrgumbel(n, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal-Gumbel distribution has density
f(x)=\left[\frac{1}{\sigma}e^{\left(\frac{x-\mu}{\sigma}\right)-e^{\left(\frac{x-\mu}{\sigma}\right)}}\right]
,
where -\infty<\mu<\infty
is the location paramether and \sigma^2>0
is the scale parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
drgumbel(1, 3, 4)
prgumbel(1, 3, 4)
qrgumbel(0.2, 3, 4)
rprgumbel(5, 3, 4)
The Reversal Power Cauchy Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power Cauchy distribution with parameters mu, sigma and lambda.
Usage
drpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prpcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrpcauchy(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Cauchy distribution has density
f(x)=\lambda\left [\frac{1}{\pi}\arctan\left (-\frac{x-\mu}{\sigma} \right )+\frac{1}{2} \right ]^{\lambda -1}\left[ \frac{1}{\pi\sigma\left( 1+\left (\frac{x-\mu}{\sigma} \right )^{2} \right)} \right]
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
drpcauchy(1, 1, 3, 4)
prpcauchy(1, 1, 3, 4)
qrpcauchy(0.2, 1, 3, 4)
rrpcauchy(5, 2, 3, 4)
The Reversal Power Exponential Power Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power exponential power distribution with parameters mu, sigma, lambda and k.
Usage
drpexpow(x, lambda = 1, mu = 0, sigma = 1, k = 0, log = FALSE)
prpexpow(q, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE,
log.p = FALSE)
qrpexpow(p, lambda = 1, mu = 0, sigma = 1, k = 0, lower.tail = TRUE,
log.p = FALSE)
rrpexpow(n, lambda = 1, mu = 0, sigma = 1, k = 0)
Arguments
x , q |
vector of quantiles. |
mu , sigma |
location and scale parameters. |
k , lambda |
shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power exponential power distribution has density
f(x)=[\lambda/\sigma][f((x-\mu)/\sigma)][F((x-\mu)/\sigma)] ^(\lambda-1)
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
and k the shape parameters.
Examples
drpexpow(1, 1, 3, 4, 1)
prpexpow(1, 1, 3, 4, 1)
qrpexpow(0.2, 1, 3, 4, 1)
rrpexpow(5, 2, 3, 4, 1)
The Power Reversal Laplace Distribution
Description
Density, distribution function, quantile function and random generation for the power reversal Laplace distribution with parameters mu, sigma and lambda.
Usage
drplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrplaplace(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Laplace distribution has density
f(x)=\lambda\left[\frac{1}{2}+\frac{\left(1-e^{\frac{\left|x-\mu\right|}{\sigma}}\right)}{2}\textrm{sign}\left(-\frac{x-\mu}{\sigma}\right)\right]^{\lambda-1}\left[\frac{e^{-\frac{\left|x-\mu\right|}{\sigma}}}{2\sigma}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
Examples
drplaplace(1, 1, 3, 4)
prplaplace(1, 1, 3, 4)
qrplaplace(0.2, 1, 3, 4)
rrplaplace(5, 2, 3, 4)
The Reversal Power Logistic Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power logistic distribution with parameters mu, sigma and lambda.
Usage
drplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrplogis(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Logistic distribution has density
f(x)=\lambda \left [\frac{1}{1+e^{\left ( \frac{x-\mu}{\sigma} \right )} }\right ]^{\lambda-1}\left[\frac{ e^{-\left ( \frac{x-\mu}{\sigma} \right )} }{\sigma\left ( 1+e^{-\left ( \frac{x-\mu}{\sigma} \right )} \right )^2}\right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Nagler J. (1994) Scobit: an alternative estimator to logit and probit. American Journal Political Science, 38(1), 230-255.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
Examples
drplogis(1, 1, 3, 4)
prplogis(1, 1, 3, 4)
qrplogis(0.2, 1, 3, 4)
rrplogis(5, 2, 3, 4)
The Reversal Power Normal Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power normal distribution with parameters mu, sigma and lambda.
Usage
drpnorm(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prpnorm(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrpnorm(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrpnorm(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Normal distribution has density
f(x)=\lambda \left [ \Phi \left ( -\frac{x-\mu}{\sigma} \right ) \right ]^{\lambda - 1} \left[\frac{e^{ -\frac{1}{2}\left ( \frac{x-\mu}{\sigma} \right )^2}}{\sigma\sqrt{2\pi}} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Bazán, J. L., Romeo, J. S. and Rodrigues, J. (2014) Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics. 28(4), 467–482.
Examples
drpnorm(1, 1, 3, 4)
prpnorm(1, 1, 3, 4)
qrpnorm(0.2, 1, 3, 4)
rrpnorm(5, 2, 3, 4)
The Reversal Power Reversal-Gumbel Distribution
Description
Density, distribution function, quantile function and random generation for the reversal power reversal-Gumbel distribution with parameters mu, sigma and lambda.
Usage
drprgumbel(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)
prprgumbel(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrprgumbel(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrprgumbel(n, lambda = 1, mu = 0, sigma = 1)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power reversal-Gumbel distribution has density
f(x)=\lambda \left[1-e^{-e^{\left(-\frac{x-\mu}{\sigma}\right)}}\right]^{\lambda-1}\left[\frac{1}{\sigma}e^{\left(\frac{x-\mu}{\sigma}\right)-e^{\left(\frac{x-\mu}{\sigma}\right)}} \right]
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
References
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de São Paulo - Universidade Federal de São Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Bazán, J. L., Torres -Avilés, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Examples
drprgumbel(1, 1, 3, 4)
prprgumbel(1, 1, 3, 4)
qrprgumbel(0.2, 1, 3, 4)
rrprgumbel(5, 2, 3, 4)
The Power Reversal Student t Distribution
Description
Density, distribution function, quantile function and random generation for the power reversal Student t distribution with parameters mu, sigma, lambda and df.
Usage
drpt(x, lambda = 1, mu = 0, sigma = 1, df, log = FALSE)
prpt(q, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE,
log.p = FALSE)
qrpt(p, lambda = 1, mu = 0, sigma = 1, df, lower.tail = TRUE,
log.p = FALSE)
rrpt(n, lambda = 1, mu = 0, sigma = 1, df)
Arguments
x , q |
vector of quantiles. |
lambda |
shape parameter. |
mu , sigma |
location and scale parameters. |
df |
degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. |
Details
The reversal power Student t distribution has density
f(x)=[\lambda/\sigma][f((x-\mu)/\sigma)][F((x-\mu)/\sigma)] ^(\lambda-1)
,
where -\infty<\mu<\infty
is the location paramether, \sigma^2>0
the scale parameter and \lambda>0
the shape parameter.
Examples
drpt(1, 1, 3, 4, 1)
prpt(1, 1, 3, 4, 1)
qrpt(0.2, 1, 3, 4, 1)
rrpt(5, 2, 3, 4, 1)