
Package ‘phutil’
May 15, 2025

Title Persistence Homology Utilities

Version 0.0.1

Description A low-level package for hosting persistence data. It is part of the
'TDAverse' suite of packages, which is designed to provide a collection of
packages for enabling machine learning and data science tasks using
persistent homology. Implements a class for hosting persistence data, a
number of coercers from and to already existing and used data structures
from other packages and functions to compute distances between persistence
diagrams. A formal definition and study of bottleneck and Wasserstein
distances can be found in Bubenik, Scott and Stanley (2023)
<doi:10.1007/s41468-022-00103-8>. Their implementation in 'phutil' relies on
the 'C++' Hera library developed by Kerber, Morozov and Nigmetov (2017)
<doi:10.1145/3064175>.

License MIT + file LICENSE

URL https://github.com/tdaverse/phutil,

https://tdaverse.github.io/phutil/

BugReports https://github.com/tdaverse/phutil/issues

Depends R (>= 3.5)

Imports cli, rlang

Suggests ggplot2, knitr, microbenchmark, quarto, scales, TDA, tdaunif,
tinysnapshot, tinytest

LinkingTo BH

VignetteBuilder quarto

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation yes

Author Aymeric Stamm [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8725-3654>),

Jason Cory Brunson [aut] (ORCID:

1

https://doi.org/10.1007/s41468-022-00103-8
https://doi.org/10.1145/3064175
https://github.com/tdaverse/phutil
https://tdaverse.github.io/phutil/
https://github.com/tdaverse/phutil/issues
https://orcid.org/0000-0002-8725-3654

2 arch_spirals

<https://orcid.org/0000-0003-3126-9494>),
Michael Kerber [ctb] (HERA C++ code),
Dmitriy Morozov [ctb] (HERA C++ code),
Arnur Nigmetov [ctb] (HERA C++ code)

Maintainer Aymeric Stamm <aymeric.stamm@cnrs.fr>

Repository CRAN

Date/Publication 2025-05-15 13:50:08 UTC

Contents

arch_spirals . 2
distances . 3
noisy_circle . 5
pairwise-distances . 6
persistence . 8
persistence-set . 10
persistence_sample . 11
trefoils . 12

Index 13

arch_spirals A sample of persistence diagrams from the arch spiral

Description

A collection of 24 samples of size 120 on the arch spiral from which a persistence diagram is com-
puted using the TDA::ripsDiag() function with maxdimension = 2 and maxscale = 6. Each dia-
gram has been generated using the tdaunif::sample_arch_spiral() function with the following
parameters: n = 120, arms = 2`` and sd = 0.05‘. The seed was fixed to 28415.

Usage

arch_spirals

Format

A list of length 24, where each element is an object of class ’persistence’.

https://orcid.org/0000-0003-3126-9494

distances 3

distances Distances between two persistence diagrams

Description

This collection of functions computes the distance between two persistence diagrams of the same
homology dimension. The diagrams must be represented as 2-column matrices. The first column
of the matrix contains the birth times and the second column contains the death times of the points.

Usage

bottleneck_distance(
x,
y,
tol = sqrt(.Machine$double.eps),
validate = TRUE,
dimension = 0L

)

wasserstein_distance(
x,
y,
tol = sqrt(.Machine$double.eps),
p = 1,
validate = TRUE,
dimension = 0L

)

kantorovich_distance(
x,
y,
tol = sqrt(.Machine$double.eps),
p = 1,
validate = TRUE,
dimension = 0L

)

Arguments

x Either a matrix of shape n × 2 or an object of class persistence specifying the
first persistence diagram.

y Either a matrix of shape m × 2 or an object of class persistence specifying the
second persistence diagram.

tol A numeric value specifying the relative error. Defaults to sqrt(.Machine$double.eps).
For the Bottleneck distance, it can be set to 0.0 in which case the exact Bottle-
neck distance is computed, while an approximate Bottleneck distance is com-
puted if tol > 0.0. For the Wasserstein distance, it must be strictly positive.

4 distances

validate A boolean value specifying whether to validate the input persistence diagrams.
Defaults to TRUE. If FALSE, the function will not check if the input persistence
diagrams are valid. This can be useful for performance reasons, but it is recom-
mended to keep it TRUE for safety.

dimension An integer value specifying the homology dimension for which to compute the
distance. Defaults to 0L. This is only used if x and y are objects of class persis-
tence.

p A numeric value specifying the power for the Wasserstein distance. Defaults to
1.0.

Details

A matching φ : D1 → D2 between persistence diagrams is a bijection of multisets, where both
diagrams are assumed to have all points on the diagonal with infinite multiplicity. The p-Wasserstein
distance between D1 and D2 is defined as the infimum over all matchings of the expression

Wp(D1, D2) = inf
φ:D1→D2

(∑
x∈D1

∥x− φ(x)∥p
) 1

p

that can be thought of as the Minkowski distance between the diagrams viewed as vectors on the
shared coordinates defined by the matching φ. The norm ∥·∥ can be arbitrary; as implemented here,
it is the infinity norm ∥(x1, x2)∥∞ = max(x1, x2). In the limit p → ∞, the Wasserstein distance
becomes the bottleneck distance:

B(D1, D2) = inf
φ:D1→D2

sup
x∈D1

∥x− φ(x)∥.

The Wasserstein metric is also called the Kantorovich metric in recognition of the originator of the
metric.

Value

A numeric value storing either the Bottleneck or the Wasserstein distance between the two persis-
tence diagrams.

See Also

the Hera C++ library

Examples

bottleneck_distance(
persistence_sample[[1]]$pairs[[1]],
persistence_sample[[2]]$pairs[[1]]

)

bottleneck_distance(
persistence_sample[[1]],
persistence_sample[[2]]

https://github.com/anigmetov/hera

noisy_circle 5

)

wasserstein_distance(
persistence_sample[[1]]$pairs[[1]],
persistence_sample[[2]]$pairs[[1]]

)

wasserstein_distance(
persistence_sample[[1]],
persistence_sample[[2]]

)

noisy_circle Toy Data: Noisy circle

Description

A simulated data set consisting of 100 points sampled from a circle with additive Gaussian noise
using a standard deviation of 0.05.

Usage

noisy_circle_points

noisy_circle_ripserr

noisy_circle_tda_rips

Format

noisy_circle_points:
A matrix with 100 rows and 2 columns listing the coordinates of the points.

noisy_circle_ripserr:
An object of class ’PHom’ as returned by the ripserr::vietoris_rips() function, which is a
data frame with 3 variables:

• dimension: the dimension/degree of the feature,
• birth: the birth value of the feature,
• death: the death value of the feature.

noisy_circle_tda_rips:
A list of length 1 containing an object of class ’diagram’ as returned by the TDA::ripsDiag()$diagram
function, which is a matrix with 3 columns:

• dimension: the dimension/degree of the feature,
• birth: the birth value of the feature,
• death: the death value of the feature.

An object of class PHom (inherits from data.frame) with 101 rows and 3 columns.
An object of class list of length 1.

https://tdaverse.github.io/ripserr/reference/vietoris_rips.html
https://www.rdocumentation.org/packages/TDA/versions/1.9.1/topics/ripsDiag

6 pairwise-distances

Details

The point cloud stored in noisy_circle_points has been generated using the tdaunif package
using the tdaunif::sample_circle() function. Specifically, the following parameters were used:
n = 100, sd = 0.05 and a seed of 1234.

The persistence diagram stored in noisy_circle_ripserr has been computed using the ripserr
package with the ripserr::vietoris_rips() function. Specifically, the following parameters
were used: max_dim = 1L.

The persistence diagram stored in noisy_circle_tda_rips has been computed using the TDA
package with the TDA::ripsDiag() function. Specifically, the following parameters were used:
maxdimension = 1L and maxscale = 1.6322.

Source

https://tdaverse.github.io/tdaunif/reference/circles.html, https://tdaverse.github.
io/ripserr/reference/vietoris_rips.html, https://www.rdocumentation.org/packages/
TDA/versions/1.9.1/topics/ripsDiag

pairwise-distances Pairwise distances within a set of persistence diagrams

Description

This collection of functions computes the pairwise distance matrix between all pairs in a set of
persistence diagrams of the same homology dimension. The diagrams must be represented as 2-
column matrices. The first column of the matrix contains the birth times and the second column
contains the death times of the points.

Usage

bottleneck_pairwise_distances(
x,
tol = sqrt(.Machine$double.eps),
validate = TRUE,
dimension = 0L,
ncores = 1L

)

wasserstein_pairwise_distances(
x,
tol = sqrt(.Machine$double.eps),
p = 1,
validate = TRUE,
dimension = 0L,
ncores = 1L

)

https://tdaverse.github.io/tdaunif/
https://tdaverse.github.io/tdaunif/reference/circles.html
https://tdaverse.github.io/ripserr/
https://tdaverse.github.io/ripserr/reference/vietoris_rips.html
https://www.rdocumentation.org/packages/TDA/versions/1.9.1/topics/ripsDiag
https://tdaverse.github.io/tdaunif/reference/circles.html
https://tdaverse.github.io/ripserr/reference/vietoris_rips.html
https://tdaverse.github.io/ripserr/reference/vietoris_rips.html
https://www.rdocumentation.org/packages/TDA/versions/1.9.1/topics/ripsDiag
https://www.rdocumentation.org/packages/TDA/versions/1.9.1/topics/ripsDiag

pairwise-distances 7

kantorovich_pairwise_distances(
x,
tol = sqrt(.Machine$double.eps),
p = 1,
validate = TRUE,
dimension = 0L,
ncores = 1L

)

Arguments

x A list of either 2-column matrices or objects of class persistence specifying the
set of persistence diagrams.

tol A numeric value specifying the relative error. Defaults to sqrt(.Machine$double.eps).
For the Bottleneck distance, it can be set to 0.0 in which case the exact Bottle-
neck distance is computed, while an approximate Bottleneck distance is com-
puted if tol > 0.0. For the Wasserstein distance, it must be strictly positive.

validate A boolean value specifying whether to validate the input persistence diagrams.
Defaults to TRUE. If FALSE, the function will not check if the input persistence
diagrams are valid. This can be useful for performance reasons, but it is recom-
mended to keep it TRUE for safety.

dimension An integer value specifying the homology dimension for which to compute the
distance. Defaults to 0L. This is only used if x and y are objects of class persis-
tence.

ncores An integer value specifying the number of cores to use for parallel computation.
Defaults to 1L.

p A numeric value specifying the power for the Wasserstein distance. Defaults to
1.0.

Value

An object of class ’dist’ containing the pairwise distance matrix between the persistence diagrams.

Examples

spl <- persistence_sample[1:10]

Extract the list of 2-column matrices for dimension 0 in the sample
x <- lapply(spl[1:10], function(x) x$pairs[[1]])

Compute the pairwise Bottleneck distances
Db <- bottleneck_pairwise_distances(spl)
Db <- bottleneck_pairwise_distances(x)

Compute the pairwise Wasserstein distances
Dw <- wasserstein_pairwise_distances(spl)
Dw <- wasserstein_pairwise_distances(x)

8 persistence

persistence An S3 class for storing persistence data

Description

A collection of functions to coerce persistence data into objects of class persistence (See Value
section for more details on this class). It is currently possible to coerce persistence data from the
following sources:

• a matrix with at least 3 columns (dimension/degree, start/birth, end/death) as returned by
ripserr::vietoris_rips() in the form of the ’PHom’ class,

• a list as returned by any *Diag() function in the TDA package.

Usage

as_persistence(x, warn = TRUE, ...)

S3 method for class 'list'
as_persistence(x, warn = TRUE, ...)

S3 method for class 'persistence'
as_persistence(x, warn = TRUE, ...)

S3 method for class 'data.frame'
as_persistence(x, warn = TRUE, ...)

S3 method for class 'matrix'
as_persistence(x, warn = TRUE, ...)

S3 method for class 'diagram'
as_persistence(x, warn = TRUE, ...)

S3 method for class 'PHom'
as_persistence(x, ...)

S3 method for class 'hclust'
as_persistence(x, warn = TRUE, birth = NULL, ...)

S3 method for class 'persistence'
print(x, ...)

S3 method for class 'persistence'
format(x, ...)

get_pairs(x, dimension, ...)

S3 method for class 'persistence'

https://tdaverse.github.io/ripserr/reference/vietoris_rips.html

persistence 9

as.matrix(x, ...)

S3 method for class 'persistence'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)

Arguments

x An R object containing the persistence data to be coerced into an object of class
persistence. Currently supported forms are:

• a ≥ 2-column matrix (or object coercible to one) with dimension/degree,
start/birth and end/death columns; if it has only 2 columns, we assume that
the dimension column is missing and we set it to 0 (i.e. we assume that the
data is in the form birth and death),

• a base::data.frame (or object coercible to one) with at least 3 columns
containing the persistence data; if it has only 2 columns, we assume that the
dimension column is missing and we set it to 0,

• a list of 2-column matrices (or objects coercible to one) with the first col-
umn being the birth and the second column being the death of homological
features; indexed by dimension, i.e. the i-th element of the list corresponds
to the (i− 1)-th homology dimension,

• an object of class ’PHom’ as returned by ripserr::vietoris_rips(),
• (a list as returned by a *Diag() function in TDA (e.g. TDA::ripsDiag())

whose first element is) an object of class ’diagram’,
• an object of class stats::hclust in which case we use the entry height

as the death of homological features and 0 as the birth of all features.

warn A boolean specifying whether to issue a warning if the input persistence data
contained unordered pairs. Defaults to TRUE.

... Parameters passed to methods.

birth A numeric value specifying the height at which to declare all leaves were born.
Defaults to 0 if all heights are non-negative and -Inf otherwise.

dimension A non-negative integer specifying the homology dimension for which to recover
a matrix of persistence pairs.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, ba-
sically with the meaning of data.frame(*, check.names = !optional). See
also the make.names argument of the matrix method.

Details

Caution. When providing an unnamed input matrix, the matrix coercer assumes that it has at least 3
columns, with the first column being the dimension/degree, the second column being the start/birth
and the third column being the end/death.

https://tdaverse.github.io/ripserr/reference/vietoris_rips.html
https://www.rdocumentation.org/packages/TDA/versions/1.9.1/topics/ripsDiag

10 persistence-set

Value

An object of class persistence which is a list of 2 elements:

• pairs: A list of 2-column matrices containing birth-death pairs. The i-th element of the list
corresponds to the (i − 1)-th homology dimension. If there is no pairs for a given dimension
but there are pairs in higher dimensions, the corresponding element(s) is/are filled with a 0×2
numeric matrix.

• metadata: A list of length 6 containing information about how the data was computed:

– orderered_pairs: A boolean indicating whether the pairs in the pairs list are ordered
(i.e. the first column is strictly less than the second column).

– data: The name of the object containing the original data on which the persistence data
was computed.

– engine: The name of the package and the function of this package that computed the
persistence data in the form "package_name::package_function".

– filtration: The filtration used in the computation in a human-readable format (i.e. full
names, capitals where need, etc.).

– parameters: A list of parameters used in the computation.
– call: The exact call that generated the persistence data.

Examples

as_persistence(noisy_circle_ripserr)

x <- as_persistence(noisy_circle_tda_rips)
x

as_persistence(x)

get_pairs(x, dimension = 1)

as.data.frame(x)

distances between cities
euroclust <- hclust(eurodist, method = "ward.D")
as_persistence(euroclust)

`hclust()` can accommodate negative distances
d <- as.dist(rbind(c(0, 3, -4), c(3, 0, 5), c(-4, 5, 0)))
hc <- hclust(d, method = "single")
ph <- as_persistence(hc, birth = -10)
get_pairs(ph, 0)

persistence-set An ’S3’ class object for storing sets of persistence diagrams

Description

An ’S3’ class object for storing sets of persistence diagrams

persistence_sample 11

Usage

as_persistence_set(x)

S3 method for class 'persistence_set'
format(x, ...)

S3 method for class 'persistence_set'
print(x, ...)

Arguments

x A list of objects of class persistence.

... Additional arguments passed to the function.

Value

An object of class ’persistence_set’ containing the set of persistence diagrams.

Examples

Create a persistence set from a list of persistence diagrams
as_persistence_set(persistence_sample[1:10])

persistence_sample Toy Data: A sample of persistence diagrams

Description

A collection of 100 samples of size 100 on the sphere from which a persistence diagram is com-
puted using the TDA::ripsDiag() function with parameters maxdimension = 1L and maxscale =
1.6322. Each diagram has been generated using the tdaunif::sample_2sphere() function with
the following parameters: n = 100 and sd = 0.05. The seed was fixed to 1234.

Usage

persistence_sample

Format

A list of length 100, where each element is an object of class ’persistence’.

12 trefoils

trefoils A sample of persistence diagrams from the trefoil

Description

A collection of 24 samples of size 120 on the trefoil from which a persistence diagram is computed
using the TDA::ripsDiag() function with maxdimension = 2 and maxscale = 6. Each diagram has
been generated using the tdaunif::sample_trefoil() function with the following parameters: n
= 120 and sd = 0.05. The seed was fixed to 28415.

Usage

trefoils

Format

A list of length 24, where each element is an object of class ’persistence’.

Index

∗ datasets
arch_spirals, 2
noisy_circle, 5
persistence_sample, 11
trefoils, 12

arch_spirals, 2
as.data.frame.persistence

(persistence), 8
as.matrix.persistence (persistence), 8
as_persistence (persistence), 8
as_persistence_set (persistence-set), 10

base::data.frame, 9
bottleneck_distance (distances), 3
bottleneck_pairwise_distances

(pairwise-distances), 6

data.frame, 9
distances, 3

format.persistence (persistence), 8
format.persistence_set

(persistence-set), 10

get_pairs (persistence), 8

kantorovich_distance (distances), 3
kantorovich_pairwise_distances

(pairwise-distances), 6

make.names, 9

noisy_circle, 5
noisy_circle_points (noisy_circle), 5
noisy_circle_ripserr (noisy_circle), 5
noisy_circle_tda_rips (noisy_circle), 5

pairwise-distances, 6
persistence, 3, 4, 7, 8, 8, 9–11
persistence-set, 10

persistence_sample, 11
print.persistence (persistence), 8
print.persistence_set

(persistence-set), 10

stats::hclust, 9

TDA::ripsDiag(), 2, 11, 12
tdaunif::sample_2sphere(), 11
tdaunif::sample_arch_spiral(), 2
tdaunif::sample_trefoil(), 12
trefoils, 12

wasserstein_distance (distances), 3
wasserstein_pairwise_distances

(pairwise-distances), 6

13

	arch_spirals
	distances
	noisy_circle
	pairwise-distances
	persistence
	persistence-set
	persistence_sample
	trefoils
	Index

