Title: Visually Guided Preprocessing of Bioanalytical Laboratory Data
Version: 0.1.1
Maintainer: Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>
Description: Reproducible cleaning of biomedical laboratory data using visualization, error correction, and transformation methods implemented as interactive R notebooks. A detailed description of the methods ca ben found in Malkusch, S., Hahnefeld, L., Gurke, R. and J. Lotsch. (2021) <doi:10.1002/psp4.12704>.
License: GPL (≥ 3)
Encoding: UTF-8
URL: https://github.com/JornLotsch/pguIMP
BugReports: https://github.com/JornLotsch/pguIMP/issues
Imports: R6 (≥ 2.4.1), DT, DataVisualizations, dbscan, dplyr, e1071, finalfit, ggplot2, ggthemes, Hmisc, magrittr, MASS, RWeka, VIM, bbmle, grid, gridExtra, mice, nortest, outliers, plotly, psych, purrr, rcompanion, readr, readxl, rlang, rmarkdown, robust, shiny, stats, stringr, tibble, tidyr, tidyselect, tools, writexl
Collate: 'dLogLikelihood.R' 'importDataSet.R' 'normalDistribution.R' 'pguCorrValidator.R' 'pguCorrelator.R' 'pguDMwR.R' 'pguFile.R' 'pguData.R' 'pguFilter.R' 'pguLimitsOfQuantification.R' 'pguImporter.R' 'pguStatus.R' 'pguReporter.R' 'pguExporter.R' 'pguValidator.R' 'pguImputation.R' 'pguOutlierDetection.R' 'pguOutliers.R' 'pguMissingsCharacterizer.R' 'pguMissings.R' 'pguNormalizer.R' 'sLogLikelihood.R' 'pguNormDist.R' 'pguModel.R' 'pguTransformator.R' 'pguOptimizer.R' 'pguExplorer.R' 'pguDelegate.R' 'transposeTibble.R' 'pguIMP.R' 'pguRegressor.R'
Suggests: knitr, devtools, ellipsis (≥ 0.3.2), roxygen2
NeedsCompilation: no
RoxygenNote: 7.3.3
Packaged: 2026-02-18 06:23:40 UTC; joern
Author: Sebastian Malkusch ORCID iD [aut], Jorn Lotsch ORCID iD [aut, cre]
Repository: CRAN
Date/Publication: 2026-02-20 10:40:26 UTC

Visually Guided Preprocessing of Bioanalytical Laboratory Data

Description

Reproducible cleaning of biomedical laboratory data using visualization, error correction, and transformation methods implemented as interactive R notebooks. A detailed description of the methods ca ben found in Malkusch, S., Hahnefeld, L., Gurke, R. and J. Lotsch. (2021) <doi:10.1002/psp4.12704>.

Author(s)

Sebastian Malkusch [aut] (ORCID: <https://orcid.org/0000-0001-6766-140X>), Jorn Lotsch [aut, cre] (ORCID: <https://orcid.org/0000-0002-5818-6958>)

Maintainer: Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>

References

Malkusch S, Hahnefeld L, Gurke R, Lotsch J (2021). "Visually guided preprocessing of bioanalytical laboratory data using an interactive R notebook (pguIMP)." CPT: Pharmacometrics and Systems Pharmacology, 10(11), 1371–1381. doi:10.1002/psp4.12704

Examples

# simple examples of the most important functions

centralValue

Description

Returns the central value of a variable.

Usage

centralValue(x, ws = NULL)

Arguments

x

variable

ws

weights

Details

Function that obtains a statistic of centrality of a variable, given a sample of values. If the variable is numeric it returns de median, if it is a factor it returns the mode. In other cases it tries to convert to a factor and then returns the mode. Taken from: https://github.com/ltorgo/DMwR2/

Value

central value

Author(s)

Luis Torgo

Examples

centralValue(x = seq(1,10,1))


dLogLikelihood

Description

Calculates the log Likelihood of a normally distributed event.

Usage

dLogLikelihood(x = "numeric", pars = c(mu = 0, sigma = 1))

Arguments

x

The x-value(numeric)

pars

Numeric vector with two entries c(mu, sigma). Where mu is the expectation value and sigma is the standard deviation. (numeric)

Value

The logLikelihood. (numeric)

Author(s)

Sebastian Malkusch

Examples

y <- pguIMP::dLogLikelihood(x=5, pars = c(mu=0.0, sigma=1.0))

importDataSet

Description

Imports a data set to the shiny 'pguIMP' web interface. Extracts import options from a 'pguIMP::file' instance and imports the desired record based on the passed information.

Usage

importDataSet(obj = "pgu.file")

Arguments

obj

Instance of the R6 class pguIMP::pgu.file.

Value

A data frame that contains the imported data (tibble::tibble)

Author(s)

Sebastian Malkusch


knnImputation

Description

Imputes missings using kNN.

Usage

knnImputation(data, k = 10, scale = TRUE, meth = "weighAvg", distData = NULL)

Arguments

data

data frame containing missing values

k

number of nearest neighbors

scale

Indicates if data should be scaled

meth

Method for estimating the missing value

distData

Distance to the case

Details

Function that fills in all unknowns using the k Nearest Neighbours of each case with unknows. By default it uses the values of the neighbours and obtains an weighted (by the distance to the case) average of their values to fill in the unknows. If meth='median' it uses the median/most frequent value, instead. Taken from https://github.com/ltorgo/DMwR2/

Value

cleaned data

Author(s)

Luis Torgo

Examples

centralValue(x = seq(1,10,1))


nnk

Description

Outlier detection using kth Nearest Neighbour Distance method Takes a dataset and finds its outliers using distance-based method

Usage

nnk(
  x,
  k = 0.05 * nrow(x),
  cutoff = 0.95,
  Method = "euclidean",
  rnames = FALSE,
  boottimes = 100
)

Arguments

x

dataset for which outliers are to be found

k

No. of nearest neighbours to be used, default value is 0.05*nrow(x)

cutoff

Percentile threshold used for distance, default value is 0.95

Method

Distance method, default is Euclidean

rnames

Logical value indicating whether the dataset has rownames, default value is False

boottimes

Number of bootsrap samples to find the cutoff, default is 100 samples

Details

nnk computes kth nearest neighbour distance of an observation and based on the bootstrapped cutoff, labels an observation as outlier. Outlierliness of the labelled 'Outlier' is also reported and it is the bootstrap estimate of probability of the observation being an outlier. For bivariate data, it also shows the scatterplot of the data with labelled outliers.

Value

Outlier Observations: A matrix of outlier observations

Location of Outlier: Vector of Sr. no. of outliers

Outlier probability: Vector of proportion of times an outlier exceeds local bootstrap cutof

Author(s)

Vinay Tiwari, Akanksha Kashikar

References

Hautamaki, V., Karkkainen, I., and Franti, P. 2004. Outlier detection using k-nearest neighbour graph. In Proc. IEEE Int. Conf. on Pattern Recognition (ICPR), Cambridge, UK.

Examples

#Create dataset
X=iris[,1:4]
#Outlier detection
nnk(X,k=4)


normalDistribution

Description

Probability density distribution of a normally distributed variable.

Usage

normalDistribution(x = "numeric", mu = "numeric", sigma = "numeric")

Arguments

x

The x-value (numeric)

mu

The expextation value (numeric)

sigma

The standard deviation (numeric)

Details

Calculates p(x | mu, sigma). Where p is the probability of observing an event x given the expected value mu and the standard deviation sigma.

Value

The probability of observing event x given mu and sigma. (numeric)

Author(s)

Sebastian Malkusch

Examples

y <- pguIMP::normalDistribution(x=5, mu=0.0, sigma=1.0)

pgu.corrValidator

Description

An R6 class that performs pairwise correlation of the features of the original and the imputed data set. The correlation results of both data sets are compared by subtraction.

Format

[R6::R6Class] object.

Construction

x <- pguIMP::pgu.corrValidator$new()

Active bindings

featureNames

Returns the instance variable featureNames. (character)

orgR_mat

Returns the instance variable orgR_mat. (matrix)

impR_mat

Returns the instance variable impR_mat. (matrix)

orgP_mat

Returns the instance variable orgP_mat. (matrix)

impP_mat

Returns the instance variable impP_mat. (matrix)

corr_df

Returns the instance variable corr_df. (tibble::tibble)

summary_df

Returns the instance variable summary_df. (tibble::tibble)

Methods

Public methods


Method new()

Clears the heap and indicates if instance of 'pgu.corrValidator' is removed from heap.

Summary of the correlation deviation distribution.

Creates a square matrix which dimension corresponds to the length of the instance variable featureNames. The matrix entries are set to a distinct 'value'.

Flattens the results transforms them into a dataframe and stores it into the instance variable corr_df.

Creates and returns a new 'pgu.corrValidator' object.

Usage
pgu.corrValidator$new(org_df = "tbl_df", imp_df = "tbl_df")
Arguments
org_df

The original data to be analyzed. (tibble::tibble)

imp_df

The imputed version of the org_df data.

Returns

A new 'pgu.corrValidator' object. (pguIMP::pgu.corrValidator)


Method print()

Prints instance variables of a 'pgu.corrValidator' object.

Usage
pgu.corrValidator$print()
Returns

string


Method reset()

Resets the object 'pgu.corrValidator' based on the instance variable featureNames..

Usage
pgu.corrValidator$reset()

Method fit()

Runs the corraltion analysis.

Usage
pgu.corrValidator$fit(org_df = "tbl_df", imp_df = "tbl_df")
Arguments
org_df

Adataframe comprising the original data. (tibble::tibble)

imp_df

Adataframe comprising the imputed data. (tibble::tibble)


Method correlationScatterPlot()

Plots the correlation analysis results.

Usage
pgu.corrValidator$correlationScatterPlot()

Method correlationBarPlot()

Creates and returns a histogram from the cor_delat values.

Usage
pgu.corrValidator$correlationBarPlot()
Returns

Bar plot (ggplot2::ggplot)


Method correlationBoxPlot()

Plots the correlation analysis results.

Usage
pgu.corrValidator$correlationBoxPlot()

Method correlationCompoundPlot()

Creates and returns a compund graphical analysis of the cor_delta values.

Usage
pgu.corrValidator$correlationCompoundPlot()
Returns

Compound plot (gridExtra::grid.arrange)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.corrValidator$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%
  tibble::as_tibble()
comp_df <- data_df %>%
  dplyr::mutate(Sepal.Length = sample(Sepal.Length))
corr_obj = pguIMP::pgu.corrValidator$new()
corr_obj$fit(data_df, comp_df)
print(corr_obj)


pgu.correlator

Description

An R6 class that performs pairwise correlation on the pguIMP data set.

Format

[R6::R6Class] object.

Construction

x <- pguIMP::pgu.correlator$new()

Active bindings

featureNames

Returns the instance variable featureNames. (character)

setFeatureNames

Sets the instance variable featureNames. It further initializes the instance variables: intercept, pIntercept, slope, pSlope. (character)

method

Returns the instance variable method. (character)

r

Returns the instance variable r. (matrix)

pPearson

Returns the instance variable pPearson. (matrix)

tau

Returns the instance variable tau. (matrix)

pKendall

Returns the instance variable pKendall. (matrix)

rho

Returns the instance variable rho. (matrix)

pSpearman

Returns the instance variable pSpearman. (matrix)

abscissa

Returns the instance variable abscissa. (character)

setAbscissa

Sets the instance variable abscicca to value.

ordinate

Returns the instance variable ordinate. (character)

setOrdinate

Sets the instance variable ordinate to value.

test

Returns the instance variable test. (stats::cor.test)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.correlator' object.

Usage
pgu.correlator$new(data = "tbl_df")
Arguments
data

The data to be modeled. (tibble::tibble)

Returns

A new 'pgu.correlator' object. (pguIMP::pgu.correlator)


Method finalize()

Clears the heap and indicates if instance of 'pgu.correlator' is removed from heap.

Usage
pgu.correlator$finalize()

Method print()

Prints instance variables of a 'pgu.correlator' object.

Usage
pgu.correlator$print()
Returns

string


Method resetCorrelator()

Performes pair-wise correlation analysis on the attributes of the data frame. Progresse is indicated by the progress object passed to the function.

Usage
pgu.correlator$resetCorrelator(data = "tbl_df", progress = "Progress")
Arguments
data

Dataframe with at least two numeric attributes. (tibble::tibble)

progress

Keeps track of the analysis progress. (shiny::Progress)


Method resetMatrix()

Creates a square matrix which dimension corresponds to the length of the instance variable featureNames. The matrix entries are set to a distict 'value'.

Usage
pgu.correlator$resetMatrix(value = "numeric")
Arguments
value

The value the matrix entries are set to. (numeric)

Returns

A square matrix. (matrix)


Method featureIdx()

Determines the numerical index of the column of an attribute based on the attribute name.

Usage
pgu.correlator$featureIdx(feature = "character")
Arguments
feature

The attribute's name. (character)

Returns

The attributes column index. (numeric)


Method calcCorrelationNumeric()

Creates a correlation test between two attributes of a dataframe. The test is stored as instance variable.

Usage
pgu.correlator$calcCorrelationNumeric(
  abscissa = "numeric",
  ordinate = "numeric",
  method = "character"
)
Arguments
abscissa

The abscissa values. (numeric)

ordinate

The ordinate values. (numeric)

method

The cname of the correlation test. Valid coiced are defined by the instance variable 'method'. (chatacter)


Method createCorrelationMatrixPearson()

Performs the actual correlation test routine after Pearson. Iteratively runs through the attributes known to the class and calculates Pearson's correlation for each valid attribute pair. The test results are stored in the instance variables: r, pPearson. Here, pX represents the p-value of the respective parameter X. Displays the progress if shiny is loaded.

Usage
pgu.correlator$createCorrelationMatrixPearson(
  data = "tbl_df",
  progress = "Progress"
)
Arguments
data

The data to be analysed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method createCorrelationMatrixKendall()

Performs the actual correlation test routine after Kendall. Iteratively runs through the attributes known to the class and calculates Kendall's correlation for each valid attribute pair. The test results are stored in the instance variables: tau, pKendall. Here, pX represents the p-value of the respective parameter X. Displays the progress if shiny is loaded.

Usage
pgu.correlator$createCorrelationMatrixKendall(
  data = "tbl_df",
  progress = "Progress"
)
Arguments
data

The data to be analysed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method createCorrelationMatrixSpearman()

Performs the actual correlation test routine after Spearman. Iteratively runs through the attributes known to the class and calculates Spearman's correlation for each valid attribute pair. The test results are stored in the instance variables: rho, pSpearman. Here, pX represents the p-value of the respective parameter X. Displays the progress if shiny is loaded.

Usage
pgu.correlator$createCorrelationMatrixSpearman(
  data = "tbl_df",
  progress = "Progress"
)
Arguments
data

The data to be analysed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method correlate()

Performs the all three correlation test routines defined within the instance variable 'method'. Displays the progress if shiny is loaded.

Usage
pgu.correlator$correlate(data = "tbl_df", progress = "Progress")
Arguments
data

The data to be analysed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method printFeature()

Transforms the results of the correlation procedure for a valid pair of attributes to a dataframe and returns it.

Usage
pgu.correlator$printFeature()
Returns

The analyis result as a dataframe. (tibble::tibble)


Method printRTbl()

Transfroms instance variable 'r' to a dataframe and returns it.

Usage
pgu.correlator$printRTbl()
Returns

Dataframe of instance variable 'r'. (tibble::tibble)


Method printPPearsonTbl()

Transfroms instance variable 'pPearson' to a dataframe and returns it.

Usage
pgu.correlator$printPPearsonTbl()
Returns

Dataframe of instance variable 'pPearson'. (tibble::tibble)


Method printTauTbl()

Transfroms instance variable 'tau' to a dataframe and returns it.

Usage
pgu.correlator$printTauTbl()
Returns

Dataframe of instance variable 'tau'. (tibble::tibble)


Method printPKendallTbl()

Transfroms instance variable 'pKendall' to a dataframe and returns it.

Usage
pgu.correlator$printPKendallTbl()
Returns

Dataframe of instance variable 'pKendall'. (tibble::tibble)


Method printRhoTbl()

Transfroms instance variable 'rho' to a dataframe and returns it.

Usage
pgu.correlator$printRhoTbl()
Returns

Dataframe of instance variable 'rho'. (tibble::tibble)


Method printPSpearmanTbl()

Transfroms instance variable 'pSpearman' to a dataframe and returns it.

Usage
pgu.correlator$printPSpearmanTbl()
Returns

Dataframe of instance variable 'pSpearman'. (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.correlator$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%
  tibble::as_tibble() %>%
  dplyr::select(-c("Species"))
correlator = pguIMP::pgu.correlator$new(data_df)

pgu.data

Description

Handles the pguIMP dataset.

Format

[R6::R6Class] object.

Details

Stores the pguIMP dataset as instance variable and keeps track of the attributes of interest. Provides additionally fast access to several statistical information about the data set. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

rawData

Returns the instance variable rawData (tibble::tibble)

setRawData

Sets the instance variable rawData (tibble::tibble)

attributeNames

Returns the instance variable attributeNames (character)

numericalAttributeNames

Returns the instance variable numericalAttributeNames (character)

categoricalAttributeNames

Returns the instance variable categoricalAttributeNames (character)

classInformation

Returns the instance variable classInformation (tibble::tibble)

statistics

Returns the instance variable statistics (tibble::tibble)

reducedStatistics

Returns the instance variable reducedStatistics (tibble::tibble)

missingsStatistics

Returns the instance variable missingsStatistics (tibble::tibble)

Methods

Public methods


Method new()

Clears the heap and indicates that instance of pguIMP::pgu.data is removed from heap.

Summarizes information on the instance variable rawData and retruns it in form of a compact data frame.

Summarizes a vector of numericals and returns summary.

Iterativley calls the function summarize_numerical_data on all numerical attributes of the instance variable rawData and returns the result in form of a data frame.

Calls the function calculate_statistics filters the result for the attribute names and arithmetic mean values. and returns the result in form of a data frame.

Calls the class' function dataStatistics filters the result for the attribute names and information about missing values. and returns the result in form of a data frame.

Creates and returns a new pguIMP::pgu.data object.

Usage
pgu.data$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

val

Vector of numericals to be summarized. (numeric)

Returns

A new pguIMP::pgu.data object. (pguIMP::pgu.data)


Method print()

Prints instance variables of a pguIMP::pgu.data object.

Usage
pgu.data$print()
Returns

string


Method fit()

Extracts information about the instance variable rawData.

Usage
pgu.data$fit()

Method attribute_index()

Returns the index of an attribute within the instance variable attributeNames.

Usage
pgu.data$attribute_index(attribute = "character")
Arguments
attribute

Attribute's name. (character)

Returns

Index of attribute's name in rawData (numeric)


Method numerical_data()

Returns the numeric attributes of the instance variable rawData.

Usage
pgu.data$numerical_data()
Returns

A data frame (tibble::tibble)


Method categorical_data()

Returns the categorical attributes of the instance variable rawData.

Usage
pgu.data$categorical_data()
Returns

A data frame (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.data$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch

Examples

require(dplyr)
require(tibble)
data(iris)
data_df <- iris %>%
  tibble::as_tibble()
data_obj = pguIMP::pgu.data$new(data_df)

pgu.delegate

Description

Manages the communication between the shiny gui layer and the classes of the pguIMP package

Format

R6::R6Class object.

Details

Comprises all needed classes from the pguIMP package and manages the communication between the gui and the analysis. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

status

Returns the instance variable status (pguIMP::pgu.status)

fileName

Returns the instance variable fileName (pguIMP::pgu.file)

loqFileName

Returns the instance variable loqFileName (pguIMP::pgu.file)

rawData

Returns the instance variable rawData (pguIMP::pgu.data)

filterSet

Returns the instance variable filterSet (pguIMP::pgu.filter)

filteredData

Returns the instance variable filteredData (pguIMP::pgu.data)

loq

Returns the instance variable loq (pguIMP::pgu.limitsOfQuantification)

loqMutatedData

Returns the instance variable loqMutatedData (pguIMP::pgu.data)

explorer

Returns the instance variable explorer (pguIMP::pgu.explorer)

optimizer

Returns the instance variable optimizer (pguIMP::pgu.optimizer)

transformator

Returns the instance variable transformator (pguIMP::pgu.transformator)

model

Returns the instance variable model (pguIMP::pgu.model)

transformedData

Returns the instance variable transformedData (pguIMP::pgu.data)

featureModel

Returns the instance variable featureModel (pguIMP::pgu.normDist)

normalizer

Returns the instance variable normalizer (pguIMP::pgu.normalizer)

normalizedData

Returns the instance variable normalizedData (pguIMP::pgu.data)

missings

Returns the instance variable missings (pguIMP::pgu.missings)

missingsCharacterizer

Returns the instance variable missingsCharacterizer (pguIMP::pgu.missingsCharacterizer)

outliers

Returns the instance variable outlierd (pguIMP::pgu.outliers)

imputer

Returns the instance variable imputer (pguIMP::pgu.imputation)

imputedData

Returns the instance variable imputedData (pguIMP::pgu.data)

cleanedData

Returns the instance variable cleanedData (pguIMP::pgu.data)

validator

Returns the instance variable validator (pguIMP::pgu.validator)

corrValidator

Returns the instance variable corrValidator (pguIMP::pgu.corrValidator)

exporter

Returns the instance variable exporter (pguIMP::pgu.exporter)

reporter

Returns the instance variable reporter (pguIMP::pgu.reporter)

Methods

Public methods


Method new()

Clears the heap and indicates that instance of pgu.delegate is removed from heap.

Creates and returns a new pgu.delegate object.

Usage
pgu.delegate$new(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)

Returns

A new pgu.delegate object. (pguIMP::pgu.delegate)


Method print()

Prints instance variables of a pgu.delegate object.

Usage
pgu.delegate$print()
Returns

string


Method update_import_gui()

Updates the import gui

Usage
pgu.delegate$update_import_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method query_data()

Manages the data upload to the R server. Updates the instance class status.

Usage
pgu.delegate$query_data(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method import_data()

Imports uploaded data from the R server into the instance variable rawData. Updates the instance class status.

Usage
pgu.delegate$import_data(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_import_data_Types_tbl()

Updates the tbl.importDataTypes table.

Usage
pgu.delegate$update_import_data_Types_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_import_data_statistics_tbl()

Updates the tbl.importDataStatistics table.

Usage
pgu.delegate$update_import_data_statistics_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_import_missings_statistics_tbl()

Updates the tbl.importMissingsStatistics table.

Usage
pgu.delegate$update_import_missings_statistics_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_filter_select_tbl()

Updates the tbl.filter table.

Usage
pgu.delegate$update_filter_select_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_filter()

Queries the filter parameters selected by the user in the gui and stores them in the instance variable filterSet.

Usage
pgu.delegate$update_filter(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_filter_inverse()

Queries the filter parameters selected by the user in the gui inverts them and stores them in the instance variable filterSet.

Usage
pgu.delegate$update_filter_inverse(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method reset_filter()

Generates a filter set that selects the whole data frame. Stores them in the instance variable filterSet. Updates the gui.

Usage
pgu.delegate$reset_filter(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method filter_data()

Filters the data corresponding to the user defined parameters stored in the instance variable filterSet. Results are stored in the instance variables filteredData and filteredMetadata. Updated the instance variable filterSet.

Usage
pgu.delegate$filter_data(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_filter_statistics_tbl()

Updates the tbl.filterStatistics table.

Usage
pgu.delegate$update_filter_statistics_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_filter_missings_tbl()

Updates the tbl.filterMissings table.

Usage
pgu.delegate$update_filter_missings_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_gui()

Updates the gui.

Usage
pgu.delegate$update_exploration_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_abscissa()

Transfers the information oabout the selected abscissa attribute to the explorer class.

Usage
pgu.delegate$update_exploration_abscissa(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_ordinate()

Transfers the information oabout the selected ordinate attribute to the explorer class.

Usage
pgu.delegate$update_exploration_ordinate(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_graphic()

Updates the exploration abscissa vs. ordinate scatter plot corresponding to the respective user defined attributes.

Usage
pgu.delegate$update_exploration_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_abscissa_graphic()

Updates the abscissa compound plot corresponding to the respective user defined attributes.

Usage
pgu.delegate$update_exploration_abscissa_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_ordinate_graphic()

Updates the ordinate compound plot corresponding to the respective user defined attributes.

Usage
pgu.delegate$update_exploration_ordinate_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_abscissa_table()

Updates the numerical abscissa analysis table. corresponding to the respective user defined attributes.

Usage
pgu.delegate$update_exploration_abscissa_table(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_exploration_ordinate_table()

Updates the numerical ordinate analysis table. corresponding to the respective user defined attributes.

Usage
pgu.delegate$update_exploration_ordinate_table(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method reset_loq_values()

Initializes the LOQ object after filtering.

Usage
pgu.delegate$reset_loq_values(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_upload_gui()

Updates the gui.

Usage
pgu.delegate$update_loq_upload_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method query_loq()

Manages the loq data upload to the R server.

Usage
pgu.delegate$query_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method import_loq()

Imports the loq data upload to the R server.

Usage
pgu.delegate$import_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_gui()

Updates the gui.

Usage
pgu.delegate$update_loq_define_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_feature()

Updates the gui.

Usage
pgu.delegate$update_loq_define_feature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_lloq()

Updates the gui.

Usage
pgu.delegate$update_loq_define_lloq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_uloq()

Updates the gui.

Usage
pgu.delegate$update_loq_define_uloq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_table()

Updates the gui.

Usage
pgu.delegate$update_loq_define_table(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_define_menu()

Updates the gui.

Usage
pgu.delegate$update_loq_define_menu(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method set_loq_define_values()

Updates loq class.

Usage
pgu.delegate$set_loq_define_values(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method set_loq_define_values_globally()

Updates loq class.

Usage
pgu.delegate$set_loq_define_values_globally(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session

Details

Imports uploaded data from the R server into the instance variable loqData. Updates the instance class status.

Example code:

importLoq = function(input, output, session){
  if (private$.status$query(processName = "dataImported")){
    tryCatch({
      private$.loq$setLoq <- private$.importer$importLoq(self$fileName)
      private$.status$update(processName = "loqImported", value = TRUE)
    },
    error = function(e) {
      private$.status$update(processName = "loqImported", value = FALSE)
      shiny::showNotification(paste(e),type = "error", duration = 10)
    }#error
    )#tryCatch
  }#if
  else{
    private$.status$update(processName = "loqImported", value = FALSE)
    shiny::showNotification(paste("No file uploaded to import. Please upload a valid file first."),type = "error", duration = 10)
  }#else
}, #function

Method update_loq_detect_gui()

Updates the gui.

Usage
pgu.delegate$update_loq_detect_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_na_handling()

Updates the si.loqHandling shiny widget corresponding to the respective user defined parameter.

Usage
pgu.delegate$update_loq_na_handling(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method init_detect_loq()

Runs the outlier detection routine of the instance variable outliers. Updates the instance class status.

Usage
pgu.delegate$init_detect_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method detect_loq()

Runs the outlier detection routine of the instance variable outliers. Updates the instance class status.

Usage
pgu.delegate$detect_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_detect_statistics_tbl()

Updates the numerical loq statistics analysis table

Usage
pgu.delegate$update_loq_detect_statistics_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_detect_outlier_tbl()

Updates the numerical loq table.

Usage
pgu.delegate$update_loq_detect_outlier_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_detect_statistics_graphic()

Updates the loq statistics graphic.

Usage
pgu.delegate$update_loq_detect_statistics_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_detect_attribute_graphic()

Updates the loq feature compound graphic.

Usage
pgu.delegate$update_loq_detect_attribute_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_detect_attribute_tbl()

Updates the numerical loq feature table.

Usage
pgu.delegate$update_loq_detect_attribute_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_mutate_gui()

Updates the gui.

Usage
pgu.delegate$update_loq_mutate_gui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_lloq_substitute()

Updates the si.lloqSubstitute shiny widget.

Usage
pgu.delegate$update_lloq_substitute(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_uloq_substitute()

Updates the si.uloqSubstitute shiny widget.

Usage
pgu.delegate$update_uloq_substitute(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method init_mutate_loq()

Calls the mutation routine of the instance variable loq on the instance variable filteredData. The reult is stored in the instance variable loqMutatedData Updates the instance class status.

Usage
pgu.delegate$init_mutate_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method mutate_loq()

Calls the mutation routine of the instance variable loq on the instance variable filteredData. The reult is stored in the instance variable loqMutatedData Updates the instance class status.

Usage
pgu.delegate$mutate_loq(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_mutate_data_tbl()

Updates the numerical loq mutate outliers table.

Usage
pgu.delegate$update_loq_mutate_data_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_mutate_statistics_graphic()

Updates the loq mutate statistics graphic.

Usage
pgu.delegate$update_loq_mutate_statistics_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_mutate_attribute_graphic()

Updates the loq mutate feature graphic.

Usage
pgu.delegate$update_loq_mutate_attribute_graphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method init_loq_mutate_attribute_tbl()

Updates the numeric loq mutate feature table.

Usage
pgu.delegate$init_loq_mutate_attribute_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_loq_mutate_attribute_tbl()

Updates the numeric loq mutate feature table.

Usage
pgu.delegate$update_loq_mutate_attribute_tbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method optimizeTrafoParameter()

Calls the optimize routine of the instance variable optimizer on the instance variable loqMutatedData. Updates the instance class status.

Usage
pgu.delegate$optimizeTrafoParameter(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateDetectedTrafoTypes()

Updates the detected trafo types table.

Usage
pgu.delegate$updateDetectedTrafoTypes(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateDetectedTrafoParameter()

Updates the detected trafo parameters table.

Usage
pgu.delegate$updateDetectedTrafoParameter(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoDetectGui()

Updates the gui.

Usage
pgu.delegate$updateTrafoDetectGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateFeature()

Updates the si.trafoMutateFeature shiny widget.

Usage
pgu.delegate$updateTrafoMutateFeature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateType()

Updates the si.trafoMutateType shiny widget.

Usage
pgu.delegate$updateTrafoMutateType(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateLambda()

Updates the ni.trafoMutateLambda shiny widget.

Usage
pgu.delegate$updateTrafoMutateLambda(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateMirror()

Updates the cb.trafoMutateMirror shiny widget.

Usage
pgu.delegate$updateTrafoMutateMirror(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method resetTrafoMutateGui()

Updates the gui.

Usage
pgu.delegate$resetTrafoMutateGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGui()

Updates the gui.

Usage
pgu.delegate$updateTrafoMutateGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method trafoMutateFit()

Estimates the optimal transformation parameters. Updates the GUI

Usage
pgu.delegate$trafoMutateFit(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method trafoMutateGlobal()

Calls the transformation routine of the instance variable transformator on the instance variable loqMutatedData. Updates the instance class status.

Usage
pgu.delegate$trafoMutateGlobal(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method trafoMutateFeature()

Calls the transformation routine of the instance variable transformator on a user defined attribute of the instance variable loqMutatedData.

Usage
pgu.delegate$trafoMutateFeature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateFeatureGraphic()

Updates the trafo mutate feature graphic.

Usage
pgu.delegate$updateTrafoMutateFeatureGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateFeatureParameterTbl()

Updates the trafo mutate feature patameter table.

Usage
pgu.delegate$updateTrafoMutateFeatureParameterTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateFeatureQualityTbl()

Updates the trafo mutate feature quality table.

Usage
pgu.delegate$updateTrafoMutateFeatureQualityTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGlobalParameterTbl()

Updates the trafo mutate global parameter table.

Usage
pgu.delegate$updateTrafoMutateGlobalParameterTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGlobalModelTbl()

Updates the tbl.trafoMutateGlobalModel table.

Usage
pgu.delegate$updateTrafoMutateGlobalModelTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGlobalQualityTbl()

Updates the tbl.trafoMutateGlobalQuality table.

Usage
pgu.delegate$updateTrafoMutateGlobalQualityTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGlobalTestsTbl()

Updates the tbl.trafoMutateGlobalTests table.

Usage
pgu.delegate$updateTrafoMutateGlobalTestsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoMutateGlobalDataTbl()

Updates the tbl.trafoMutateGlobalData table.

Usage
pgu.delegate$updateTrafoMutateGlobalDataTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormFeature()

Updates the si.trafoNormFeature shiny widget.

Usage
pgu.delegate$updateTrafoNormFeature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormMethod()

Updates the si.trafoNormMethod shiny widget.

Usage
pgu.delegate$updateTrafoNormMethod(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormGui()

Updates the gui.

Usage
pgu.delegate$updateTrafoNormGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method trafoNormMutate()

Calls the scale routine of the instance variable normalizer on the instance variable transformedData. Updates the instance class status.

Usage
pgu.delegate$trafoNormMutate(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormFeatureGraphic()

Updates the impute norm feature compound graphic.

Usage
pgu.delegate$updateTrafoNormFeatureGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method resetTrafoNormGui()

Updates the gui.

Usage
pgu.delegate$resetTrafoNormGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormFeatureStatisticsTbl()

Updates the numerical impute norm analysis table for a user defined feature. corresponding to the respective user defined attributes.

Usage
pgu.delegate$updateTrafoNormFeatureStatisticsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormStatisticsTbl()

Updates the numerical impute norm analysis table. corresponding to the respective user defined attributes.

Usage
pgu.delegate$updateTrafoNormStatisticsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormParameterTbl()

Updates the impute norm parameter table. corresponding to the respective user defined attributes.

Usage
pgu.delegate$updateTrafoNormParameterTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateTrafoNormDataTbl()

Updates the impute norm scaled data table. corresponding to the respective user defined attributes.

Usage
pgu.delegate$updateTrafoNormDataTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method imputeMissingsAnalyze()

Calls the missing detection routine of the instance variable imputer on the instance variable normalizedData. Updates the instance class status.

Usage
pgu.delegate$imputeMissingsAnalyze(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingsGraphic()

Updates the plt.imputeMissingsSummary graphic.

Usage
pgu.delegate$updateImputeMissingsGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingsStatisticsTbl()

Updates the tbl.imputeMissingsStatistics table.

Usage
pgu.delegate$updateImputeMissingsStatisticsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingsDistributionTbl()

Updates the tbl.imputeMissingsDistribution table.

Usage
pgu.delegate$updateImputeMissingsDistributionTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingCharacteristicsGraphic()

Updates the plt.imputeMissingsPairs graphic.

Usage
pgu.delegate$updateImputeMissingCharacteristicsGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingsCharacteristicsTbl()

Updates the tbl.imputeMissingsCharacteristics table.

Usage
pgu.delegate$updateImputeMissingsCharacteristicsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMissingsDetailTbl()

Updates the tbl.imputeDetectDetail table.

Usage
pgu.delegate$updateImputeMissingsDetailTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session

                        updateImputeMissingsDataTbl = function(input, output, session){
                          if(self$status$query(processName = "naDetected")){
                            output$tbl.imputeMissingsData <- DT::renderDataTable(
                              self$filteredMetadata$rawData %>%
                                dplyr::right_join(self$normalizedData$rawData, by = "Sample Name") %>%
                                format.data.frame(scientific = TRUE, digits = 4) %>%
                                DT::datatable(
                                  extensions = "Buttons",
                                  options = list(
                                    scrollX = TRUE,
                                    scrollY = '350px',
                                    paging = FALSE,
                                    dom = "Blfrtip",
                                    buttons = list(list(
                                      extend = 'csv',
                                      filename = self$fileName$predict("imputationSiteDetectionData") %>%
                                        tools::file_path_sans_ext(),
                                      text = "Download"
                                    ))#buttons
                                  )#options
                                )#DT::datatable
                            )#output
                          }#if
                          else{
                            output$tbl.imputeMissingsData <- DT::renderDataTable(NULL)
                          }#else
                        }, #function

Method updateImputeOutliersMethod()

Updates the si.imputeOutliersMethod shiny widget.

Usage
pgu.delegate$updateImputeOutliersMethod(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersFeature()

Updates the si.imputeOutliersFeature shiny widget.

Usage
pgu.delegate$updateImputeOutliersFeature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersAlpha()

Updates the ni.imputeOutliersAlpha shiny widget.

Usage
pgu.delegate$updateImputeOutliersAlpha(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersEpsilon()

Updates the ni.imputeOutliersEpsilon shiny widget.

Usage
pgu.delegate$updateImputeOutliersEpsilon(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersMinSamples()

Updates the ni.imputeOutliersMinSamples shiny widget.

Usage
pgu.delegate$updateImputeOutliersMinSamples(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersGamma()

Updates the ni.imputeOutliersGamma shiny widget.

Usage
pgu.delegate$updateImputeOutliersGamma(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersNu()

Updates the ni.imputeOutliersNu shiny widget.

Usage
pgu.delegate$updateImputeOutliersNu(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersCutoff()

Updates the ni.imputeOutliersCutoff shiny widget.

Usage
pgu.delegate$updateImputeOutliersCutoff(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersK()

Updates the ni.imputeOutliersK shiny widget.

Usage
pgu.delegate$updateImputeOutliersK(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersSeed()

Updates the ni.imputeOutliersSeed shiny widget.

Usage
pgu.delegate$updateImputeOutliersSeed(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersGui()

Updates the gui.

Usage
pgu.delegate$updateImputeOutliersGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method resetImputeOutliersGui()

Updates the gui.

Usage
pgu.delegate$resetImputeOutliersGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method imputeOutliersDetect()

Calls the detectOutliers routine of the instance variable outliers on the instance variable normalizedData. Updates the instance class status.

Usage
pgu.delegate$imputeOutliersDetect(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersGraphic()

Updates the plt.outliersImputeSummary graphic.

Usage
pgu.delegate$updateImputeOutliersGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersFeatureGraphic()

Updates the plt.outliersImputeFeature graphic.

Usage
pgu.delegate$updateImputeOutliersFeatureGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersFeatureTbl()

Updates the numeric outlier feature table.

Usage
pgu.delegate$updateImputeOutliersFeatureTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersStatisticsTbl()

Updates the numerical loq statistics analysis table

Usage
pgu.delegate$updateImputeOutliersStatisticsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeOutliersDetailTbl()

Updates the numerical outlier table.

Usage
pgu.delegate$updateImputeOutliersDetailTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateFeature()

Updates the si.imputeMutateFeature shiny widget.

Usage
pgu.delegate$updateImputeMutateFeature(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateMethod()

Updates the si.imputeMutateMethod shiny widget.

Usage
pgu.delegate$updateImputeMutateMethod(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateNNeighbors()

Updates the ni.imputeMutateNumberOfNeighbors shiny widget.

Usage
pgu.delegate$updateImputeMutateNNeighbors(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutatePredFrac()

Updates the ni.imputeMutatePredFrac shiny widget.

Usage
pgu.delegate$updateImputeMutatePredFrac(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateOutfluxThr()

Updates the ni.imputeMutateOutfluxThr shiny widget.

Usage
pgu.delegate$updateImputeMutateOutfluxThr(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateSeed()

Updates the ni.imputeMutateSeed shiny widget.

Usage
pgu.delegate$updateImputeMutateSeed(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateIterations()

Updates the ni.imputeMutateIterations shiny widget.

Usage
pgu.delegate$updateImputeMutateIterations(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateGui()

Updates the gui.

Usage
pgu.delegate$updateImputeMutateGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method resetImputeMutateGui()

Resets the gui.

Usage
pgu.delegate$resetImputeMutateGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method imputeMutateMutate()

Calls the mutate imputation site routine of the instance variable imputer on the instance variable transformedData. Updates the instance class status.

Usage
pgu.delegate$imputeMutateMutate(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeFluxGraphic()

Updates the plt.imputeMutateFlux graphic.

Usage
pgu.delegate$updateImputeFluxGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateGraphic()

Updates the plt.imputeMutateSummary graphic.

Usage
pgu.delegate$updateImputeMutateGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateStatisticsTbl()

Updates the tbl.imputeMutateStatistics table.

Usage
pgu.delegate$updateImputeMutateStatisticsTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateDistributionTbl()

Updates the tbl.imputeMutateDistribution table.

Usage
pgu.delegate$updateImputeMutateDistributionTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateFeatureDetailGraphic()

Updates the plt.imputeMutateFeatureDetail graphic.

Usage
pgu.delegate$updateImputeMutateFeatureDetailGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateFeatureDetailTbl()

Updates the tbl.imputeMutateFeatureDetail table.

Usage
pgu.delegate$updateImputeMutateFeatureDetailTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateDetailTbl()

Updates the tbl.imputeMutateDetail table.

Usage
pgu.delegate$updateImputeMutateDetailTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateImputeMutateDataTbl()

Updates the tbl.imputeMutateData table.

Usage
pgu.delegate$updateImputeMutateDataTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method validate()

Calls the validate routine of the instance variable validator on the instance variables rawData and clenaedData. Updates the instance class status.

Usage
pgu.delegate$validate(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateAnalysisValidationGui()

Updates the si.analysisValidationFeature shiny widget.

Usage
pgu.delegate$updateAnalysisValidationGui(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateAnalysisValidationGraphic()

Updates the plt.analysisValidationFeature shiny widget.

Usage
pgu.delegate$updateAnalysisValidationGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateAnalysisValidationTestTbl()

Updtates the tbl.analysisValidationTest table.

Usage
pgu.delegate$updateAnalysisValidationTestTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCentralMomentsOrgTbl()

Updtates the tbl.centralMomentsOrg table.

Usage
pgu.delegate$updateCentralMomentsOrgTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCentralMomentsImpTbl()

Updtates the tbl.centralMomentsImp table.

Usage
pgu.delegate$updateCentralMomentsImpTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCentralMomentsDeltaTbl()

Updtates the tbl.centralMomentsDelta table.

Usage
pgu.delegate$updateCentralMomentsDeltaTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCorrelationValidationScatterGraphic()

Updtates the plt.correlationValidationScatter graphic.

Usage
pgu.delegate$updateCorrelationValidationScatterGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCorrelationValidationBoxPlotGraphic()

Updtates the plt.correlationValidationBoxPlot graphic.

Usage
pgu.delegate$updateCorrelationValidationBoxPlotGraphic(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCorrelationValidationDeviationTbl()

Updtates the tbl.correlationValidationDeviation table.

Usage
pgu.delegate$updateCorrelationValidationDeviationTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method updateCorrelationValidationDataTbl()

Updtates the tbl.correlationValidationData table.

Usage
pgu.delegate$updateCorrelationValidationDataTbl(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method exportFileName()

Creates and returns an export filename.

Usage
pgu.delegate$exportFileName(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session

Returns

export filename (character)


Method exportData()

Exports the pguIMP analysis results

Usage
pgu.delegate$exportData(input, file)
Arguments
input

Pointer to shiny input

file

export filename (character)


Method reportFileName()

Creates and returns a report filename.

Usage
pgu.delegate$reportFileName(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session

Returns

export filename (character)


Method writeReport()

Exports a report on the pguIMP analysis in pdf format.

Usage
pgu.delegate$writeReport(input, file)
Arguments
input

Pointer to shiny input

file

export filename (character)


Method hide_outdated_results()

Updates the gui if analysis parameters change.

Usage
pgu.delegate$hide_outdated_results(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method update_help_html()

Updates the gui if analysis parameters change.

Usage
pgu.delegate$update_help_html(input, output, session)
Arguments
input

Pointer to shiny input

output

Pointer to shiny output

session

Pointer to shiny session


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.delegate$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.explorer

Description

Visual exploration of the pguIMP dataset.

Format

[R6::R6Class] object.

Details

Pariwise anlysis of attributes from the pguIMP dataset. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

rawData

Returns the instance variable rawData (tibble::tibble)

setRawData

Sets the instance variable rawData (tibble::tibble)

abscissa

Returns the instance variable abscissa (character)

setAbscissa

Sets the instance variable abscissa (character)

ordinate

Returns the instance variable ordinate (character)

setOrdinate

Sets the instance variable ordinate (character)

abscissaStatistics

Returns the instance variable abscissaStatistics (character)

ordinateStatistics

Returns the instance variable ordinateStatistics (character)

Methods

Public methods


Method new()

Tests if the abscissa attribute is of type numeric.

Tests if the ordinate attribute is of type numeric.

Summarizes the numeric values of a vector.

Calculates the statistics of the abscissa values. Stores the result in the instance variable abscissaStatistics.

Calculates the statistics of the ordinate values. Stores the result in the instance variable ordinateStatistics.

Clears the heap and indicates that instance of 'pgu.explorer' is removed from heap.

Creates and returns a new 'pgu.explorer' object.

Usage
pgu.explorer$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.explorer' object. (pguIMP::pgu.optimizer)


Method print()

Prints instance variables of a 'pgu.explorer' object.

Usage
pgu.explorer$print()
Returns

string


Method reset()

Resets the instance of the pgu.explorer class

Usage
pgu.explorer$reset(data_df = "tbl_df", abs = "character", ord = "character")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

abs

The abscissa attribute (character)

ord

The ordinate attribute (character)


Method fit()

Calculates the abscissa and ordinate statistics

Usage
pgu.explorer$fit()

Method scatterPlot()

Creates and returns a scatter plot abscissa and ordinate value pairs.

Usage
pgu.explorer$scatterPlot()
Returns

Scatter plot (ggplot2::ggplot)


Method abscissaBarPlot()

Creates and returns a histogram from the abscissa values.

Usage
pgu.explorer$abscissaBarPlot()
Returns

Bar plot (ggplot2::ggplot)


Method abscissaBoxPlot()

Creates and returns a box plot from the abscissa values.

Usage
pgu.explorer$abscissaBoxPlot()
Returns

Box plot (ggplot2::ggplot)


Method abscissaPlot()

Creates and returns a compund graphical analysis of the abscissa values.

Usage
pgu.explorer$abscissaPlot()
Returns

Compound plot (gridExtra::grid.arrange)


Method ordinateBarPlot()

Creates and returns a histogram from the ordinate values.

Usage
pgu.explorer$ordinateBarPlot()
Returns

Bar plot (ggplot2::ggplot)


Method ordinateBoxPlot()

Creates and returns a box plot from the ordinate values.

Usage
pgu.explorer$ordinateBoxPlot()
Returns

Box plot (ggplot2::ggplot)


Method ordinatePlot()

Creates and returns a compund graphical analysis of the ordinate values.

Usage
pgu.explorer$ordinatePlot()
Returns

Compound plot (gridExtra::grid.arrange)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.explorer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.exporter

Description

A class that writes the results of the pguIMP analysis to an Excel file.

Format

[R6::R6Class] object.

Details

Creates a download file name and saves a list of tibbles to an Excel file. Each tibble is written to a separate sheet. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

fileName

Returns the fileName. (character)

setFileName

Set the fileName. (character)

suffix

Returns the file suffix. (character)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.exporter' object.

Usage
pgu.exporter$new()
Returns

A new 'pgu.exporter' object. (pguIMP::pgu.exporter)


Method finalize()

Clears the heap and indicates if instance of 'pgu.exporter' is removed from heap.

Usage
pgu.exporter$finalize()

Method print()

Prints instance variables of a 'pgu.exporter' object.

Usage
pgu.exporter$print()
Returns

string


Method extractSuffix()

extracts the suffix from the fileName

Usage
pgu.exporter$extractSuffix()

Method writeDataToExcel()

writes tibble to an excel file of the name fileName.

Usage
pgu.exporter$writeDataToExcel(obj = "list")
Arguments
obj

A tibble or list of tibble. If obj is a list, each member will be written to a seperate sheet.


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.exporter$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.fie

Description

Handles file names for the pguIMP shiny web interface.

Format

[R6::R6Class] object.

Details

The class stores filenames and upload specifications for the pguIMP shiny web interface in its instance variables. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

uploadFileName

Returns the instance variable uploadFileName (character)

fileName

Returns the instance variable fileName (character)

baseName

Returns the instance variable baseName (character)

folderName

Returns the instance variable folderName (character)

suffix

Returns the instance variable suffix (character)

exportSuffix

Returns the instance variable exportSuffix (character)

timeString

Returns the instance variable timeString (character)

sheetIndex

Returns the instance variable sheetIndex (numeric)

separator

Returns the instance variable separator (character)

skipRows

Returns the instance variable skipRows (numeric)

columnNames

Returns the instance variable columnNames (logical)

naChar

Returns the instance variable naChar (character)

Methods

Public methods


Method new()

Clears the heap and indicates that instance of 'pgu.file' is removed from heap.

Splits fileName and writes the results in the class' instance variables folderName, baseName, suffix.

Stores the current system time into the instance variable timeString.

Creates and returns a new object of type pgu.file.

Usage
pgu.file$new(
  uploadFileName = "",
  fileName = "",
  sheetIndex = 1,
  separator = ",",
  skipRows = 0,
  columnNames = TRUE,
  naChar = "NA"
)
Arguments
uploadFileName

Name of uploaded file. (string)

fileName

Actual file name. (string)

sheetIndex

Index excel sheet to import. (integer)

separator

Character for column separation. (character)

skipRows

Number of rows to skip. (integer)

columnNames

Indicates if the data source file has a columnNames. (logical)

naChar

Character for missing values. (string)

Returns

A new pgu.file object. (pguIMP::pgu.file)


Method print()

Prints the instance variables of the object.

Usage
pgu.file$print()
Returns

string


Method reset()

Resets the instance variables of the object.

Usage
pgu.file$reset(
  uploadFileName = "",
  fileName = "",
  sheetIndex = 1,
  separator = ",",
  skipRows = 0,
  columnNames = TRUE,
  naChar = "NA"
)
Arguments
uploadFileName

Name of uploaded file. (string)

fileName

Actual file name. (string)

sheetIndex

Index excel sheet to import. (integer)

separator

Character for column separation. (character)

skipRows

Number of rows to skip. (integer)

columnNames

Indicates if the data source file has a columnNames. (logical)

naChar

Character for missing values. (string)


Method fit()

Extracts information about upload specifications from the instance variables.

Usage
pgu.file$fit()

Method predict()

Predicts an export file name.

Usage
pgu.file$predict(affix = "analysis")
Arguments
affix

User dedined file name affix. (string)

Returns

A file name. (string)


Method fit_predict()

Extracts information about upload specifications from the instance variables and predicts an export file name.

Usage
pgu.file$fit_predict(affix = "analysis")
Arguments
affix

User dedined file name affix. (string)

Returns

A file name. (string)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.file$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.filter

Description

Filter the pguIMP dataset.

Format

[R6::R6Class] object.

Details

The filtering is done by column and row indices. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

colIdx

Returns the instance variable colIdx (numeric)

setColIdx

Sets the instance variable colIdx (numeric)

rowIdx

Returns the instance variable rowIdx (numeric)

setRowIdx

Sets the instance variable rowIdx (numeric)

Methods

Public methods


Method new()

Resets the filter parameter colIdx to the full dataframe.

Resets the filter parameter rowIdx to the full dataframe.

Clears the heap and indicates that instance of pguIMP::pgu.filter is removed from heap.

Creates and returns a new pguIMP::pgu.filter object.

Usage
pgu.filter$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

A new pguIMP::pgu.filter object. (pguIMP::pgu.filter)


Method print()

Prints instance variables of a pguIMP::pgu.filter object.

Usage
pgu.filter$print()
Returns

string


Method reset()

Resets the filter parameter colIdx and rowIdx to the full dataframe.

Usage
pgu.filter$reset(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)


Method predict()

Filters and returns the given data frame.

Usage
pgu.filter$predict(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

The filtered data frame (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.filter$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.importer

Description

Handles the data import

Format

[R6::R6Class] object.

Details

Menages the import of the pguIMP dataset This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

suffixes

Returns the instance variable suffixes (character)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.importer' object.

Usage
pgu.importer$new()
Returns

A new 'pgu.importer' object. (pguIMP::pgu.importer)


Method finalize()

Clears the heap and indicates that instance of 'pgu.importer' is removed from heap.

Usage
pgu.importer$finalize()

Method print()

Prints instance variables of a 'pgu.importer' object.

Usage
pgu.importer$print()
Returns

string


Method suffixIsKnown()

Takes an instance of pgu.file and tests if the suffix is valid.

Usage
pgu.importer$suffixIsKnown(obj = "pgu.file")
Arguments
obj

instance of pgu.file. (pguIMP::pgu.file)

Returns

test result (logical)


Method importData()

Takes an instance of pgu.file imports a dataset.

Usage
pgu.importer$importData(obj = "pgu.file")
Arguments
obj

instance of pgu.file. (pguIMP::pgu.file)

Returns

data frame (tibble::tibble)


Method importLoq()

Takes an instance of pgu.file imports a loq dataset.

Usage
pgu.importer$importLoq(obj = "pgu.file")
Arguments
obj

instance of pgu.file. (pguIMP::pgu.file)

Returns

data frame (tibble::tibble)


Method importMetadata()

Takes an instance of pgu.file imports a metadata dataset.

Usage
pgu.importer$importMetadata(obj = "pgu.file")
Arguments
obj

instance of pgu.file. (pguIMP::pgu.file)

Returns

data frame (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.importer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.imputation

Description

Analyses and substitutes imputation sites in a data set.

Format

[R6::R6Class] object.

Details

Analyses imputation sites in a data set. Replaces imputation sites by missing values and substitutes NAs by classical and ML-powered substitution algorithms. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

imputationStatistics

Returns the instance variable imputationStatistics. (tibble::tibble)

imputationSites

Returns the instance variable imputationSites. (tibble::tibble)

one_hot_df

Returns the positions of missings in one_hot encoding (tibble::tibble)

imputationSiteDistribution

Returns the instance variable imputationSiteDistribution. (matrix)

imputationAgentAlphabet

Returns the instance variable imputationagentAlphabet. (character)

imputationAgent

Returns the instance variable imputationAgent. (character)

setImputationAgent

Sets the instance variable imputationAgent. (character)

nNeighbors

Returns the instance variable nNeighbors. (integer)

setNNeighbors

Sets the instance variable nNeighbors. (integer)

flux_df

Returns the instance variable flux_df (tibble::tibble)

outflux_thr

Returns the instance variable outflux_thr. (numeric)

setOutflux_thr

Sets the instance variable outflux_thr. (numeric)

pred_frac

Returns the instance variable pred_frac. (numeric)

setPred_frac

Sets the instance variable pred_frac. (numeric)

pred_mat

Returns the instance variable pred_mat. (matrix)

exclude_vec

Returns the instance variable exclude_vec (character)

seed

Returns the instance variable seed. (numeric)

setSeed

Sets the instance variable seed. (numeric)

iterations

Returns the instance variable iterations. (numeric)

setIterations

Sets the instance variable iterations. (numeric)

amv

Returns the instance variable amv. (numeric)

success

Returns the instance variable success. (logical)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.imputation' object.

Usage
pgu.imputation$new(
  seed = 42,
  iterations = 4,
  imputationAgent = "none",
  nNeighbors = 3,
  pred_frac = 1,
  outflux_thr = 0.5
)
Arguments
seed

Initially sets the instance variable seed. Default is 42. (integer)

iterations

Initially sets the instance variable iterations. Default is 4. (integer)

imputationAgent

Initially sets the instance variable imputationAgent. Default is "none". Options are: ""none", "median", "mean", "expValue", "monteCarlo", "knn", "pmm", "cart", "randomForest", "M5P". (string)

nNeighbors

Initially sets the instance variable nNeighbors. (integer)

pred_frac

Initially sets the instance variable pred_frac. (numeric)

outflux_thr

Initially sets the instance variable outflux_thr

Returns

A new 'pgu.imputation' object. (pguIMP::pgu.imputation)


Method finalize()

Clears the heap and indicates that instance of 'pgu.imputation' is removed from heap.

Usage
pgu.imputation$finalize()

Method print()

Prints instance variables of a 'pgu.imputation' object.

Usage
pgu.imputation$print()
Returns

string


Method gatherImputationSites()

Gathers imputation sites from pguIMP's missings and outliers class.

Usage
pgu.imputation$gatherImputationSites(
  missings_df = "tbl_df",
  outliers_df = "tbl_df"
)
Arguments
missings_df

Dataframe comprising information about the imputation sites of pguIMP's missings class. (tibble::tibble)

outliers_df

Dataframe comprising information about the imputation sites of pguIMP's outliers class. (tibble::tibble)


Method gatherImputationSiteStatistics()

Gathers statistical information about imputation sites The information is stored within the classes instance variable 'imputationStatistics'

Usage
pgu.imputation$gatherImputationSiteStatistics(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)


Method gatherImputationSiteDistribution()

Gathers the distribution of imputation sites within the data frame. The information is stored within the classes instance variable imputationSiteDistribution.

Usage
pgu.imputation$gatherImputationSiteDistribution(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

Returns

A data frame (tibble::tibble)


Method insertImputationSites()

Takes a dataframe, replaces the imputation sites indicated by the instance variable 'imputationsites' by NA, and returns the mutated dataframe.

Usage
pgu.imputation$insertImputationSites(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

Returns

A mutated version of data_df. (tibble::tibble)


Method one_hot()

Gathers statistical information about missing values in one hot format. The result is stored in the instance variable one_hot_df.

Usage
pgu.imputation$one_hot(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)


Method analyzeImputationSites()

Takes a dataframe and analyses the imputation sites.

Usage
pgu.imputation$analyzeImputationSites(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)


Method imputationSiteIdxByFeature()

Returns the position of an attribute's imputation sites within a data frame.

Usage
pgu.imputation$imputationSiteIdxByFeature(featureName = "character")
Arguments
featureName

The attribute's name. (character)

Returns

The postion of the imputation sites. (numeric)


Method nanFeatureList()

Characterizes each row of the data frame as either 'complete' or indicates which attribute are missing within the row. If multiple attributes' row entries are missing, the row is characterized by 'multiple'.

Usage
pgu.imputation$nanFeatureList(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

Returns

Vector of row characteristics. (character)


Method average_number_of_predictors()

Calculates the average number of predictors for a given dataframe and minpuc and mincor variables using the mice::quickpred routine.

Usage
pgu.imputation$average_number_of_predictors(
  data_df = "tbl_df",
  minpuc = 0,
  mincor = 0.1
)
Arguments
data_df

The dataframe to be analyzed (tibble::tibble)

minpuc

Specifies the minimum threshold for the proportion of usable cases. (numeric)

mincor

Specifies the minimum threshold against which the absolute correlation in the dataframe is compared. (numeric)

Returns

Average_number_of_predictors. (numeric)


Method detectPredictors()

Identifies possible predictors for each feature. Analysis results are written to the instance variable pred_mat. Intermediate analysis results are an influx/outflux dataframe that is written to the instance variable flux_df and detect predictors and a list of features that is excluded from the search for possible predictors that is written to the instance variable exclude_vec.

Usage
pgu.imputation$detectPredictors(data_df = "tbl_df")
Arguments
data_df

The dataframe to be analyzed. (tibble::tibble)


Method handleImputationSites()

Chooses a cleaning method based upon the instance variable 'imputationAgent' and handles the imputation sites in the dataframe. Returns a cleaned data set. Display the progress if shiny is loaded.

Usage
pgu.imputation$handleImputationSites(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByMedian()

Substitutes imputation sites by the median of the respective attribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByMedian(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByMean()

Substitutes imputation sites by the aritmertic mean of the respective attribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByMean(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByExpectationValue()

Substitutes imputation sites by the expectation value of the respective attribute. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByExpectationValue(
  data_df = "tbl_df",
  progress = "Progress"
)
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByMC()

Substitutes imputation sites by values generated by a monte carlo simulation. The procedure runs several times as defined by the instance variable 'iterations'. The run with the best result is identified and used for substitution. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByMC(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByKnn()

Substitutes imputation sites by predictions of a KNN analysis of the whole dataframe. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByKnn(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByMice()

Substitutes imputation sites by values generated by a different methods of the mice package. The procedure runs several times as defined by the instance variable 'iterations'. The run with the best result is identified and used for substitution. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByMice(data_df, progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputeByM5P()

Substitutes imputation sites by predictions of a M5P tree trained on the whole dataframe. Returns the cleaned dataframe. Display the progress if shiny is loaded.

Usage
pgu.imputation$imputeByM5P(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

Cleaned dataframe. (tibble:tibble)


Method imputationSiteHeatMap()

Displays the distribution of missing values in form of a heatmap.

Usage
pgu.imputation$imputationSiteHeatMap()
Returns

A heatmap plot. (ggplot2::ggplot)


Method featureBarPlot()

Displays the distribution of an attribute values as histogram.

Usage
pgu.imputation$featureBarPlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A histogram. (ggplot2::ggplot)


Method featureBoxPlotWithSubset()

Displays the distribution of an attribute's values as box plot.

Usage
pgu.imputation$featureBoxPlotWithSubset(
  data_df = "tbl_df",
  feature = "character"
)
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A box plot. (ggplot2::ggplot)


Method featurePlot()

Displays the distribution of an attribute's values as a composition of a box plot and a histogram.

Usage
pgu.imputation$featurePlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A composite plot. (ggplot2::ggplot)


Method fluxPlot()

Displays an influx/outflux plot

Usage
pgu.imputation$fluxPlot()
Returns

A composite plot. (ggplot2::ggplot)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.imputation$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.limitsOfQuantification

Description

Handles values in the pguIMP dataset that exceed the limits of quantification. This object is used by the shiny based gui and is not for use in individual R-scripts!

Format

R6::R6Class object.

Details

more information

Active bindings

loq

Returns the instance variable loq (tibble::tibble)

setLoq

Sets the instance variable loq (tibble::tibble)

outliers

Returns instance variable outliers (tibble::tibble)

lloqSubstituteAlphabet

Returns the instance variable lloqSubstititeAlphabet (character)

lloqSubstituteAgent

Returns the instance variable lloqSubstituteAgent (character)

setLloqSubstituteAgent

Sets the instance variable lloqSubstituteAgent (character)

uloqSubstituteAlphabet

Returns the instance variable uloqSubstititeAlphabet (character)

uloqSubstituteAgent

Returns the instance variable uloqSubstituteAgent (character)

setUloqSubstituteAgent

Sets the instance variable uloqSubstituteAgent (character)

naHandlingAlphabet

Returns the instance variable naHandlingAlphabet (character)

naHandlingAgent

Returns the instance variable naHandlingAgent (character)

setNaHandlingAgent

Sets the instance variable naHandlingAgent (character)

loqStatistics

Returns the instance variable loqStatistics

Methods

The following public methods are available:

- 'new()': Creates a new pgu.limitsOfQuantification object - 'print()': Prints instance variables - 'reset()': Resets the object - 'fit()': Analyzes data for LOQ violations - 'predict()': Applies LOQ corrections - 'attribute_lloq()', 'attribute_uloq()': Get LOQ values - 'set_attribute_lloq()', 'set_attribute_uloq()': Set LOQ values - 'attribute_outliers()': Get outliers for an attribute - 'plot_loq_distribution()': Plot LOQ statistics - 'attribute_bar_plot()', 'attribute_box_plot_with_subset()', 'attribute_plot()': Create diagnostic plots - 'clone()': Clone the object

Author(s)

Sebastian Malkusch

See Also

Other pguIMP classes: pgu.missings


pgu.missings

Description

Detects and substitutes missing values from data set.

Format

R6::R6Class object.

Details

Detects missing values in the transformed and normalized data set. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

imputationParameter

Returns the instance variable imputationParameter (tibble::tibble)

imputationSites

Returns the instance variable imputationSites (tibble::tibble)

one_hot_df

Returns the positions of missings in one_hot encoding (tibble::tibble)

amv

Returns the instance variable amv (numeric)

Methods

The following public methods are available:

- 'new()': Creates a new pgu.missings object - 'print()': Prints instance variables - 'resetImputationParameter()': Resets imputation parameters - 'featureIdx()': Get feature position - 'filterFeatures()': Filter features with missings - 'gatherMeasurements()', 'gatherMissings()', 'gatherExistings()', 'gatherFractionOfMissings()': Gather missing value statistics - 'gatherImputationStatistics()': Collect imputation statistics - 'one_hot()': Create one-hot encoding of missings - 'detectImputationSites()': Detect missing value positions - 'imputationSiteDistribution()': Get missing value distribution - 'imputationSiteHeatMap()': Create missing value heatmap - 'clone()': Clone the object

Author(s)

Sebastian Malkusch

See Also

Other pguIMP classes: pgu.limitsOfQuantification


pgu.missingsCharacterizer

Description

A class that characterizes the origin of missing values.

Format

[R6::R6Class] object.

Details

A class that characterizes the origin of missing values. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

featureAlphabet

Returns the instance variable featureAlphabet. (character)

featureAgent

Returns the instance variable featureAgent. (character)

setFeatureAgent

Sets the instance variable featureAgent. (character)

missingsCharacteristics_df

Returns the instance variable missingsCharacteristics_df. (tibble::tibble)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.missingsCharacterizer' object.

Usage
pgu.missingsCharacterizer$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.missingsCharacterizer' object. (pguIMP::pgu.missingsCharacterizer)


Method finalize()

Clears the heap and indicates if instance of 'pgu.missingsCharacterizer' is removed from heap.

Usage
pgu.missingsCharacterizer$finalize()

Method print()

Prints instance variables of a 'pgu.missingsCharacterizer' object.

Usage
pgu.missingsCharacterizer$print()
Returns

string


Method reset()

Takes a dataframe that will be analyzed using the analyze function and resets the instance variables.

Usage
pgu.missingsCharacterizer$reset(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)


Method analyze()

resets the instance variables and analyzes a dataframe.

Usage
pgu.missingsCharacterizer$analyze(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method plot_pair_dist()

Plots the analysis result.

Usage
pgu.missingsCharacterizer$plot_pair_dist(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.missingsCharacterizer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.model

Description

Comprises a list of models for data manipulation.

Format

[R6::R6Class] object.

Details

Comprises a list of pgu.normDist objects and model parameters. These can be used to scale data. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

modelList

Returns a vector of pgu-normDist objects. (pgu.normDist)

modelParameter

Returns a dataframe comrising model parameters. (tibble::tibble)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.model' object.

Usage
pgu.model$new(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.model' object. (pguIMP::pgu.model)


Method finalize()

Clears the heap and indicates that instance of 'pgu.model' is removed from heap.

Usage
pgu.model$finalize()

Method print()

Prints instance variables of a 'pgu.model' object.

Usage
pgu.model$print()
Returns

string


Method resetModelParameter()

Resets instance variable 'modelParameter'

Usage
pgu.model$resetModelParameter(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)


Method resetModelList()

Resets instance variable 'modelList'

Usage
pgu.model$resetModelList(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)


Method resetModel()

Resets instance variable 'modelList'. Resets instance variable 'modelParameter'. Displays progress if shiny is loaded.

Usage
pgu.model$resetModel(data = "tbl_df", progress = "Progress")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method setNormDist()

Stores the information of a pgu.norDist object in an entry of the instance variable 'modelList'

Usage
pgu.model$setNormDist(data = "pgu.normDist", feature = "character")
Arguments
data

Instance of pgu.normDist (pguIMP::pgu.normDist)

feature

Attribute corresponding to the pgu.normDist object data. (character)


Method featureIdx()

Returns the index of a pgu.normDist object wihtin the instance variable 'modelParameter'.

Usage
pgu.model$featureIdx(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Index of attribute entry in dataframe (numeric)


Method fitFeature()

Runs the fit function of a pgu.normDist object at a user denied position within the instance variable modelList.

Usage
pgu.model$fitFeature(feature = "character")
Arguments
feature

Attribute's name. (character)


Method fitData()

Loops through all attributes and calls the object's ftiFeature function. Displays progress if shiny is loaded.

Usage
pgu.model$fitData(progress = "Progress")
Arguments
progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method logFitResultsFeature()

Stores results from fitting procedure of a user defined attribute into the corrsponding attribute of instance variable 'modelParameter'.

Usage
pgu.model$logFitResultsFeature(feature = "character")
Arguments
feature

Attribute's name. (character)


Method logFailedFitResultsFeature()

Stores results from fitting procedure of a user defined attribute into the corrsponding attribute of instance variable 'modelParameter' in case of a failed fitting routine.

Usage
pgu.model$logFailedFitResultsFeature(feature = "character")
Arguments
feature

Attribute's name. (character)


Method scaleNumeric()

Scales numeric data based upon the model of a user defined attribute.

Usage
pgu.model$scaleNumeric(value = "numeric", feature = "character")
Arguments
value

Numeric vector (numeric)

feature

Attribute's name. (character)

Returns

scaled version of the given vector (numeric)


Method scaleData()

Scales a dataframe based upon a list of models stored in the instance variable modelList..

Usage
pgu.model$scaleData(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)

Returns

scaled version of the given dataframe (tibble::tibble)


Method rescaleNumeric()

Re-scales numeric data based upon the model of a user defined attribute.

Usage
pgu.model$rescaleNumeric(value = "numeric", feature = "character")
Arguments
value

Numeric vector (numeric)

feature

Attribute's name. (character)

Returns

Re-scaled version of the given vector (numeric)


Method rescaleData()

Re-scales a dataframe based upon a list of models stored in the instance variable modelList..

Usage
pgu.model$rescaleData(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)

Returns

Re-scaled version of the given dataframe (tibble::tibble)


Method modelParameterData()

Returns the model parameter (expectation value, standard deviation).

Usage
pgu.model$modelParameterData()
Returns

Dataframe comprising model parameter. (tibble::tibble)


Method modelParameterFeature()

Returns the model parameter (expectation value, standard deviation) for a user deined attribute.

Usage
pgu.model$modelParameterFeature(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Dataframe comprising model parameter. (tibble::tibble)


Method modelQualityData()

Returns the model parameters connected to model quality.

Usage
pgu.model$modelQualityData()
Returns

Dataframe comprising model parameter. (tibble::tibble)


Method modelQualityFeature()

Returns the model parameters connected to model quality for a user deined attribute.

Usage
pgu.model$modelQualityFeature(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Dataframe comprising model parameter. (tibble::tibble)


Method fitResultData()

Returns the model fit results.

Usage
pgu.model$fitResultData()
Returns

Dataframe comprising model fit results. (tibble::tibble)


Method fitResultFeature()

Returns the model fit results for a user deined attribute.

Usage
pgu.model$fitResultFeature(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Dataframe comprising model fit results. (tibble::tibble)


Method testResultData()

Returns the hypothesis test results.

Usage
pgu.model$testResultData()
Returns

Dataframe comprising the hypothesis test results. (tibble::tibble)


Method testResultFeature()

Returns the hypothesis test results. for a user deined attribute.

Usage
pgu.model$testResultFeature(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Dataframe comprising the hypothesis test results. (tibble::tibble)


Method plotModel()

Creates and returns a composite graphical analysis of the modeling procedure of a user defined attribute.

Usage
pgu.model$plotModel(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Composite result plot. (ggplot2::ggplot)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.model$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.normDist

Description

Compares the distribution of a single attribute's values to normal distribution by using several statistic tests.

Format

[R6::R6Class] object.

Details

The distribution of a single value is tested for normality by Shapiro-Wilk test, Kolmogorov-Smirnov test, Anderson-Darling test. The expectation value and standard deviation of a normal distribution representing the data are determined by maximizing the log Likelihood with respect to the expectation value and standard deviation. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

featureName

Returns the instance variable featureName. (character)

rawData

Returns the instance variable rawData. (tibble::tibble)

setRawData

Sets the instance variable rawData. (tibble::tibble)

histogram

Returns the instance variable histogram. (tibble::tibble)

expMu

Returns the instance variable expMu. (numeric)

expSigma

Returns the instance variable expSigma. (numeric)

dataPoints

Returns the instance variable dataPoints. (numeric)

logLikelihood

Returns the instance variable logLikelihood. (numeric)

degOfFreedom

Returns the instance variable degOfFreedom. (numeric)

n

Returns the instance variable n. (integer)

bic

Returns the instance variable bic. (numeric)

aic

Returns the instance variable aic. (numeric)

aicc

Returns the instance variable aicc. (numeric)

rmse

Returns the instance variable rmse. (numeric)

fitSuccess

Returns the instance variable fitSuccess. (logical)

testNames

Returns the instance variable testNames. (character)

testParameterNames

Returns the instance variable testParameterNames. (character)

alpha

Returns the instance variable alpha. (numeric)

w.shapiro

Returns the instance variable w.shapiro. (numeric)

p.shapiro

Returns the instance variable p.shapiro. (numeric)

d.kolmogorow

Returns the instance variable d.kolmogorow. (numeric)

p.kolmogorow

Returns the instance variable p.kolmogorow. (numeric)

a.anderson

Returns the instance variable a.anderson. (numeric)

p.anderson

Returns the instance variable p.anderson. (numeric)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.normDist' object.

Usage
pgu.normDist$new(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.normDist' object. (pguIMP::pgu.normDist)


Method finalize()

Clears the heap and indicates that instance of 'pgu.normDist' is removed from heap.

Usage
pgu.normDist$finalize()

Method print()

Prints instance variables of a 'pgu.normDist' object.

Usage
pgu.normDist$print()
Returns

string


Method resetNormDist()

Resets instance variables

Usage
pgu.normDist$resetNormDist(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)


Method resetFail()

Resets instance variables in case of a failed analysis.

Usage
pgu.normDist$resetFail()

Method optimize()

Optimizes the logLikelihood between the data and a normal distribution with respect to the expectation value and standard deviation. The quality of the best model is calculated subsequently.

Usage
pgu.normDist$optimize()

Method createHistogram()

Creates a histogram from the instance variable 'rawData'. The histogram is stored in the instance variable 'histogram'.

Usage
pgu.normDist$createHistogram()

Method normalQQData()

Performes a qq-analysis of the instance variable 'rawData' The qq-analysis is stored in the attributes 'sample_quantile' and 'theoretical_quantile' of the instance variable 'rawData'.

Usage
pgu.normDist$normalQQData()

Method test.shapiro()

Performes Shapiro-Wilk's test for normality on the instance variable 'rawData'. The test result is stored in the instance variable 'w.shapiro'. The p-value of the test is stored in the instance variable 'p.shapiro'

Usage
pgu.normDist$test.shapiro()

Method test.kolmogorow()

Performes Kolmogorow-Smirnow's test for normality on the instance variable 'rawData'. The test result is stored in the instance variable 'd.kolmogorow'. The p-value of the test is stored in the instance variable 'p.kolmogorow'

Usage
pgu.normDist$test.kolmogorow()

Method test.anderson()

Performes Anderson-Darling's test for normality on the instance variable 'rawData'. The test result is stored in the instance variable 'a.anderson'. The p-value of the test is stored in the instance variable 'p.anderson'

Usage
pgu.normDist$test.anderson()

Method fitResult()

Returns the result of the classes optimize function in form of a formated string.

Usage
pgu.normDist$fitResult()
Returns

String of the results of the fitting routine (character)


Method testResult()

Returns the result of the classes test functions in form of a formated string.

Usage
pgu.normDist$testResult(testName = "Shapiro-Wilk")
Arguments
testName

Defines the test which result shall be returned. Can be of type:'Shapiro-Wilk', 'Kolmogorow-Smirnow' or 'Anderson-Darling'. (character)

Returns

String of the results of the testing routine (character)


Method testResultCompendium()

Returns the result of the classes test functions 'Shapiro-Wilk', 'Kolmogorow-Smirnow' and 'Anderson-Darling' in form of a formated string. (character)

Usage
pgu.normDist$testResultCompendium()
Returns

String of the results of the testing routine (character)


Method plotHistogram()

Displays the instance variable 'histogram' in form of a bar plot and overlays the corresponding normal distribution.

Usage
pgu.normDist$plotHistogram()
Returns

A bar plot. (ggplot2::ggplot)


Method plotResiduals()

Displays the residuals between the instance variable 'histogram' and the corresponding normal distribution.

Usage
pgu.normDist$plotResiduals()
Returns

A scatter plot. (ggplot2::ggplot)


Method plotResidualDist()

Displays the distribution of the residuals between the distribution of the instance variable 'histogram' in form of a histogram.

Usage
pgu.normDist$plotResidualDist()
Returns

A bar plot. (ggplot2::ggplot)


Method plotRawResidualDist()

Displays the distribution of the residuals between the distribution of the instance variable 'rawData' in form of a histogram.

Usage
pgu.normDist$plotRawResidualDist()
Returns

A bar plot. (ggplot2::ggplot)


Method plotRawDataDist()

Displays the distribution of the instance variable 'rawData' in form of a histogram.

Usage
pgu.normDist$plotRawDataDist()
Returns

A bar plot. (ggplot2::ggplot)


Method normalQQPlot()

Displays a qqplot of the instance variable 'rawData'.

Usage
pgu.normDist$normalQQPlot()
Returns

A qq-plot. (ggplot2::ggplot)


Method fit()

Runs the optimization process and performs all implemented quality controls. Additionally performs hypothesis tests for normality.

Usage
pgu.normDist$fit()

Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.normDist$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.normalizer

Description

Normalization of data. Part of pguIMP.

Format

[R6::R6Class] object.

Details

Performs a data normalization in order to achieve a standardized version of the dataframe. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

normAgentAlphabet

Returns the instance variable normAgentAlphabt.

normAgent

Returns the instance variable normAgent. (character)

setNormAgent

Sets the instance variable normAgent. (character)

features

Returns instance variable features. (character)

normParameter

Returns the instance variable normParameter.

Methods

Public methods


Method new()

Creates and returns a new 'pgu.normalizer' object.

Usage
pgu.normalizer$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.normalizer' object. (pguIMP::pgu.normalizer)


Method finalize()

Clears the heap and indicates that instance of 'pgu.normalizer' is removed from heap.

Usage
pgu.normalizer$finalize()

Method print()

Prints instance variables of a 'pgu.normalizer' object.

Usage
pgu.normalizer$print()
Returns

string


Method detectNormParameter()

Resets instance variable 'normParameter'

Usage
pgu.normalizer$detectNormParameter(data_df = "tbl_df")
Arguments
data_df

Dataframe to be analyzed. (tibble::tibble)


Method scale_data()

Scales a tibble using the method defined by the instance variable normAgent

Usage
pgu.normalizer$scale_data(data_df = "tbl_df")
Arguments
data_df

Dataframe to be scaled (tible::tibble)

Returns

A normalized version of the dataframe. (tibble::tibble)


Method scale_minMax()

Scales a tibble using min-max normalization

Usage
pgu.normalizer$scale_minMax(data_df = "tbl_df")
Arguments
data_df

Dataframe to be scaled (tibble::tibble)

Returns

A min-max normalized version of the dataframe


Method scale_minMax_numeric()

Scales a numeric object using min-max normalization

Usage
pgu.normalizer$scale_minMax_numeric(values = "numeric", feature = "character")
Arguments
values

Values to be scaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

A min-max normalized version of the numeric object


Method scale_mean()

Scales a tibble using mean normalization

Usage
pgu.normalizer$scale_mean(data_df = "tbl_df")
Arguments
data_df

Dataframe to be scaled. (tibble::tibble)

Returns

A mean normalized version of the dataframe


Method scale_mean_numeric()

Scales a numeric object using mean normalization

Usage
pgu.normalizer$scale_mean_numeric(values = "numeric", feature = character)
Arguments
values

Values to be scaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

A mean normalized version of the numeric object


Method scale_zScore()

Scales a tibble using z-score normalization

Usage
pgu.normalizer$scale_zScore(data_df = "tbl_df")
Arguments
data_df

Dataframe to be scaled (tibble::tibble)

Returns

A z-score normalized version of the dataframe


Method scale_zScore_numeric()

Scales a numeric object using z-score normalization

Usage
pgu.normalizer$scale_zScore_numeric(values = "numeric", feature = character)
Arguments
values

Values to be scaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

A z-score normalized version of the numeric object


Method rescale_data()

Rescales a tibble using the method defined by the instance variable normAgent

Usage
pgu.normalizer$rescale_data(data_df = "tbl_df")
Arguments
data_df

Normalized dataframe to be rescaled (tible::tibble)

Returns

A rescaled version of the normalized dataframe. (tibble::tibble)


Method rescale_minMax()

Rescales a tibble using min-max normalization

Usage
pgu.normalizer$rescale_minMax(data_df = "tbl_df")
Arguments
data_df

Normalized dataframe to be rescaled (tibble::tibble)

Returns

A rescaled version of a min-max normalized dataframe


Method rescale_minMax_numeric()

Rescales a numeric object using min-max normalization

Usage
pgu.normalizer$rescale_minMax_numeric(values = "numeric", feature = character)
Arguments
values

Normalized values to be rescaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

Rescaled version of min-max normalized numeric object


Method rescale_mean()

Rescales a tibble using mean normalization

Usage
pgu.normalizer$rescale_mean(data_df = "tbl_df")
Arguments
data_df

Normalized dataframe to be rescaled (tibble::tibble)

Returns

A rescaled version of a mean normalized dataframe


Method rescale_mean_numeric()

Rescales a numeric object using mean normalization

Usage
pgu.normalizer$rescale_mean_numeric(values = "numeric", feature = character)
Arguments
values

Normalized values to be rescaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

Rescaled version of mean normalized numeric object


Method rescale_zScore()

Rescales a tibble using z-score normalization

Usage
pgu.normalizer$rescale_zScore(data_df = "tbl_df")
Arguments
data_df

Normalized dataframe to be rescaled (tibble::tibble)

Returns

A rescaled version of a z-score normalized dataframe


Method rescale_zScore_numeric()

Rescales a numeric object using z-score normalization

Usage
pgu.normalizer$rescale_zScore_numeric(values = "numeric", feature = character)
Arguments
values

Normalized values to be rescaled. Either a number or a vector (numeric)

feature

Character to idtentify the proper normalization parameters. (character)

Returns

Rescaled version of z-score normalized numeric object


Method featureBarPlot()

Displays the distribution of an attribute values as histogram.

Usage
pgu.normalizer$featureBarPlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A histogram. (ggplot2::ggplot)


Method featureBoxPlotWithSubset()

Displays the distribution of an attribute's values as box plot.

Usage
pgu.normalizer$featureBoxPlotWithSubset(
  data_df = "tbl_df",
  feature = "character"
)
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A box plot. (ggplot2::ggplot)


Method featurePlot()

Displays the distribution of an attribute's values as a composition of a box plot and a histogram.

Usage
pgu.normalizer$featurePlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A composite plot. (ggplot2::ggplot)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.normalizer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.optimizer

Description

Finds the transformation models that result in distributions that come closest to a normal distribution.

Format

[R6::R6Class] object.

Details

Analysis is performed individually on each attribute. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

features

Returns the instance variable features. (character)

trafoAlphabet

Returns the instance variable trafoAlphabet. (character)

setTrafoAlphabet

Sets the instance variable trafoAlphabet to data. (character)

mirror

Returns the instance variable mirror (logical)

setMirror

Sets the instance variable mirror to data (logical)

optParameter

Returns the instance variable optParameter (tibble::tibble)

optTypes

Returns the instance variable optTypes (tibble::tibble)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.optimizer' object.

Usage
pgu.optimizer$new(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.optimizer' object. (pguIMP::pgu.optimizer)


Method finalize()

Clears the heap and indicates that instance of 'pgu.optimizer' is removed from heap.

Usage
pgu.optimizer$finalize()

Method print()

Prints instance variables of a 'pgu.optimizer' object.

Usage
pgu.optimizer$print()
Returns

string


Method resetFeatures()

Extract the attribute names from the given data frame and stores them in the class' instance variable features,

Usage
pgu.optimizer$resetFeatures(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)


Method resetOptParameter()

Initializes the instance variable optParameter.

Usage
pgu.optimizer$resetOptParameter()

Method resetOptTypes()

Initializes the instance variable optTypes.

Usage
pgu.optimizer$resetOptTypes()

Method resetOptimizer()

Initializes the optimizer instance variables. Here, initialization defines a consecutive sequence of the class' functions: resetFeatures, setTrafoAlphabet, setMirror, resetOptParameter and resetOptTypes.

Usage
pgu.optimizer$resetOptimizer(data = "tbl_df")
Arguments
data

The data to be analyzed. (tibble::tibble)


Method featureIdx()

Determines the numerical index of the column of an attribute based on the attribute name.

Usage
pgu.optimizer$featureIdx(feature = "character")
Arguments
feature

The attribute's name. (character)

Returns

The attributes column index. (numeric)


Method modelParameterIsBigger()

Compares a model parameter to a reference parameter and tests, if the model parameter is bigger.

Usage
pgu.optimizer$modelParameterIsBigger(
  modelParameter = "numeric",
  referenceParameter = "numeric"
)
Arguments
modelParameter

The model parameter (numeric)

referenceParameter

The reference parameter (numeric)

Returns

Test Result (logical)


Method modelParameterIsSmaller()

Compares a model parameter to a reference parameter and tests, if the model parameter is smaller.

Usage
pgu.optimizer$modelParameterIsSmaller(
  modelParameter = "numeric",
  referenceParameter = "numeric"
)
Arguments
modelParameter

The model parameter (numeric)

referenceParameter

The reference parameter (numeric)

Returns

Test Result (logical)


Method updateTrafoType()

Takes an instance of the pgu.transfromator class and sets the transformation type to a user defined value.

Usage
pgu.optimizer$updateTrafoType(
  transformator = "pgu.transformator",
  type = "character"
)
Arguments
transformator

An instance of the pgu.transformator class (pguIMP::pgu.transformator)

type

A transfromation type (character)

Returns

An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)


Method updateMirrorLogic()

Takes an instance of the pgu.transfromator class and sets the mirrorLogic parameter to a user defined value.

Usage
pgu.optimizer$updateMirrorLogic(
  transformator = "pgu.transformator",
  logic = "logical"
)
Arguments
transformator

An instance of the pgu.transformator class (pguIMP::pgu.transformator)

logic

The mirrorLogic parameter (logic)

Returns

An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)


Method updateOptParameter()

Takes an instance of the pgu.model class and analyzes it. Keeps track of the optimal model parameters during optimization and stores them in the instance variables optTypes and optParameter.

Usage
pgu.optimizer$updateOptParameter(
  model = "pgu.model",
  type = "character",
  logic = "character"
)
Arguments
model

An instance of the pgu.model class (pguIMP::pgu.model)

type

A transfromation type (character)

logic

The mirrorLogic parameter (logic)


Method optimize()

Permutates all possible variations of data transfromations and iterates through them. Analysis the optimal transformation parameters for each attribute in the data frame and stores them in the instance variables optParameter, optTypes.

Usage
pgu.optimizer$optimize(data = "tbl_df", progress = "Progress")
Arguments
data

The data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method trafoAlpahbetTblDf()

Returns information on the optimization progress

Usage
pgu.optimizer$trafoAlpahbetTblDf()
Returns

The data frame comprizing analysis information. (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.optimizer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.outliers

Description

Detects and replaces possible outliers from data set.

Format

[R6::R6Class] object.

Details

Performes Grubb's test for outliers to detect outliers in the normalized and Z-score transfromed data set. Replace missing values with substitutes by classical and AI-powerd substitution algorithms. For this purpose outliers are handled as imputation sites.

Active bindings

outliersParameter

Returns the instance variable outliersParameter. (tibble::tibble)

outliers

Returns the instance variable outliers. (tibble::tibble)

one_hot_df

Returns the positions of missings in one_hot encoding (tibble::tibble)

outliersStatistics

Returns the instance variable outliersStatistics. (tibble::tibble)

outliersAgentAlphabet

Returns the instance variable of outliersAgentAlphabet (character)

outliersAgent

Returns the instance variable outliersAgent. (character)

setOutliersAgent

Sets the instance variable outliersAgent. (character)

featureData

Returns the instance variable featureData. (numeric)

alpha

Returns the instance variable alpha. (numeric)

setAlpha

Set the instance variable alpha. (numeric)

epsilon

Returns the instance variable epsilon. (numeric)

setEpsilon

Set the instance variable epsilon. (numeric)

minSamples

Returns the instance variable minSamples. (integer)

setMinSamples

Set the instance variable minSamples. (integer)

gamma

Returns the instance variable gamma. (numeric)

setGamma

Set the instance variable gamma. (numeric)

nu

Returns the instance variable nu. (numeric)

setNu

Set the instance variable nu. (numeric)

k

Returns the instance variable k (integer)

setK

Sets the instance variable k. (integer)

cutoff

Returns the instance variable cutoff. (numeric)

setCutoff

Sets the instance variable cutoff. (numeric)

seed

Returns the instance variable seed. (integer)

setSeed

Set the instance variable seed. (integer)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.outliers' object.

Usage
pgu.outliers$new(
  data_df = "tbl_df",
  alpha = 0.05,
  epsilon = 0.1,
  minSamples = 4,
  gamma = 0.05,
  nu = 0.1,
  k = 4,
  cutoff = 0.99,
  seed = 42
)
Arguments
data_df

The data to be cleaned. (tibble::tibble)

alpha

Initial definition of the instance variable alpha. (numeric)

epsilon

Initial definition of the instance variable epsilon. (numeric)

minSamples

Initial definition of the instance variable minSamples. (integer)

gamma

Initial definition of the instance variable gamma. (numeric)

nu

Initial definition of the instance variable nu. (numeric)

k

Initial definition of the instance variable k. (integer)

cutoff

Initial definition of the instance variable cutoff. (numeric)

seed

Initial definition of the instance variable seed. (integer)

Returns

A new 'pgu.outliers' object. (pguIMP::pgu.outliers)


Method finalize()

Clears the heap and indicates that instance of 'pgu.outliers' is removed from heap.

Usage
pgu.outliers$finalize()

Method print()

Prints instance variables of a 'pgu.outliers' object.

Usage
pgu.outliers$print()
Returns

string


Method resetOutliers()

Resets instance variables and performes Grubb's test for outliers to detect outliers in the normalized and Z-score transfromed data set. Progresse is indicated by the progress object passed to the function.

Usage
pgu.outliers$resetOutliers(data_df = "tbl_df")
Arguments
data_df

Dataframe to be analyzed. (tibble::tibble)


Method filterFeatures()

Filters attributes from the given dataframe that are known to the class.

Usage
pgu.outliers$filterFeatures(data_df = "tbl_df")
Arguments
data_df

Dataframe to be filtered. (tibble::tibble)

Returns

A filterd dataframe. (tibble::tibble)


Method checkFeatureValidity()

Checks if the feature consists of a sufficient number of instances.

Usage
pgu.outliers$checkFeatureValidity(data_df = "tbl_df", feature = "character")
Arguments
data_df

Dataframe to be analyzed (tibble::tibble)

feature

The attribute to be analyzed. (character)


Method detectOutliersParameter()

determines the outliers parameter by analyzing the tibble data_df and the instance variable outliers. Results are stored to instance variable outliersParameter.

Usage
pgu.outliers$detectOutliersParameter(data_df = "tbl_df")
Arguments
data_df

Dataframe to be analyzed. (tibble::tibble)


Method outliersFeatureList()

Characterizes each row of the data frame as either 'complete' or indicates which attribute has been identified as an outlier within the row. If multiple attributes' row entries were identified as outliers, the row is characterized by 'multiple'.

Usage
pgu.outliers$outliersFeatureList(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

Returns

Vector of row characteristics. (character)


Method featureOutlier()

Returns the detected outliers of a given attribute.

Usage
pgu.outliers$featureOutlier(feature = "character")
Arguments
feature

The attribute to be analyzed (character)

Returns

The attribute's outliers (tibble::tibble)


Method one_hot()

Gathers statistical information about missing values in one hot format. The result is stored in the instance variable one_hot_df.

Usage
pgu.outliers$one_hot(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)


Method detectOutliers()

Chooses a method for identification of anomalies based upon the instance variable 'outliersAgent' Detects anomalies in a data frame by one-dimensional analysis of each feature.

Usage
pgu.outliers$detectOutliers(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method detectByGrubbs()

Identifies anomalies in the data frame based on Grubb's test. Iterates over the whole data frame. Calls the object's public function 'grubbs_numeric' until no more anomalies are identified. The threshold for anomaly detection is defined in the instance variable 'alpha'. Display the progress if shiny is loaded.

Usage
pgu.outliers$detectByGrubbs(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method grubbs_numeric()

Performs Grubb's test for anomalies to detect a single outlier in the provided attributes data. If an outlier is found, it is added to the instance variable 'outliers'. The threshold for anomaly detection is difined in the instance variable 'alpha'. The function indicates a find by a positive feedback.

Usage
pgu.outliers$grubbs_numeric(data_df = "tbl_df", feature = "character")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

feature

The attribute within the data frame to be analyzed.

Returns

Feedback if an outlier was found. (logical)


Method detectByDbscan()

Identifies anomalies in the data frame based on DBSCAN. Iterates over the whole data frame. Calls the object's public function 'dbscan_numeric' until all features are analyzed. The cluster hyper parameter are defined in the instance variables 'epsilon' and 'minSamples'. The results of the 'dbscan_numeric' routine are added to the instance variable 'outliers'. Display the progress if shiny is loaded.

Usage
pgu.outliers$detectByDbscan(data_df = "tbl_df", progress = "Progress")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method dbscan_numeric()

Identifies anomalies in a single feature of a data frame based on DBSCAN. The cluster hyperparameter are defined in the instance variables 'epsilon' and 'minSamples'. Display the progress if shiny is loaded.

Usage
pgu.outliers$dbscan_numeric(data_df = "tbl_df", feature = "character")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

feature

Feature to be analyzed (character)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

A data frame comprising the information about detected anomalies of the feature. (tibble::tibble)


Method detectBySvm()

Identifies anomalies in the data frame based on one class SVM. Iterates over the whole data frame. Calls the object's public function 'svm_numeric' until all features are analyzed. The cluster hyper parameter are defined in the instance variables 'gamma' and 'nu'. The results of the 'svm_numeric' routine are added to the instance variable 'outliers'. Display the progress if shiny is loaded.

Usage
pgu.outliers$detectBySvm(data_df = "tbl_df", progress = "Process")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method svm_numeric()

Identifies anomalies in a single feature of a data frame based on one class SVM. The cluster hyperparameter are defined in the instance variables 'gamma' and 'nu'. Display the progress if shiny is loaded.

Usage
pgu.outliers$svm_numeric(data_df = "tbl_df", feature = "character")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

feature

Feature to be analyzed (character)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

A data frame comprising the information about detected anomalies of the feature. (tibble::tibble)


Method detectByKnn()

Identifies anomalies in the data frame based on knnO. Iterates over the whole data frame. Calls the object's public function 'svm_numeric' until all features are analyzed. The cluster hyper parameter are defined in the instance variables 'alpha' and 'minSamples'. The results of the 'knn_numeric' routine are added to the instance variable 'outliers'. Display the progress if shiny is loaded.

Usage
pgu.outliers$detectByKnn(data_df = "tbl_df", progress = "Process")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method knn_numeric()

Identifies anomalies in a single feature of a data frame based on knnO. The cluster hyperparameter are defined in the instance variables 'alpha' and 'minSmaples'. Display the progress if shiny is loaded.

Usage
pgu.outliers$knn_numeric(data_df = "tbl_df", feature = "character")
Arguments
data_df

Data frame to be analyzed. (tibble::tibble)

feature

Feature to be analyzed (character)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)

Returns

A data frame comprising the information about detected anomalies of the feature. (tibble::tibble)


Method setImputationSites()

Replaces the detected anomalies of a user provided data frame with 'NA' for further imputation routines.

Usage
pgu.outliers$setImputationSites(data_df = "tbl_df")
Arguments
data_df

Data frame to be mutated. (tibble::tibble)

Returns

A data frame with anomalies replaced by 'NA'. (tibble::tibble)


Method calcOutliersStatistics()

Calculates the statistics on the previously performed outlier detection analysis and stores the results in the instance variable 'outliersStatistcs'.

Usage
pgu.outliers$calcOutliersStatistics(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)


Method outlierTable()

Creates a datatable with substituted outliers highlightes by colored background.

Usage
pgu.outliers$outlierTable(data_df = "tbl_df")
Arguments
data_df

The data frame to be analyzed. (tibble::tibble)

Returns

A colored datatable (DT::datatable)


Method plotOutliersDistribution()

Displays the occurrence of outlier candidates per attribute as bar plot.

Usage
pgu.outliers$plotOutliersDistribution()
Returns

A bar plot. (ggplot2::ggplot)


Method featureBarPlot()

Displays the distribution of an attribute's values as histogram.

Usage
pgu.outliers$featureBarPlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A histogram. (ggplot2::ggplot)


Method featureBoxPlotWithSubset()

Displays the distribution of an attribute's vlues as box plot.

Usage
pgu.outliers$featureBoxPlotWithSubset(
  data_df = "tbl_df",
  feature = "character"
)
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A box plot. (ggplot2::ggplot)


Method featurePlot()

Displays the distribution of an attribute's values as a composition of a box plot and a histogram.

Usage
pgu.outliers$featurePlot(data_df = "tbl_df", feature = "character")
Arguments
data_df

dataframe to be analyzed. (tibble::tibble)

feature

attribute to be shown. (character)

Returns

A composite plot. (ggplot2::ggplot)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.outliers$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.regressor

Description

A class that performs pairwise robust regression on the pguIMP data set.

Format

[R6::R6Class] object.

Details

A class that performs pairwise robust regression on the pguIMP data set. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

featureNames

Returns the instance variable featureNames. (character)

setFeatureNames

Sets the instance variable featureNames. It further initializes the instance variables: intercept, pIntercept, slope, pSlope. (character)

intercept

Returns the instance variable intercept. (matrix)

pIntercept

Returns instance variable pIntercept. (matrix)

slope

Returns the instance variable slope. (matrix)

pSlope

Returns the instance variable pSlope. (matrix)

model

Returns the instance variable model. (robust::lmRob)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.regressor' object.

Usage
pgu.regressor$new(data = "tbl_df")
Arguments
data

The data to be modeled. (tibble::tibble)

Returns

A new 'pgu.regressor' object. (pguIMP::pgu.regressor)


Method finalize()

Clears the heap and indicates if instance of 'pgu.regressor' is removed from heap.

Usage
pgu.regressor$finalize()

Method print()

Prints instance variables of a 'pgu.regressor' object.

Usage
pgu.regressor$print()
Returns

string


Method resetRegressor()

Performes pair-wise robust linear regression on the attributes of the data tibble. Progresse is indicated by the progress object passed to the function.

Usage
pgu.regressor$resetRegressor(data = "tbl_df", progress = "Progress")
Arguments
data

Dataframe with at least two numeric attributes. (tibble::tibble)

progress

Keeps track of the analysis progress. (shiny::Progress)


Method resetDiagonal()

Sets the diagonal of a square matrix to NA.

Usage
pgu.regressor$resetDiagonal(data = "matrix")
Arguments
data

The matrix whose diagonal is to be reset. (matrix)

Returns

A matrix with its diagonal reset to NA. (matrix)


Method resetMatrix()

Creates a square matrix which dimension corresponds to the length of the instance variable featureNames. The matrix entries are set to a distict 'value'. The diagonal is set to NA.

Usage
pgu.regressor$resetMatrix(value = "numeric")
Arguments
value

The value the matrix entries are set to. (numeric)

Returns

A square matrix. (matrix)


Method featureIdx()

Determines the numerical index of the column of an attribute based on the attribute name.

Usage
pgu.regressor$featureIdx(feature = "character")
Arguments
feature

The attribute's name. (character)

Returns

The attributes column index. (numeric)


Method featureIsValid()

Checks if the feature is known to the class.

Usage
pgu.regressor$featureIsValid(feature = "character")
Arguments
feature

An attribute's name that is to be checked. (character)

Returns

The test result. (logical)


Method featurePairIsValid()

Checks a if a pair of attributes different and known to the class.

Usage
pgu.regressor$featurePairIsValid(
  abscissa = "character",
  ordinate = "character"
)
Arguments
abscissa

An attribute's name that is to be checked. (character)

ordinate

An attribute's name that is to be checked. (character)

Returns

The test result. (logical)


Method createModel()

Creates a robust model of linear regression between two attributes of a dataframe. The model is stored as instance variable.

Usage
pgu.regressor$createModel(
  data = "tbl_df",
  abscissa = "character",
  ordinate = "character"
)
Arguments
data

The data to be modeled. (tibble::tibble)

abscissa

An attribute's name that equals a column name in the data. (character)

ordinate

An attribute's name that equals a column name in the data. (character)


Method createRegressionMatrix()

Performs the actual robust linear regression routine. Iteratively runs through the attributes known to the class and creates a robust linear regression model for each valid attribute pair. The model results are stored in the instance variables: intercept, pIntercept, slope, pSlope. Here, pX represents the p-value of the respective parameter X. Displays the progress if shiny is loaded.

Usage
pgu.regressor$createRegressionMatrix(data = "tbl_df", progress = "Progress")
Arguments
data

The data to be modeled. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)


Method printModel()

Transforms the results of the modeling procedure for a valid pair of attributes to a dataframe and returns it.

Usage
pgu.regressor$printModel(abscissa = "character", ordinate = "character")
Arguments
abscissa

The name of the attribute which is assigned to the abscissa. (character)

ordinate

The name of the attribute which is assigned to the ordinate. (character)

Returns

The analyis result as a dataframe. (tibble::tibble)


Method printInterceptTbl()

Transfroms instance variable intercept to a dataframe and returns it.

Usage
pgu.regressor$printInterceptTbl()
Returns

Dataframe of instance variable intercept. (tibble::tibble)


Method printPInterceptTbl()

Transfroms instance variable pIntercept to a dataframe and returns it.

Usage
pgu.regressor$printPInterceptTbl()
Returns

Dataframe of instance variable pIntercept. (tibble::tibble)


Method printSlopeTbl()

Transfroms instance variable slope to a dataframe and returns it.

Usage
pgu.regressor$printSlopeTbl()
Returns

Dataframe of instance variable slope. (tibble::tibble)


Method printPSlopeTbl()

Transfroms instance variable pSlope to a dataframe and returns it.

Usage
pgu.regressor$printPSlopeTbl()
Returns

Dataframe of instance variable pSlope. (tibble::tibble)


Method plotRegression()

Creates a scatter plot of the model stored within the instance variable of the class.

Usage
pgu.regressor$plotRegression()
Returns

A scatter plot. (ggplot2::ggplot)


Method plotResidualDist()

Creates a histogram of the residual distribution of the model stored within the instance variable of the class.

Usage
pgu.regressor$plotResidualDist()
Returns

A histogram plot. (ggplot2::ggplot)


Method plotResidualBox()

Creates a box plot of the residual distribution of the model stored within the instance variable of the class.

Usage
pgu.regressor$plotResidualBox()
Returns

A box plot. (ggplot2::ggplot)


Method plotModel()

Creates a model of robust linear regression. Executes all graphical exploration functions of the class and creates a composite graph based on their results.

Usage
pgu.regressor$plotModel(
  data = "tbl_df",
  abscissa = "character",
  ordinate = "character"
)
Arguments
data

The data to be modeled. (tibble::tibble)

abscissa

The name of the attribute which is assigned to the abscissa. (character)

ordinate

The name of the attribute which is assigned to the ordinate. (character)

Returns

A composite graph. (gridExtra::grid.arrange)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.regressor$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.reporter

Description

Creates a human readable report file of the pguIMP analysis in odf format via rmarkdown and latex. This object is used by the shiny based gui and is not for use in individual R-scripts!

Format

[R6::R6Class] object.

Details

I run at the end of the analysis.

Active bindings

filename

Returns the instance variable filename (character)

setFilename

Sets the instance variable filename to name. (character)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.reporter' object.

Usage
pgu.reporter$new(name = "character")
Arguments
name

Filename of the report pdf. (character)

Returns

A new 'pgu.reporter' object. (pguIMP::pgu.report)


Method finalize()

Clears the heap and indicates that instance of 'pgu.reporter' is removed from heap.

Usage
pgu.reporter$finalize()

Method print()

Prints instance variables of a 'pgu.reporter' object.

Usage
pgu.reporter$print()
Returns

string


Method write_report()

Writes a report of the pguIMP analysis to a pdf file.

Usage
pgu.reporter$write_report(obj)
Arguments
obj

A list of class objects that are passed to the rmarkdown script.

Returns

t.b.a.


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.reporter$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.status

Description

A class that keeps track of the pguIMP analysis process.

Format

[R6::R6Class] object.

Details

pguIMP uses a defined linear analysis path The current status therefore provides information about which analyses have already been performed and which still have to be performed. This way pguIMG knows any time during analysis, if all necessary information for the next desired analysis step are available. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

processAlphabet

Reurns the process alphabet of the pguIMP analysis routine. (character)

processStatus

Returns the process status of the pguIMP routine. (logical)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.status“ object.

Usage
pgu.status$new()
Returns

A new 'pgu.status' object. (pguIMP::pgu.status)


Method finalize()

Clears the heap and indicates if instance of 'pgu.status' is removed from heap.

Usage
pgu.status$finalize()

Method print()

Prints instance variables of a 'pgu.status' object.

Usage
pgu.status$print()
Returns

string


Method reset()

resets the intance variables 'processAlphabet' and 'processStatus' to their initial values (FALSE).

Usage
pgu.status$reset()

Method update()

updates the process status

Usage
pgu.status$update(processName = "character", value = "logical")
Arguments
processName

The name of the 'pguIMP' process that has been performed. (character)

value

Indicates if the process ended with success. (logical)


Method query()

Queries if a process has already been performed successfully.

Usage
pgu.status$query(processName = "character")
Arguments
processName

Name of the process to be checked. (character)

Returns

Status of the queried process (logical)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.status$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.transformator

Description

Transforms the data of pguIMP.

Format

[R6::R6Class] object.

Details

Performs a data transformation in order to achieve a normally distributed version of the dataframe. This object is used by the shiny based gui and is not for use in individual R-scripts!

Active bindings

trafoAlphabet

Returns the instance variable trafoAlphabte.

trafoParameter

Returns the instance variable trafoParameter.

Methods

Public methods


Method new()

Creates and returns a new 'pgu.transformator' object.

Usage
pgu.transformator$new(data_df = "tbl_df")
Arguments
data_df

The data to be analyzed. (tibble::tibble)

Returns

A new 'pgu.transformator' object. (pguIMP::pgu.transformator)


Method finalize()

Clears the heap and indicates that instance of 'pgu.transformator' is removed from heap.

Usage
pgu.transformator$finalize()

Method print()

Prints instance variables of a 'pgu.transformator' object.

Usage
pgu.transformator$print()
Returns

string


Method resetTrafoParameter()

Resets instance variable 'trafoParameter'

Usage
pgu.transformator$resetTrafoParameter(data = "tbl_df")
Arguments
data

Dataframe to be analyzed. (tibble::tibble)


Method trafoType()

Returns entry of 'trafoType' for user defined attribute.

Usage
pgu.transformator$trafoType(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (character)


Method setTrafoType()

Sets entry of 'trafoType' for user defined attribute.

Usage
pgu.transformator$setTrafoType(feature = "character", type = "character")
Arguments
feature

Attribute's name. (character)

type

Trafo type parameter. Valid choices are: "none", "exponential", "log2", "logNorm", "log10", "arcsine", "tukeyLOP", "boxCox". (character)


Method addConstant()

Returns entry of 'addConst' for user defined attribute.

Usage
pgu.transformator$addConstant(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (numeric)


Method mirrorLogic()

Returns entry of 'mirrorLogic' for user defined attribute.

Usage
pgu.transformator$mirrorLogic(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (logical)


Method setMirrorLogic()

Sets entry of 'mirrorLogic' for user defined attribute.

Usage
pgu.transformator$setMirrorLogic(feature = "character", logic = "logical")
Arguments
feature

Attribute's name. (character)

logic

Specifies whether the data should be mirrored at the coordinate origin. (logical)


Method lambdaLOP()

Returns entry of 'lambda_lop' for user defined attribute. Lambda is a specific optimization parameter that is derived from the Tukey-LOP transfromation procedure.

Usage
pgu.transformator$lambdaLOP(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (numeric)


Method setLambdaLOP()

Sets entry of 'lambda_lop' for user defined attribute.

Usage
pgu.transformator$setLambdaLOP(feature = "character", lambda = "numeric")
Arguments
feature

Attribute's name. (character)

lambda

Sets the feature specific exponential value. (numeric)


Method lambdaBC()

Returns entry of 'lambda_bc' for user defined attribute. Lambda is a specific optimization parameter that is derived from the Box-Cox transfromation procedure.

Usage
pgu.transformator$lambdaBC(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (numeric)


Method lambdaAS()

Returns entry of 'lambda_as' for user defined attribute. Lambda is a specific optimization parameter that is derived from the arcsine transfromation procedure.

Usage
pgu.transformator$lambdaAS(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Value of entry. (numeric)


Method featureIdx()

Returns the index of a pgu.normDist object wihtin the instance variable 'trafoParameter'.

Usage
pgu.transformator$featureIdx(feature = "character")
Arguments
feature

Attribute's name. (character)

Returns

Index of attribute entry in dataframe (numeric)


Method addConstGenerator()

Calculates and returns the addConst. A constant that prevents the occurrence of negative values as well as zero, if added to an attribute.

Usage
pgu.transformator$addConstGenerator(value = "numeric")
Arguments
value

The smallest of the attribute's values. (numeric)

Returns

The addConst for the attribute (numeric)


Method mirrorNumeric()

Mirrors the assigned values at the coordinate origin.

Usage
pgu.transformator$mirrorNumeric(value = "numeric")
Arguments
value

Value or vector of values. (numeric)

Returns

Value or vector of values. (numeric)


Method mirrorData()

Calls the class' mirrorNumeric function on all numeric attributes of a data frame.

Usage
pgu.transformator$mirrorData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)

Returns

A data frame (tibble::tibble)


Method calculateAddConst()

Calculates the addConst value for each attribute of the assigned data frame, by calling the class' addConstGenerator function. The results are stored in addConst attribute of the trafoParameter instance variable.

Usage
pgu.transformator$calculateAddConst(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method translateNumeric()

Translates the assigned values by a constant.

Usage
pgu.transformator$translateNumeric(value = "numeric", const = "numeric")
Arguments
value

A numeric or a vector of numerics to be translated. (numeric)

const

A constant value. (numeric)

Returns

A numeric or a vector of numerics. (numeric)


Method translateData()

Translates each attribute of the assigned data frame, by calling the class' translateNumeric function. The respective addConst values of the individual attributes of the data frame serve as const variables.

Usage
pgu.transformator$translateData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)

Returns

A data frame. (tibble:tibble)


Method backTranslateNumeric()

Back-translates the assigned values by a constant.

Usage
pgu.transformator$backTranslateNumeric(value = "numeric", const = "numeric")
Arguments
value

A numeric or a vector of numerics to be back-translated. (numeric)

const

A constant value. (numeric)

Returns

A numeric or a vector of numerics. (numeric)


Method backTranslateData()

Back-translates each attribute of the assigned data frame, by calling the class' backTranslateNumeric function. The respective addConst values of the individual attributes of the data frame serve as const variables.

Usage
pgu.transformator$backTranslateData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)

Returns

A data frame. (tibble:tibble)


Method lambdaEstimator()

Estimates the lambda factor for the given values, that are assigned to a user defined attribute..

Usage
pgu.transformator$lambdaEstimator(value = "numeric", feature = "character")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

feature

The attribute which the given values are assigned to. (character)

Returns

The specific lambda factor. (numeric)


Method estimateLambda_temp()

Estimates the lambda factor for each attribute of the assigned data frame, by calling the class' lambdaEstimator function. The respective lambda values of the individual attributes of the data frame are stored in the lambda attribute of the instance variable trafoParameter.

Usage
pgu.transformator$estimateLambda_temp(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method estimateLambda()

Estimates the arcsine transformation lambda factor for each attribute of the assigned data frame. The respective lambda values of the individual attributes of the data frame are stored in the lambda attribute of the instance variable trafoParameter.

Usage
pgu.transformator$estimateLambda(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method normalizeArcSine()

Estimates the lambda factor for an arcsine transformation for the given values,

Usage
pgu.transformator$normalizeArcSine(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The specific lambda factor. (numeric)


Method optimizeTukeyLadderOfPowers()

Estimates the lambda factor for a tukeyLOP transformation for the given values,

Usage
pgu.transformator$optimizeTukeyLadderOfPowers(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The specific lambda factor. (numeric)


Method optimizeBoxCox()

Estimates the lambda factor for a boxcox transformation for the given values,

Usage
pgu.transformator$optimizeBoxCox(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The specific lambda factor. (numeric)


Method transformNumeric()

Transforms the given numeric values, that are assigned to a user defined attribute.

Usage
pgu.transformator$transformNumeric(value = "numeric", feature = "character")
Arguments
value

A numeric or a vector of numerics to be tranformed. (numeric)

feature

The attribute which the given values are assigned to. (character)

Returns

A transfromed version of the given numeric or vector of numerics. (numeric)


Method transformData()

Transforms each attribute of the assigned data frame, by calling the class' tranformNumeric function. The respective lambda values of the individual attributes of the data frame are read from the lambda attribute of the instance variable trafoParameter.

Usage
pgu.transformator$transformData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method transformLogModulus()

Performes a log transformation for the given values, based on a user defined base value.

Usage
pgu.transformator$transformLogModulus(value = "numeric", base = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

base

Logarithmic base. (numeric)

Returns

The transformed values. (numeric)


Method transformSquareRoot()

Performes a square root transformation for the given values.

Usage
pgu.transformator$transformSquareRoot(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method transformCubeRoot()

Performes a cube root transformation for the given values.

Usage
pgu.transformator$transformCubeRoot(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method transformArcsine()

Performes an arcsine transformation for the given values.

Usage
pgu.transformator$transformArcsine(value = "numeric", lambda = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Normalization factor. (numeric)

Returns

The transformed values. (numeric)


Method transformInverse()

Performes an inverse transformation for the given values.

Usage
pgu.transformator$transformInverse(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method transformTukeyLadderOfPowers()

Performes a tukeyLOP transformation for the given values.

Usage
pgu.transformator$transformTukeyLadderOfPowers(
  value = "numeric",
  lambda = "numeric"
)
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Lambda factor. (numeric)

Returns

The transformed values. (numeric)


Method transformBoxCox()

Performes a boxcox transformation for the given values.

Usage
pgu.transformator$transformBoxCox(value = "numeric", lambda = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Lambda factor. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformNumeric()

Inverse transforms the given numeric values, that are assigned to a user defined attribute.

Usage
pgu.transformator$inverseTransformNumeric(
  value = "numeric",
  feature = "character"
)
Arguments
value

A numeric or a vector of numerics to be tranformed. (numeric)

feature

The attribute which the given values are assigned to. (character)

Returns

An inverse transfromed version of the given numeric or vector of numerics. (numeric)


Method inverseTransformData()

Inverse transforms each attribute of the assigned data frame, by calling the class' tranformNumeric function. The respective lambda values of the individual attributes of the data frame are read from the lambda attribute of the instance variable trafoParameter.

Usage
pgu.transformator$inverseTransformData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method inverseTransformLogModulus()

Performes an inverse log transformation for the given values, based on a user defined base value.

Usage
pgu.transformator$inverseTransformLogModulus(
  value = "numeric",
  base = "numeric"
)
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

base

Logarithmic base. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformSquareRoot()

Performes an inverse square root transformation for the given values.

Usage
pgu.transformator$inverseTransformSquareRoot(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformCubeRoot()

Performes an inverse cube root transformation for the given values.

Usage
pgu.transformator$inverseTransformCubeRoot(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformArcsine()

Performes an inverse arcsine transformation for the given values.

Usage
pgu.transformator$inverseTransformArcsine(
  value = "numeric",
  lambda = "numeric"
)
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Normalization factor. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformInverse()

Performes an inverse inverse-transformation for the given values.

Usage
pgu.transformator$inverseTransformInverse(value = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformTukeyLadderOfPowers()

Performes an inverse tukeyLOP transformation for the given values.

Usage
pgu.transformator$inverseTransformTukeyLadderOfPowers(
  value = "numeric",
  lambda = "numeric"
)
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Lambda factor. (numeric)

Returns

The transformed values. (numeric)


Method inverseTransformBoxCox()

Performes an inverse boxcox transformation for the given values.

Usage
pgu.transformator$inverseTransformBoxCox(value = "numeric", lambda = "numeric")
Arguments
value

A numeric or a vector of numerics to be analyzed. (numeric)

lambda

Lambda factor. (numeric)

Returns

The transformed values. (numeric)


Method fit()

Estimate all transformation parameters(lambda, addConst,...) for each attribute of a given data frame. The function calls the class' functions calculateAddConst and estimateLambda. The results are stored in the respective attributes of the instance variable trafoParameter.

Usage
pgu.transformator$fit(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)


Method mutateData()

Mutates the values of each attribute of a given data frame. Here, mutation is defined as the cesecutive sequence of the class' functions mirrorData, tranlsateData and transfromData.

Usage
pgu.transformator$mutateData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)

Returns

A mutated data frame. (tibble::tibble)


Method reverseMutateData()

Re-mutates the values of each attribute of a given data frame. Here, re-mutation is defined as the cesecutive sequence of the class' functions inverseTransformData, backTranslateData, mirrorData

Usage
pgu.transformator$reverseMutateData(data = "tbl_df")
Arguments
data

A data frame. (tibble:tibble)

Returns

A mutated data frame. (tibble::tibble)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.transformator$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pgu.validator

Description

Validates that the distribution is not significantly altered by the imputation process. This object is used by the shiny based gui and is not for use in individual R-scripts!

Format

[R6::R6Class] object.

Details

Takes two distributions (before and after imputation). Performs a Wilcoxon-Mann-Whitney U test. Performs a Kolmogorow-Smirnow test.

Active bindings

testStatistics_df

Returns the instance variable 'testStatistics_df'. (tibble::tibble)

centralMoments_org

Returns the instance variable 'centralMoments_org' (tibble::tibble)

centralMoments_imp

Returns the instance variable 'centralMoments_imp' (tibble::tibble)

centralMoments_delta

Returns the instance variable 'centralMoments_delta' (tibble::tibble)

features

Returns the instance variable 'features' (character)

seed

Returns the instance variable seed (integer)

setSeed

Sets the instance variable seed. (numeric)

Methods

Public methods


Method new()

Creates and returns a new 'pgu.validator' object.

Usage
pgu.validator$new(seed = 42)
Arguments
seed

Set the instance variable 'seed'. (integer)

Returns

A new 'pgu.validator' object. (pguIMP::pgu.validator)


Method finalize()

Clears the heap and indicates that instance of 'pgu.validator' is removed from heap.

Usage
pgu.validator$finalize()

Method print()

Prints instance variables of a 'pgu.validator' object.

Usage
pgu.validator$print()
Returns

string


Method resetValidator()

Resets instance variables

Usage
pgu.validator$resetValidator()

Method kolmogorowTestFeature()

Performs a comparison between the original and the imputated distribution of a given feature using a two-sided Kolmorogow-Smirnow test with simulated p-vaue distribution.

Usage
pgu.validator$kolmogorowTestFeature(
  org = "numeric",
  imp = "numeric",
  feature = "character"
)
Arguments
org

Original data to be analzed. (numeric)

imp

Imputed data to be analyzed. (numeric)

feature

Feature name of the analyzed distributions. (character)

Returns

One row dataframe comprising the test results. (tibble::tibble)


Method wilcoxonTestFeature()

Performs a comparison between the original and the imputated distribution of a given feature using a two-sided Wilcoxon/Mann-Whitney test.

Usage
pgu.validator$wilcoxonTestFeature(
  org = "numeric",
  imp = "numeric",
  feature = "character"
)
Arguments
org

Original data to be analzed. (numeric)

imp

Imputed data to be analyzed. (numeric)

feature

Feature name of the analyzed distributions. (character)

Returns

One row dataframe comprising the test results. (tibble::tibble)


Method centralMomentsFeature()

Estimates estimates the central moments of the given distribution.

Usage
pgu.validator$centralMomentsFeature(values = "numeric", feature = "character")
Arguments
values

Data to be analzed. (numeric)

feature

Feature name of the analyzed distributions. (character)

Returns

One row dataframe comprising the statistics. (tibble::tibble)


Method validate()

Validates the feature distributions of the original and the imputated dataframe“ using a two-sided Kolmorogow-Smirnow test and a two-sided Wilcoxon/Mann-Whitney test. The result is stored in the instance variables 'testStatistics_df'and 'distributionStatistics_df'. Displays the progress if shiny is loaded.

Usage
pgu.validator$validate(
  org_df = "tbl_df",
  imp_df = "tbl_df",
  progress = "Progress"
)
Arguments
org_df

Original dataframe to be analzed. (tibble::tibble)

imp_df

Imputed dataframe to be analyzed. (tibble::tibble)

progress

If shiny is loaded, the analysis' progress is stored in this instance of the shiny Progress class. (shiny::Progress)


Method featurePdf()

Receives a dataframe and plots the pareto density of the features 'org_pdf' and 'imp_pdf'. Returns the plot

Usage
pgu.validator$featurePdf(data_df = "tbl_df")
Arguments
data_df

dataframe to be plotted (tibble::tibble)

Returns

A ggplot2 object (ggplot2::ggplot)


Method featureCdf()

Receives a dataframe and plost the feature 'x' against the features 'org_cdf' and 'imp_cdf'. Returns the plot

Usage
pgu.validator$featureCdf(data_df = "tbl_df")
Arguments
data_df

dataframe to be plotted (tibble::tibble)

Returns

A ggplot2 object (ggplot2::ggplot)


Method featureVs()

Receives two numeric vectors 'org' and 'imp'. Plots the qq-plot of both vectors. Returns the plot

Usage
pgu.validator$featureVs(org = "numeric", imp = "numeric")
Arguments
org

Numric vector comprising the original data. (numeric)

imp

Numeric vector comprising the imputed data. (numeric)

Returns

A ggplot2 object (ggplot2::ggplot)


Method featureBoxPlot()

Receives a dataframe and information about the lloq and uloq and retuns a boxplot

Usage
pgu.validator$featureBoxPlot(
  data_df = "tbl_df",
  lloq = "numeric",
  uloq = "numeric",
  feature = "character"
)
Arguments
data_df

Dataframe to be analyzed (tibble::tibble)

lloq

lower limit of quantification (numeric)

uloq

upper limit of quantification (numeric)

feature

Feature name (character)

Returns

A ggplot2 object (ggplot2::ggplot)


Method featurePlot()

Receives two numeric dataframes 'org_df' and 'imp_df', and a feature name. Creates a compund plot of the validation results for the given feature.. Returns the plot

Usage
pgu.validator$featurePlot(
  org_df = "tbl_df",
  imp_df = "tbl_df",
  lloq = "numeric",
  uloq = "numeric",
  impIdx_df = "tbl_df",
  feature = "character"
)
Arguments
org_df

Dataframe comprising the original data. (tibble::tibble)

imp_df

Dataframe comprising the imputed data. (tibble::tibble)

lloq

lower limit of quantification (numeric)

uloq

upper limit of quantification (numeric)

impIdx_df

dataframe comprising information about imputation sites (tibble::tibble)

feature

Feature name. (character)

Returns

A ggplot2 object (ggplot2::ggplot)


Method clone()

The objects of this class are cloneable with this method.

Usage
pgu.validator$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Sebastian Malkusch


pguIMP

Description

Reproducible cleaning of biomedical laboratory data using methods of visualization, error correction and transformation implemented as interactive R-notebooks.

Usage

pguIMP()

Details

A graphical data preprocessing toolbox, named “pguIMP”, that includes a fixed sequence of preprocessing steps to enable error-free data preprocessing interactively. By implementing contemporary data processing methods including machine learning-based imputation procedures, the creation of corrected and cleaned bioanalytical datasets is ensured, which preserve data structures such as clusters better than resulting with classical methods.

Value

shiny application object

Author(s)

Sebastian Malkusch


dLogLikelihood

Description

Calculates bbmle snmor function.

Usage

sLogLikelihood(mu = "numeric", sigma = "numeric")

Arguments

mu

The expextation value. (numeric)

sigma

The standard deviation. (numeric)

Value

the bbmle::snorm results.

Author(s)

Sebastian Malkusch

Examples

y <- sLogLikelihood (mu=0.0, sigma=1.0)


transposeTibble

Description

Transposes a tibble This object is used by the shiny based gui and is not for use in individual R-scripts!

Usage

transposeTibble(obj = "tbl_df")

Arguments

obj

The data frame to be transposed. (numeric)

Value

The transposed data frame. (tibble:tibble)

Author(s)

Sebastian Malkusch

mirror server hosted at Truenetwork, Russian Federation.