multibiasmeta: Sensitivity Analysis for Multiple Biases in Meta-Analyses

Meta-analyses can be compromised by studies' internal biases (e.g., confounding in nonrandomized studies) as well as by publication bias. This package conducts sensitivity analyses for the joint effects of these biases (per Mathur (2022) <doi:10.31219/osf.io/u7vcb>). These sensitivity analyses address two questions: (1) For a given severity of internal bias across studies and of publication bias, how much could the results change?; and (2) For a given severity of publication bias, how severe would internal bias have to be, hypothetically, to attenuate the results to the null or by a given amount?

Version: 0.2.2
Depends: R (≥ 4.1.0)
Imports: dplyr, EValue, metabias, metafor, purrr, Rdpack, rlang, robumeta
Suggests: glue, knitr, phacking, PublicationBias (≥ 2.3.0), rmarkdown, testthat (≥ 3.0.0)
Published: 2023-08-23
DOI: 10.32614/CRAN.package.multibiasmeta
Author: Maya Mathur [aut], Mika Braginsky [aut], Peter Solymos ORCID iD [cre, ctb]
Maintainer: Peter Solymos <peter at analythium.io>
BugReports: https://github.com/mathurlabstanford/multibiasmeta/issues
License: MIT + file LICENSE
URL: https://github.com/mathurlabstanford/multibiasmeta, https://mathurlabstanford.github.io/multibiasmeta/
NeedsCompilation: no
Materials: README NEWS
In views: MetaAnalysis
CRAN checks: multibiasmeta results

Documentation:

Reference manual: multibiasmeta.pdf
Vignettes: tutorial

Downloads:

Package source: multibiasmeta_0.2.2.tar.gz
Windows binaries: r-devel: multibiasmeta_0.2.2.zip, r-release: multibiasmeta_0.2.2.zip, r-oldrel: multibiasmeta_0.2.2.zip
macOS binaries: r-release (arm64): multibiasmeta_0.2.2.tgz, r-oldrel (arm64): multibiasmeta_0.2.2.tgz, r-release (x86_64): multibiasmeta_0.2.2.tgz, r-oldrel (x86_64): multibiasmeta_0.2.2.tgz
Old sources: multibiasmeta archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=multibiasmeta to link to this page.

mirror server hosted at Truenetwork, Russian Federation.