Title: Bayesian Inference of TKTD Models
Version: 0.1.3
Description: Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival Data with toxicokinetics toxicodynamics (TKTD) models. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See models description in Jager et al. (2011) <doi:10.1021/es103092a> and implementation using Bayesian inference in Baudrot and Charles (2019) <doi:10.1038/s41598-019-47698-0>.
License: AGPL (≥ 3)
Encoding: UTF-8
RoxygenNote: 7.3.2
Biarch: true
Depends: R (≥ 3.5.0)
Imports: deSolve, ggplot2, gridExtra, methods, Rcpp (≥ 0.12.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.18.1), rstantools (≥ 2.4.0), testthat, zoo
LinkingTo: BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.18.1), StanHeaders (≥ 2.18.0)
Suggests: knitr, rmarkdown, xml2
Config/testthat/edition: 3
VignetteBuilder: knitr
SystemRequirements: GNU make
NeedsCompilation: yes
Packaged: 2025-06-02 13:28:55 UTC; virgile
Author: Virgile Baudrot [aut, cre], Sandrine Charles [aut], Marie Laure Delignette-Muller [aut], Benoit Goussen [ctb], Nils Kehrein [ctb], Guillaume Kon-Kam-King [ctb], Christelle Lopes [ctb], Alexander Singer [ctb], Philippe Veber [aut]
Maintainer: Virgile Baudrot <virgile.baudrot@qonfluens.com>
Repository: CRAN
Date/Publication: 2025-06-04 15:00:02 UTC

The 'morseTKTD' package.

Description

Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival Data with toxicokinetics toxicodynamics (TKTD) models. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS).

References

Stan Development Team (NA). RStan: the R interface to Stan. R package version 2.32.7. https://mc-stan.org


Set of function to test conformity of data

Description

Usage

check_time(data)

check_concentration(data)

check_Nsurv(data)

check_TimeNsurv(data)

check_concNsurv(data)

checking_table(data, check, msg)

is_exposure_constant(data)

is.between(x, min, max)

Arguments

data

a data.frame

check

binary vector of TRUE/FALSE

msg

a message to add to the data.frame

x

parameter to check if it's between min and max

min

minimal value. x must be greater than min

max

maximal value. x must be lower than max

Value

a boolean TRUE if concentration in replicate is constant, or FALSE if the concentration in at least one of the replicates is time-variable, and/or if NA occurs.


Compute post value on object

Description

compute_Nsurv: compute the number of survival Nsurv

Usage

compute_Nsurv(x, ...)

compute_Ninit(x, ...)

## S3 method for class 'SurvPredict'
compute_Nsurv(x, Ninit = NULL, ...)

Arguments

x

an object of class SurvPredict

...

Further arguments to be passed to generic methods

Ninit

initial number of individual. Default is NULL.

Value

No return value, called for side effects. Return the same object after computing Number of survivor (Nsurv column) and number of initial individuals (Ninit column).


Extraction methods to recover output of fit object.

Description

Usage

extract_Nsurv_ppc(fit)

extract_Nsurv_sim(fit)

extract_param(fit)

priors_distribution(fit, ...)

## S3 method for class 'SurvFit'
priors_distribution(fit, size_sample = 1000, ...)

Arguments

fit

An object of class SurvFit

...

Further arguments to be passed to generic methods

size_sample

Size of the random generation of the distribution.

Value

a data.frame with the extracted object from stanfit.


A simulated exposure profile with 11641 time points using FOCUS model.

Description

Usage

data(FOCUSprofile)

Predict Lethal Concentration at any specified time point.

Description

Predict the Lethal Concentration at any specified time point for a SurvFit object.

The function LCx, x\ the dose required to kill x\ after a specified test duration (time_LCx) (default is the maximum time point of the experiment).

Mathematical definition of x\ denoted LC(x,t), is:

S(LC(x,t), t) = S(0, t)*(1- x/100),

where S(LC(x,t), t) is the survival probability at concentration LC(x,t) at time t, and S(0,t) is the survival probability at no concentration (i.e. concentration is 0) at time t which reflect the background mortality h_b:

S(0, t) = exp(-hb* t).

In the function LCx, we use the median of S(0,t) to rescale the x\

Usage

lcxt(fit, x, t, ...)

## S3 method for class 'SurvFit'
lcxt(
  fit,
  x = 0.5,
  t = NULL,
  exposure_range = NULL,
  interpolate_length = 50,
  ...
)

Arguments

fit

An object used to select a method

x

rate of individuals dying (e.g., 0.5 for LC_{50}, 0.1 for LC_{10}, ...).

t

A number giving the time at which LC_{x} has to be estimated. If NULL, the latest time point of the experiment is used.

...

Further arguments to be passed to generic methods

exposure_range

A vector of length 2 with minimal and maximal value of the range of concentration. If NULL, the range is define between 0 and the highest tested concentration of the experiment.

interpolate_length

of time point in the range of concentration between 0 and the maximal concentration. 100 by default. description.

Value

The function returns an object of class LCx, which is a list with the following information:


Lethal Profile calculation

Description

Predict the Lethal Profile factor leading to $x$ % of reduction in survival at a specific time $t$.

Generic method for LPxt, a function denoted LP(x,t) for x\

Usage

lpxt(fit, x, ...)

## S3 method for class 'SurvFit'
lpxt(
  fit,
  x = 0.5,
  t = NULL,
  display.exposure = NULL,
  interpolate_length = NULL,
  max.steps = 100,
  accuracy = 0.01,
  ...
)

## S3 method for class 'LPxt'
update(object, accuracy = 0.01, max.steps = 100, ...)

Arguments

fit

An object used to select a method

x

rate of individuals dying (e.g., 0.5 for LP_{50}, 0.1 for LP_{10}, ...).

...

Further arguments to be passed to generic methods

t

A number giving the time at which LP_{x} has to be estimated. If NULL, the latest time point of the experiment is used.

display.exposure

A vector of the exposure porfile

interpolate_length

of time point in the range of concentration between 0 and the maximal concentration. 100 by default. description.

max.steps

max steps to find the LPxt

accuracy

accuracy of the LPxt algorithm (stop when reaching the accuracy).

object

An object of class LPx

Value

returns an object of class LPxt


Create a list giving data to use in Bayesian inference.

Description

Function to build the data list to give to stan

  1. Order the data set in replicate and then in time to create a new column i_row used to delimited replicates.

  2. Create a matrix of replicate and index "id_row"

  3. Compute Nprec = lag of Nsurv

  4. return a list of element to be passed to Stan sampler

Create a list of scalars giving priors to use in Bayesian inference.

Usage

modelData(data, model_type, ...)

## S3 method for class 'SurvData'
modelData(data, model_type = c("SD", "IT"), hb_value = NULL, ...)

build_stanData(x)

build_priors(x, model_type = c("SD", "IT"), hb_value = NULL)

Arguments

data

An object of class SurvData

model_type

TKTD model type ('SD' or 'IT')

...

Further arguments to be passed to generic methods

hb_value

default is NULL, can be fixed by specifying a numeric.

x

An object of class survData

Value

A list for parameterization of priors for Bayesian inference.

A list for parameterization of priors for Bayesian inference with JAGS.


Posterior predictive check methods

Description

This is the generic ppc S3 method for computing Posterior predictive check. It predicts values with 95 \ values for SurvFit objects.

Usage

ppc(fit, ...)

## S3 method for class 'SurvFit'
ppc(fit, ...)

Arguments

fit

An object of class SurvFit

...

Further arguments to be passed to generic methods

Value

a data.frame of class PPC with the original data point and the response of simulation and 95\ indicates if the observation fall within (green) or outside (red) of the 95\ credible interval.


Plotting method for survDataVar objects

Description

This is the generic plot S3 method for the survDataVar class. It plots the number of survivors as a function of time.

Usage

## S3 method for class 'SurvDataVarExp'
plot(
  x,
  xlab = "Time",
  ylab = "Number of survivors",
  main = NULL,
  one_plot = FALSE,
  add_legend = FALSE,
  ...
)

## S3 method for class 'SurvDataCstExp'
plot(
  x,
  xlab = "Time",
  ylab = "Number of survivors",
  main = NULL,
  one_plot = FALSE,
  ...
)

Arguments

x

an object of class survData.

xlab

a label for the X-axis, by default Time.

ylab

a label for the Y-axis, by default Number of survivors.

main

main title for the plot.

one_plot

if TRUE, draws all the points in one plot instead of one per replicate or conc.

add_legend

if TRUE, add the legend to the plot.

...

Further arguments to be passed to generic methods.

Value

an object of class ggplot, see function ggplot


Plot of the LCxt object

Description

Method for plotting output of lcxt function returning object of class LCxt.

Usage

## S3 method for class 'LCxt'
plot(
  x,
  xlab = "Concentration",
  ylab = "Survival probability",
  main = NULL,
  ...
)

Arguments

x

an object of class LCxt

xlab

argument for the label of the x-axis

ylab

argument for the label of the y-axis

main

argument for the title of the graphic

...

Further arguments to be passed to generic methods

Value

an object of class ggplot, see function ggplot


Plot of the LPxt object

Description

Method for plotting output of loxt function returning object of class LPxt.

Usage

## S3 method for class 'LPxt'
plot(
  x,
  plot = "curve",
  xlab = "Time",
  ylab = "Survival probability",
  main = NULL,
  ...
)

Arguments

x

an object of class LPxt

plot

style of the plot (default is curve)

xlab

argument for the label of the x-axis

ylab

argument for the label of the y-axis

main

argument for the title of the graphic

...

Further arguments to be passed to generic methods

Value

an object of class ggplot, see function ggplot


Plot an object PPC

Description

The coordinates of black points are the observed values of the number of survivors (pooled replicates) for a given concentration (X-axis) and the corresponding predicted values (Y-axis). 95\ value, colored in green if this interval contains the observed value and in red otherwise. The bisecting line (y = x) is added to the plot in order to see if each prediction interval contains each observed value. As replicates are shifted on the x-axis, this line is represented by steps.

Usage

## S3 method for class 'PPC'
plot(
  x,
  xlab = "Observation",
  ylab = "Prediction",
  main = NULL,
  dodge.width = 0,
  ...
)

Arguments

x

an object of class PPC

xlab

label of the x-axis

ylab

label of the y-axis

main

tital of the graphic

dodge.width

dodging width. Dodging preserves the vertical position of an geom while adjusting the horizontal position.

...

Further arguments to be passed to generic methods See position_dodge for further details.

Value

an object of class ggplot, see function ggplot


Plotting method for SurvPredict objects

Description

This is the generic plot S3 method for the SurvPredict class. It plots concentration-response fit under target time survival analysis.

Usage

## S3 method for class 'SurvPredict'
plot(
  x,
  xlab = "Time",
  ylab = "Number of Survival",
  main = "Survival Probability with 95% Credible Interval",
  background_concentration = FALSE,
  add_legend = FALSE,
  ...
)

Arguments

x

an object of class SurvPredict

xlab

argument for the label of the x-axis

ylab

argument for the label of the y-axis

main

argument for the title of the graphic

background_concentration

Binary. If TRUE (default is FALSE), it print the background exposure profile.

add_legend

add legend to the plot, default is FALSE

...

Further arguments to be passed to generic methods

Value

an object of class ggplot, see function ggplot


Plot of Prior and Posterior distributions

Description

A function to plot priors and posteriors distribution after using the priorPosterior function on a SurvFit object.

Usage

## S3 method for class 'PriorPosterior'
plot(x, ...)

Arguments

x

a PriorPosterior object

...

Further arguments to be passed to generic methods

Value

an object of class ggplot, see function ggplot


Prediction base on SurvFit objects

Description

This is the generic predict S3 method for the SurvFit class. It provides predicted survival rate for "SD" or "IT" models under constant or time-variable exposure. prediction on constant exposure profile

Note: On constant exposure profiles, the results is explicit (exact), so you don't have to profile

Usage

predict_SurvFitCstExp(
  fit,
  display.exposure = NULL,
  hb_value = NULL,
  interpolate_length = NULL,
  ...
)

predict_cstSD(
  display.exposure = NULL,
  display.parameters = NULL,
  hb_value = NULL,
  interpolate_length = NULL
)

predict_cstIT(
  display.exposure = NULL,
  display.parameters = NULL,
  hb_value = NULL,
  interpolate_length = NULL
)

predict_SurvFitVarExp(
  fit,
  display.exposure = NULL,
  hb_value = NULL,
  interpolate_length = NULL,
  interpolate_method = "linear",
  ...
)

predict_varSD(
  display.exposure = NULL,
  display.parameters = NULL,
  hb_value = NULL,
  interpolate_length = NULL,
  interpolate_method = NULL
)

predict_varIT(
  display.exposure = NULL,
  display.parameters = NULL,
  hb_value = NULL,
  interpolate_length = NULL,
  interpolate_method = NULL
)

predict(fit, ...)

## S3 method for class 'SurvFit'
predict(
  fit,
  display.exposure = NULL,
  hb_value = NULL,
  interpolate_length = NULL,
  interpolate_method = "linear",
  ...
)

Arguments

fit

an object of class SurvFit

display.exposure

concentration points on which prediction is done

hb_value

a numeric used as hb_value (can be set to 0 to remove background mortality and take only effect parameters).

interpolate_length

if display.time is NULL, the argument interpolate_length can be used to provide a sequence from 0 to maximum of the time of exposure in original dataset (used for fitting).

...

Further arguments to be passed to generic methods

display.parameters

parameters of the specific model.

interpolate_method

The interpolation method for concentration. See package deSolve for details. Default is linear.

Value

a list of data.frame with the quantiles of outputs in df_quantiles or all the MCMC chains df_spaghetti


Return Prior and Posterior density of parameters of SurvFit object

Description

This is the generic pp S3 method for the survFitTT class. It plots the predicted values with 95 \ values for SurvFit objects.

The coordinates of black points are the observed values of the number of survivors (pooled replicates) for a given concentration (X-axis) and the corresponding predicted values (Y-axis). 95\ value, colored in green if this interval contains the observed value and in red otherwise. The bisecting line (y = x) is added to the plot in order to see if each prediction interval contains each observed value. As replicates are shifted on the x-axis, this line is represented by steps.

Usage

priorPosterior(fit, ...)

## S3 method for class 'SurvFit'
priorPosterior(fit, ...)

Arguments

fit

An object of class SurvFit

...

Further arguments to be passed to generic methods

Value

a plot of class ggplot


Creates a data set for survival analysis

Description

This function creates a SurvData object from experimental data provided as a data.frame. The resulting object can then be used for plotting and model fitting. It can also be used to generate individual-time estimates.

The x argument describes experimental results from a survival toxicity test. Each line of the data.frame corresponds to one experimental measurement, that is a number of alive individuals at a given concentration at a given time point and in a given replicate. Note that either the concentration or the number of alive individuals may be missing. The data set is inferred to be under constant exposure if the concentration is constant for each replicate and systematically available. The function survData fails if x does not meet the expected requirements. Please run survDataCheck to ensure x is well-formed.

Usage

survData(data, ...)

## S3 method for class 'data.frame'
survData(data, ...)

Arguments

data

a data.frame containing the following four columns:

  • replicate: a vector of any class numeric, character or factor for replicate identification. A given replicate value should identify the same group of individuals followed in time

  • conc: a vector of class numeric with tested concentrations (positive values, may contain NAs)

  • time: a vector of class integer with time points, minimal value must be 0

  • Nsurv: a vector of class integer providing the number of alive individuals at each time point for each concentration and each replicate (may contain NAs)

...

Further arguments to be passed to generic methods

Value

A dataframe of class survData and column replicate as factor.

See Also

survDataCheck


Checks if an object can be used to perform survival analysis

Description

The survDataCheck function can be used to check if an object containing survival data is formatted according to the expectations of the survData function.

Usage

survDataCheck(data, quiet = FALSE)

Arguments

data

any object looking as a data.frame.

quiet

binary (TRUE, FALSE). If FALSE (default), remove some messages in console.

Value

The function returns a dataframe with message describting the error in the formatting of the data. When no error is detected the object is empty.


Fits a TKTD model for survival analysis using Bayesian inference

Description

This function estimates the parameters of a TKTD model ('SD' or 'IT') for survival analysis using Bayesian inference. In this model, the survival rate of individuals is modeled as a function of the chemical compound concentration with a mechanistic description of the effects on survival over time.

The function returns the parameter estimates of Toxicokinetic-toxicodynamic (TKTD) models SD for 'Stochastic Death' or IT fo 'Individual Tolerance'. TKTD models, and particularly the General Unified Threshold model of Survival (GUTS), provide a consistent process-based framework to analyse both time and concentration dependent datasets. In GUTS-SD, all organisms are assumed to have the same internal concentration threshold (denoted z), and, once exceeded, the instantaneous probability to die increases linearly with the internal concentration. In GUTS-IT, the threshold concentration is distributed among all the organisms, and once exceeded in one individual, this individual dies immediately.

This is the generic plot S3 method for the SurvFit class. It plots concentration-response fit under target time survival analysis.

Usage

fit(data, model_type, hb_value, ...)

## S3 method for class 'SurvDataCstExp'
fit(data, model_type, hb_value = NULL, ...)

## S3 method for class 'SurvDataVarExp'
fit(data, model_type, hb_value = NULL, ...)

## S3 method for class 'SurvFit'
plot(
  x,
  xlab = "Time",
  ylab = "Number of Survival",
  main = NULL,
  add_data = TRUE,
  add_legend = FALSE,
  ...
)

Arguments

data

An object of class survDataCstExp or survDataVarExp.

model_type

Can be "SD" or "IT" to choose between "Stochastic Death" or "Individual Tolerance" models (resp.). See the modeling vignette for details.

hb_value

If TRUE, the background mortality hb is taken into account. If FALSE, parameter hb is set to 0. The default is TRUE.

...

Further arguments to be passed to generic methods using argument of sampling function.

x

a SurvFit object

xlab

label of the x-axis, default is "Time",

ylab

label of the y-axis, default is "Number of Survival"

main

title of the plot, defaul is NULL,

add_data

to add original data to the plot. Default ir TRUE

add_legend

add legend to the plot, default is FALSE

Value

An object of class stanfit returned by rstan::sampling

an object of class ggplot, see function ggplot

References

Jager, T., Albert, C., Preuss, T. G. and Ashauer, R. (2011) General unified threshold model of survival-a toxicokinetic-toxicodynamic framework for ecotoxicology, Environmental Science and Technology, 45, 2529-2540. 303-314.


Internal predict function

Description

Survival function for "IT" model with external concentration changing with time

Usage

SurvIT_cst(Cw, time, kd, hb, alpha, beta, interpolate_length = NULL)

Arguments

Cw

A vector of external concentration

time

A vector of time

kd

a vector of parameter

hb

a vector of parameter

alpha

a vector of parameter

beta

a vector of parameter

interpolate_length

can be used to provide a sequence from 0 to maximum of the time of exposure in original dataset (used for fitting).

Value

A data.frame with exposure columns time and conc and the resulting probabilisty of survival in Psurv_XX column where XX refer to an MCMC iteration


Internal predict function

Description

Survival function for "IT" model with external concentration changing with time

Usage

SurvIT_var(
  Cw,
  time,
  kd,
  hb,
  alpha,
  beta,
  interpolate_length = NULL,
  interpolate_method = c("linear", "constant")
)

Arguments

Cw

A vector of external concentration

time

A vector of time

kd

a vector of parameter

hb

a vector of parameter

alpha

a vector of parameter

beta

a vector of parameter

interpolate_length

if display.time is NULL, the argument interpolate_length can be used to provide a sequence from 0 to maximum of the time of exposure in original dataset (used for fitting).

interpolate_method

The interpolation method for concentration. See package deSolve for details.

Value

A data.frame with exposure columns time and conc and the resulting probabilisty of survival in Psurv_XX column where XX refer to an MCMC iteration


Internal predict function

Description

Survival function for "SD" model with external concentration changing with time

Usage

SurvSD_cst(Cw, time, kd, hb, z, kk, interpolate_length = NULL)

Arguments

Cw

A vector of external concentration

time

A vector of time

kd

a vector of parameter

hb

a vector of parameter

z

a vector of parameter

kk

a vector of parameter

interpolate_length

can be used to provide a sequence from 0 to maximum of the time of exposure in original dataset (used for fitting).

Value

A data.frame with exposure columns time and conc and the resulting probabilisty of survival in Psurv_XX column where XX refer to an MCMC iteration


Internal predict function

Description

Survival function for "SD" model with external concentration changing with time

Usage

SurvSD_var(
  Cw,
  time,
  kd,
  hb,
  z,
  kk,
  interpolate_length = NULL,
  interpolate_method = c("linear", "constant")
)

Arguments

Cw

A scalar of external concentration

time

A vector of time

kd

a vector of parameter

hb

a vector of parameter

z

a vector of parameter

kk

a vector of parameter

interpolate_length

if display.time is NULL, the argument interpolate_length can be used to provide a sequence from 0 to maximum of the time of exposure in original dataset (used for fitting).

interpolate_method

The interpolation method for concentration. See package deSolve for details.

Value

A data.frame with exposure columns time and conc and the resulting probabilisty of survival in Psurv_XX column where XX refer to an MCMC iteration


build sub-dataframe of Nsurv without NA

Description

internal function to remove NA in 'replicate', 'time' and 'Nsurv' columns and building 'Nprec' variable. Removing 'conc" column.

Usage

build_dN(subdata)

Arguments

subdata

a list of data.frame


build sub-dataframe of concentration without NA

Description

internal function to remove NA in 'replicate', 'time' and 'conc' columns, remove 'Nsurv' column to only have concentration matrix

Usage

build_dX(subdata)

Arguments

subdata

a list of data.frame


Reproduction and survival data sets of chronic laboratory toxicity tests of cadmium with Daphnia

Description

Usage

data(cadmium1)

References

Billoir, E., Delhaye, H., Forfait, C., Clement, B., Triffault-Bouchet, G., Charles, S. and Delignette-Muller, M.L. (2012) Comparison of toxicity tests with different exposure time patterns: The added value of dynamic modelling in predictive ecotoxicology, Ecotoxicology and Environmental Safety, 75, 80-86.


Reproduction and survival data sets of chronic laboratory toxicity tests of cadmium with snails

Description

Usage

data(cadmium2)

References

Ducrot, V., Askem, C., Azam, D., Brettschneider, D., Brown, R., Charles, S., Coke, M., Collinet, M., Delignette-Muller, M.L., Forfait-Dubuc, C., Holbech, H., Hutchinson, T., Jach, A., Kinnberg, K.L., Lacoste, C., Le Page, G., Matthiessen, P., Oehlmann, J., Rice, L., Roberts, E., Ruppert, K., Davis, J.E., Veauvy, C., Weltje, L., Wortham, R. and Lagadic, L. (2014) Development and validation of an OECD reproductive toxicity test guideline with the pond snail Lymnaea stagnalis (Mollusca, Gastropoda), Regulatory Toxicology and Pharmacology, 70(3), 605-14.

Charles, S., Ducrot, V., Azam, D., Benstead, R., Brettschneider, D., De Schamphelaere, K., Filipe Goncalves, S., Green, J.W., Holbech, H., Hutchinson, T.H., Faber, D., Laranjeiro, F., Matthiessen, P., Norrgren, L., Oehlmann, J., Reategui-Zirena, E., Seeland-Fremer, A., Teigeler, M., Thome, J.P., Tobor Kaplon, M., Weltje, L., Lagadic, L. (2016) Optimizing the design of a reproduction toxicity test with the pond snail Lymnaea stagnalis, Regulatory Toxicology and Pharmacology, vol. 81 pp.47-56.


Reproduction and survival data sets of chronic laboratory toxicity tests of chlordan with Daphnia

Description

Usage

data(chlordan)

References

Manar, R., Bessi, H. and Vasseur, P. (2009) Reproductive effects and bioaccumulation of chlordan in Daphnia magna, Environmental Toxicology and Chemistry, 28(10), 2150-2159.


Reproduction and survival data sets of chronic laboratory toxicity tests of copper on Daphnia

Description

Usage

data(copper)

References

Billoir, E., Delignette-Muller, M.L., Pery, A.R.R. and Charles, S. (2008) A Bayesian Approach to Analyzing Ecotoxicological Data, Environmental Science & Technology, 42 (23), 8978-8984.


Survival data set of chronic laboratory toxicity tests of dichromate with Daphnia

Description

Usage

data(dichromate)

References

Bedaux, J., Kooijman, SALM (1994) Statistical analysis of toxicity tests, based on hazard modeling, Environmental and Ecological Statistics, 1, 303-314.


build array with indices of rows

Description

internal function to build an array from a data-frame to have the indices of rows

Usage

group_array(d)

Arguments

d

a data.frame


Survival data set of chronic laboratory toxicity tests of propiconazole with Gammarus pulex

Description

Usage

data(propiconazole)

References

Nyman, A.-M., Schirmer, K., Ashauer, R., (2012) Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power, Ecotoxicology, (21), 1828-1840.


Survival data set of chronic laboratory toxicity tests of propiconazole with Gammarus pulex

Description

Usage

data(propiconazole_pulse_exposure)

References

Nyman, A.-M., Schirmer, K., Ashauer, R., (2012) Toxicokinetic-toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power, Ecotoxicology, (21), 1828-1840.


Table of posterior estimated parameters

Description

create the table of posterior estimated parameters for the survival analyses

Usage

survFit_TKTD_params(mcmc, model_type, hb_value = TRUE)

Arguments

mcmc

list of estimated parameters for the model with each item representing a chain

model_type

model type SD or IT

hb_value

TRUE or FALSE, conservning the use of hb parameter in the model.

Value

a data.frame with 3 columns (values, CIinf, CIsup) and 3-4rows (the estimated parameters)


Reproduction and survival data sets of a chronic laboratory toxicity tests of zinc with Daphnia

Description

Usage

data(zinc)

References

Billoir, E., Delignette-Muller, M.L., Pery, A.R.R. and Charles, S. (2008) A Bayesian Approach to Analyzing Ecotoxicological Data, Environmental Science & Technology, 42 (23), 8978-8984.

mirror server hosted at Truenetwork, Russian Federation.