Type: | Package |
Title: | An Open-Source Tool for Visualization of Climate Mitigation Scenarios |
Version: | 0.3.1 |
Maintainer: | Akimitsu Inoue <inoue.akimitsu@chino-js.com> |
Description: | Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format. |
Imports: | ggplot2, stringr, tidyr, shinyWidgets, data.table, readxl, shiny.i18n (≥ 0.2.0), showtextdb, shinyalert, readr, showtext, shiny (≥ 1.5.0), reshape, rlang, dplyr, reshape2 |
Depends: | R (≥ 3.5.0), stats, utils, graphics, grDevices, |
License: | MIT + file LICENSE |
Suggests: | testthat, knitr, rmarkdown, tidyverse |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.1 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2021-05-17 04:03:59 UTC; inoue.akimitsu |
Author: | Diego Silva Herran [aut], Jiayang WANG [aut], Masahiro SUGIYAMA [aut], Hiroto SHIRAKI [aut], Akimitsu Inoue [ctr, cre] |
Repository: | CRAN |
Date/Publication: | 2021-05-18 07:20:02 UTC |
Add credit text to plots
Description
Add credit text to a list of ggplot2 plot objects
Usage
add_credit_to_list_of_plot(list_of_plot)
Arguments
list_of_plot |
list of ggplot2 plot objects |
Value
list of modified ggplot2 plot objects
Add credit text to a plot
Description
Add credit text and project URL to a ggplot2 plot object
Usage
add_credit_to_plot(plot_object)
Arguments
plot_object |
ggplot2 plot object |
Value
modified ggplot2 plot object
Sample Dataset
Description
A sample dataset of IAMC format
Usage
ar5_db_sample_data
Format
A tibble data.table with 25240 rows and 7 variables:
- model
model, categorical
- scenario
scenario, categorical
- region
region, ASIA, OECD90 or World
- variable
the name of simulated variable that changes over time
- unit
unit of a variable
- period
year
- value
the value of a variable
Source
https://tntcat.iiasa.ac.at/AR5DB/dsd?Action=htmlpage&page=about
Sample Rule Table
Description
A sample rule table
Usage
ar5_db_sample_rule_table
Format
A data frame of additivity rule.
- Rule_ID
rule id
- Left_side
name of left-side variable
- Right_side
name of right-side variable
- Color_code
hex color code
change column data type in data-set
Description
change column data type in data-set to be able to be treated as an IAMC data-set.
Usage
change_data_types_of_iamc_dataframe(iamc_data)
Arguments
iamc_data |
data frame which has columns 'model', 'scenario', 'region', 'variable', 'period', 'unit' |
Value
converted data-frame.
check if the dataset has required fields of IAMC dataset
Description
if dataset has all required fields, then returns TRUE
Usage
check_column_availability(iamc_data)
Arguments
iamc_data |
IAMC data frame |
Value
boolean flag
check if the format of given data is valid as an IAMC dataset.
Description
check if the format of given data is valid as an IAMC dataset.
Usage
check_format_of_iamc_dataframe(iamc_data)
Arguments
iamc_data |
IAMC dataset in dataframe format |
Value
TRUE if it is valid
correct data format of given IAMC data table
Description
Dataset in IAMC format rule is not rigid. This function corrects data types of columns in the dataset. If necessary columns is missing, it throws exception. Output object of this function is as follows:
type: data.table columns: model: factor scenario: factor region: factor variable: factor unit: factor period: double value: double
Usage
correct_format_of_iamc_dataframe(iamc_data)
Arguments
iamc_data |
IAMC dataset described above |
Value
modified dataframe
generate code to reproduce area plot
Description
This function is called in the mipplot_interactive_area() and provides R code to reproduce the currently drawn plot. This function cannot be used out of reactive expression in Shiny.
Usage
generate_code_to_plot_area(
input,
name_of_input_data_variable,
name_of_input_rule_table_variable
)
Arguments
input |
This is the same as the input argument in the shiny:ui(). |
name_of_input_data_variable |
A string such as "ar5_sample_data". |
name_of_input_rule_table_variable |
A string such as "ar5_sample_rule". |
Value
A string representing the R code for rerun.
generate code to reproduce bar plot
Description
This function is called in the mipplot_interactive_bar() and provides R code to reproduce the currently drawn plot. This function cannot be used out of reactive expression in Shiny.
Usage
generate_code_to_plot_bar(
input,
name_of_input_data_variable,
name_of_input_rule_table_variable
)
Arguments
input |
This is the same as the input argument in the shiny:ui(). |
name_of_input_data_variable |
A string such as "ar5_sample_data". |
name_of_input_rule_table_variable |
A string such as "ar5_sample_rule". |
Value
A string representing the R code for rerun.
generate code to reproduce line plot
Description
from 'input' argument generally used in reactive context in Shiny, this function generates R code to reproduce current plot. This function could not used out of reactive expression in Shiny.
Usage
generate_code_to_plot_line(input, name_of_iamc_data_variable = "D")
Arguments
input |
it is same as the argument of shiny::ui() this function accesses following attributes: - model - period - variable - scenario - region |
name_of_iamc_data_variable |
name of IAMC data variable |
Value
R code
Get name list of models in IAMC formatted data frame
Description
select name of models from the column "model" then make unique it. output is character vector such as, c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4" )
Usage
get_model_name_list(D)
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
Value
A list of strings representing model names
Get name list of scenarios in IAMC formatted data frame
Description
select name of scenarios from the column "scenario" then make unique it. output is character vector such as, c("EMF27-450-Conv", "EMF27-450-FullTech", "EMF27-450-NoCCS", "EMF27-450-NucOff")
Usage
get_scenario_name_list(D)
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
Value
A list of strings representing scenario names
Get expression of vector of string in string format
Description
To evaluate expression, get string of expression
Usage
get_string_expression_of_vector_of_strings(vector_of_strings)
Arguments
vector_of_strings |
vector of strings, such as c("A", "B") |
Value
An R code representing character vector
Get variable-group-name list
Description
variable-group is a combination of one LHS and one or more RHS. this function outputs the list of names of variable-group in given rule-table. the format of return value is "LHS|RHS1,RHS2,RHS3,...".
Usage
get_variable_group_name_list(rule_table)
Arguments
rule_table |
A rule table |
Value
variable group name
Examples
get_variable_group_name_list(ar5_db_sample_rule_table)
Get variable name list in given variable-group
Description
Scan rule-table and extract variable names in given variable-group.
Usage
get_variable_name_list_in_variable_group(group_name)
Arguments
group_name |
variable-group-name |
Value
A list of strings representing variable names
Examples
get_variable_name_list_in_variable_group(
"Final Energy|Industry,Residential and Commercial,Transportation")
mipplot
Description
Package contains generic functions to produce area/bar/box/line plots of data following IAMC submission format.
check additivity of rules and data
Description
This function is used for debugging a rule table and data-set. An input is a rule table and a data-set, the outputs are some area plots showing the divergence between the left-side variable and the sum of the right-side variables.
Usage
mipplot_additivity_check(D, R, max_n_plots = Inf, plot_all = FALSE)
Arguments
D |
A dataframe of IAMC data in tibble format to produce area plots. |
R |
A dataframe of data aggregation rules (meta data). |
max_n_plots |
The maximum number of output plots. |
plot_all |
set FALSE to plot only inconsistent combinations |
Value
A list of area plots.
Examples
if (interactive()) {
mipplot_additivity_check(
ar5_db_sample_data, ar5_db_sample_rule_table, max_n_plots = 10)
}
Additivity check using bar plot
Description
This function is used for debugging a rule table and data-set. An input is a rule table and a data-set, the outputs are some bar plots showing the divergence between the left-side variable and the sum of the right-side variables.
Usage
mipplot_additivity_check_bar(
D,
R,
target_scenarios,
target_rule_ids = 4,
show_all_scenarios = FALSE,
show_all_rule_ids = FALSE,
debug = FALSE
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce area plots. |
R |
A dataframe of data aggregation rules (meta data). |
target_scenarios |
A character vector of scenario names |
target_rule_ids |
A list of rule id. |
show_all_scenarios |
Set TRUE to show all scenarios. |
show_all_rule_ids |
Set TRUE to show all rules. |
debug |
Set TRUE if show intermediate dataframe using View function. |
Value
A list of bar plots.
Examples
mipplot_additivity_check_bar(
ar5_db_sample_data, ar5_db_sample_rule_table,
target_scenarios = c("EMF27-450-Conv", "EMF27-Base-NucOff"))
Area plot from IAMC data
Description
Area plots using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions (two in this version).
Usage
mipplot_area(
D,
R,
region = levels(D$region),
scenario = levels(D$scenario),
facet_x = NULL,
facet_y = NULL,
PRINT_OUT = FALSE,
DEBUG = TRUE,
fontsize = 20,
color_code_specify = TRUE,
one_hundred_percent_stacked = FALSE,
axis_year_text_angle = 0,
language = "en"
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce area plots. |
R |
A dataframe of data aggregation rules (meta data). |
region |
A list of regions. |
scenario |
A list of scenario. |
facet_x |
facet_x |
facet_y |
facet_y |
PRINT_OUT |
set TRUE to generate PDF file. |
DEBUG |
set TRUE to show debug messages. |
fontsize |
font size of text. |
color_code_specify |
set FALSE if you apply default color palette. |
one_hundred_percent_stacked |
set TRUE if you want a graph of 100% stacked, set this to TRUE. |
axis_year_text_angle |
text angle of x axis |
language |
A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
A list of area plots.
Examples
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(2005 <= period) %>%
filter(period <= 2100)
mipplot_area(data_subset, ar5_db_sample_rule_table,
region = c("ASIA"),
scenario = c("EMF27-450-Conv"),
one_hundred_percent_stacked = FALSE,
axis_year_text_angle = 0,
language = 'en')
Complementation of color scheme
Description
fill colors automatically
Usage
mipplot_autofill_color(rule_table_without_colors)
Arguments
rule_table_without_colors |
Incomplete color specification rule table. It dosen't contain "Color_code" column. |
Value
Complete color specification rule table. It is containing "Color_code" column. However, if color complementation can not be performed automatically, the return value is an incomplete color specification.
Bar plot from IAMC data
Description
Bar plots using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions.
Usage
mipplot_bar(
D,
R,
region = levels(D$region),
xby = "scenario",
target_year = levels(as.factor(D$period)),
facet_x = NULL,
facet_y = NULL,
PRINT_OUT = FALSE,
DEBUG = TRUE,
fontsize = 20,
color_code_specify = TRUE,
one_hundred_percent_stacked = FALSE,
axis_scenario_text_angle = 0,
language = "en"
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce plots. |
R |
A dataframe of data aggregation rules (meta data). |
region |
A list of region. |
xby |
name of axis. the default setting is "scenario". |
target_year |
target year. |
facet_x |
facet_x |
facet_y |
facet_y |
PRINT_OUT |
set TRUE to generate A PDF file. |
DEBUG |
set TRUE to show debug messages. |
fontsize |
size of font in the output plot. |
color_code_specify |
set FALSE if you apply default color palette. |
one_hundred_percent_stacked |
set TRUE if you want a graph of 100% stacked, set this to TRUE. |
axis_scenario_text_angle |
text angle of x axis |
language |
A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
A list of bar plots.
Examples
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(scenario %in% c("EMF27-450-Conv", "EMF27-450-FullTech"))
mipplot_bar(data_subset, ar5_db_sample_rule_table,
region = c("ASIA"),
target_year = 2005,
one_hundred_percent_stacked = FALSE,
axis_scenario_text_angle = 0,
language = 'en')
Box plot from IAMC data
Description
The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions
Usage
mipplot_box(
D,
region = levels(D$region),
variable = levels(D$variable),
target_year = levels(as.factor(D$period)),
PRINT_OUT = FALSE,
DEBUG = TRUE,
language = "en"
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce plots. |
region |
A list of regions. |
variable |
A list of variables. |
target_year |
target year. |
PRINT_OUT |
set TRUE to generate PDF file. |
DEBUG |
set TRUE to show debug messages. |
language |
A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
A list of box plots.
Examples
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(period == 2100) %>% filter(region == "OECD90")
mipplot_box(data_subset)
Default color palette.
Description
Default color palette.
Usage
mipplot_default_color_palette
Format
A default color palette object, which maps variable name (such as "Land Use") to hex color code.
Manual coloring
Description
Generate mapper from name of variable to name of color
Usage
mipplot_generate_color_mapper(raw_table, category_separator = "\\|")
Arguments
raw_table |
rule table which includes "Color_code" column. |
category_separator |
regular expression for separating right-hand-side variable name into categories. For example: separator should be "\|" for "Secondary Energy|Electricity|Coal" |
Value
named list of named string vectors. for example,
result = list( "Emissions|CO2" = c( "Fossil Fuels and Industry" = "#17202a", "Land Use" = "#008000", ...), "Emissions|CO2|Fossil Fuels and Industry" = c( "Energy Demand" = "#444444", ... ),...
A function to launch interactive plot using Shiny
Description
A function to launch interactive plot for additivity check.
Usage
mipplot_interactive_additivity_check_bar(D, R, debug = FALSE)
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
R |
A table with additivity rules. |
debug |
Set TRUE if table view is required. |
Value
No return value, called for side effects
Examples
if (interactive()) {
mipplot_interactive_additivity_check_bar(ar5_db_sample_data, ar5_db_sample_rule_table)
}
A function to launch interactive plotting session on Shiny
Description
Provides gui to set plotting parameter for area plot.
Usage
mipplot_interactive_area(D, R, language = "en")
Arguments
D |
A dataframe of IAMC data in tibble format to produce area plots. |
R |
A dataframe of data aggregation rules (meta data). |
language |
A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
No return value, called for side effects
Examples
if (interactive()) {
mipplot_interactive_area(ar5_db_sample_data, ar5_db_sample_rule_table)
}
A function to launch interactive plot using Shiny
Description
A function to launch interactive bar plot using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions
Usage
mipplot_interactive_bar(D, R, language = "en")
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
R |
A table with additivity rules. |
language |
A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
No return value, called for side effects
Examples
if (interactive()) {
mipplot_interactive_bar(ar5_db_sample_data, ar5_db_sample_rule_table)
}
A function to launch interactive plot using Shiny
Description
A function to launch interactive line plot. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions
Usage
mipplot_interactive_line(D, language = "en")
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
language |
A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
Value
No return value, called for side effects
Examples
if (interactive()) {
mipplot_interactive_line(ar5_db_sample_data)
}
A function to launch interactive plot using Shiny
Description
A function to launch interactive plot using Shiny
Usage
mipplot_interactive_plot_line(D, R)
Arguments
D |
A quitte format dataframe of IAMC data to produce graph. |
R |
A table with additivity rules. |
Value
No return value, called for side effects
Examples
if (interactive()) {
mipplot_interactive_plot_line(ar5_db_sample_data, ar5_db_sample_rule_table)
}
Line plot from IAMC data
Description
The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions
Usage
mipplot_line(
D,
region = levels(D$region),
variable = levels(D$variable),
colorby = "scenario",
linetypeby = "model",
shapeby = "model",
scenario = levels(D$scenario),
facet_x = NULL,
facet_y = NULL,
legend = TRUE,
PRINT_OUT = FALSE,
DEBUG = TRUE,
axis_year_text_angle = 0,
language = "en",
max_scenarios = 15,
max_models = 15
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce plots. |
region |
A list of regions. |
variable |
A list of variables. |
colorby |
an axis for color setting. |
linetypeby |
an axis for line type setting. |
shapeby |
an axis for shape setting. |
scenario |
A list of scenarios. |
facet_x |
facet_x |
facet_y |
facet_y |
legend |
set TRUE to plot legend. default is TRUE. |
PRINT_OUT |
set TRUE to generate PDF files. |
DEBUG |
set TRUE to show debug messages. |
axis_year_text_angle |
text angle of x axis |
language |
A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The default value is "en". |
max_scenarios |
Maximum number of scenarios to be shown. If legend is FALSE, this option is . |
max_models |
Maximum number of models to be shown. If legend is FALSE, this option is |
Value
A list of line plots.
Examples
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter( model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4") ) %>%
filter(2005 <= period) %>%
filter(period <= 2100)
mipplot_line(
data_subset,
variable = c("Emissions|CO2"),
scenario = c("EMF27-450-Conv", "EMF27-450-FullTech", "EMF27-450-NoCCS"),
region = c("ASIA"),
legend = TRUE,
axis_year_text_angle = 0,
language = 'en')
Point plot from IAMC data
Description
The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions
Usage
mipplot_point(
D,
region = levels(D$region),
variable = levels(D$variable),
target_year = levels(as.factor(D$period)),
colorby = "model",
shapeby = "model",
xby = "scenario",
facetby = NULL,
facet_x = NULL,
facet_y = NULL,
fontsize = 20,
PRINT_OUT = FALSE,
DEBUG = TRUE
)
Arguments
D |
A dataframe of IAMC data in tibble format to produce plots. |
region |
A list of regions. |
variable |
A list of variables. |
target_year |
A list of target years. |
colorby |
An axis for color setting. |
shapeby |
An axis for shape setting. |
xby |
An axis for x locating setting. |
facetby |
facetby. |
facet_x |
facet_x. |
facet_y |
facet_y. |
fontsize |
font size. |
PRINT_OUT |
set TRUE to generate PDF image. |
DEBUG |
set TRUE to show debug messages. |
Value
A list of point plots.
Examples
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(period == 2100) %>% filter(region == "OECD90")
mipplot_point(data_subset)
Print list of plots to pdf file
Description
This function plots a ggplot plots to PDF file.
Usage
mipplot_print_pdf(
p_list1,
filelabel = "",
filename = tryCatch(file.choose(new = TRUE), error = function(e) { NA })
)
Arguments
p_list1 |
A list of ggplot plot. |
filelabel |
A string of prefix of output filename. |
filename |
A string of filename. If it is given, filelabel is ignored. |
Value
No return value, called for side effects
Examples
if (interactive()) {
p <- mipplot_area(ar5_db_sample_data, ar5_db_sample_rule_table,
region = "World", scenario = "EMF27-450-FullTech")
mipplot_print_pdf(p)
}
Read IAMC scenario input data.
Description
Read scenario input data (in IAMC format) as tibble format dataframe.
Usage
mipplot_read_iamc(
filename = NULL,
sep = ",",
interactive = FALSE,
DEBUG = TRUE
)
Arguments
filename |
Path to a file containing scenario data in IAMC format. |
sep |
A character indicating the separator used in the input file. |
interactive |
open a dialog for selecting file if interactive=TRUE. |
DEBUG |
experimental. |
Value
A dataframe in tibble format ("model, scenario, variable, unit, period, value")
Examples
## Not run:
mipplot_read_iamc("filename")
## End(Not run)
Read file of rule table without ID number
Description
Read table of additivity rule and adds column with id number.
Usage
mipplot_read_ruletab(R_without_id)
Arguments
R_without_id |
Path to a file containing data of additivity rule. |
Value
A dataframe of additivity rule ("ID, Left_side, Right_side")
Examples
## Not run:
mipplot_read_ruletab("filename")
## End(Not run)
Mutated table of SR15 Data
Description
Mutated Table using filtered variable from the rule table The function arguments include the input dataframes: The SR15 dataset and the Rule Table and returns a mutated table with variable, value, model, scenario, region, period
Usage
mipplot_return_table(D, R)
Arguments
D |
A dataframe of IAMC data in tibble format to produce mutated table |
R |
A dataframe of data aggregation rules |
Value
Mutated Table of model,scenario,region,variable,unit,period,value
Examples
mipplot_return_table(sr15_sample_data, sr15_sample_conversion_rule_table)
variable SUBMISSION CHECK
Description
Verify whether data of variables included in list template have been submitted.
Usage
mipplot_var_submission(D, V, na_name = "N/A")
Arguments
D |
input data table |
V |
list of variables |
na_name |
string for N/A |
Value
A dataframe representing variable availabilities.
Read IAMC scenario input data in Excel format
Description
Read scenario input data (in IAMC format) as tibble format dataframe from Excel
Usage
read_iamc_xlsx(file_path, sheet = 2)
Arguments
file_path |
Path to a file containing scenario data in IAMC format. |
sheet |
the index of sheet which contains records. |
Value
A dataframe in tibble format ("model, scenario, variable, unit, period, value")
Examples
## Not run:
read_iamc_xlsx("filename", sheet = 2)
## End(Not run)
Split variable into positive and negative parts
Description
Generally, the range of the input value of stacked chart is greater than or equal to zero. This function splits variable into positive and negative parts in order to include negative values to stacked chart.
Usage
split_variable_into_positive_and_negative_parts(
df_all,
domain_column_name,
variable_column_name,
value_column_name,
variable_name_converter = function(x) { paste(x, "_negative", sep = "") },
increment_of_domain_in_interpolation = 0.1
)
Arguments
df_all |
input data frame |
domain_column_name |
domain column name, such as year |
variable_column_name |
variable column name, such as 'coal' |
value_column_name |
value column name, such as 'val' |
variable_name_converter |
function which convert original variable name into its negative part name |
increment_of_domain_in_interpolation |
step size for interpolation |
Value
modified data frame
Sample Conversion Rule Table
Description
A sample conversion rule table for mipplot_return_table.
Usage
sr15_sample_conversion_rule_table
Format
An object of class data.frame
with 37 rows and 6 columns.
Sample Dataset
Description
A sample dataset of IAMC format consist of a subset of IPCC special report (Global Warming of 1.5°C, 2018).
Usage
sr15_sample_data
Format
A tibble data.table with 396425 rows and 7 variables:
- model
model, categorical
- scenario
scenario, categorical
- region
region, ASIA, OECD90 or World
- variable
the name of simulated variable that changes over time
- unit
unit of a variable
- period
year
- value
the value of a variable