miceFast 0.8.5
- cran related update, 
OMP_THREAD_LIMIT. 
miceFast 0.8.4
- fixed CRAN Notes.
 
- style the cpp code.
 
- VIF() should be more stable.
 
miceFast 0.8.2
- simplified 
naive_fill_NA, It is a regular sampling
imputation now. 
- Fixed 
dontrun examples. 
- replace 
ggplot2::aes_string with
ggplot2::aes, as the former is depreciated. 
- regenerate performance benchmarks on R 4.2.1.
 
- styler over the code.
 
- improve documentation.
 
miceFast 0.8.1
tinyverse world, less dependencies. 
- fixed imputations for character variables under linear models.
 
- speed up the 
pmm model. 
- more tests, higher 
covr. 
- rerun performance tests.
 
miceFast 0.7.1
- update URL inside README.
 
miceFast 0.7.0
- improve coverage.
 
- use drop = FALSE when subsetting the data.frame
 
- healthy DESCRIPTION file, fix spaces.
 
- more input validation.
 
miceFast 0.6.8
- update broken vignette links
 
miceFast 0.6.6
- solve broken UpSetR::upset reference links
 
miceFast 0.6.5
- upset_NA based on UpSetR::upset plot function
 
- compare_imp plot function
 
- new logo
 
- remove times argument
 
miceFast 0.6.2
- R CRAN r-oldrel-windows-ix86+x86_64 problems
 
miceFast 0.6.1
miceFast 0.6.0
- fill_NA_N has a new model which is pmm - predictive mean
matching
 
- fast PMM - presorting and binary search
 
- naive_fill_NA - auto function for data.frames - bayes mean and
lda
 
- ridge argument for lm models - adding small disturbance to diag of
X’X
 
- lm_bayes provide more disturbance
 
- new tests
 
- codecov
 
miceFast 0.5.1
- remove old urls form vignettes
 
miceFast 0.5.0
- providing a more comfortable environment for data.table/dplyr
users
 
- expand vignette and documentation
 
- updated performance benchmarks
 
- fix a glitch - e.g. lack of correct warning for a lda model with
zero variance variables
 
miceFast 0.2.1-3
- data.table problem - jump to R 3.5.0
 
- valgrind - a lot of optimizations - problem with arma::exp and
arma::randn
 
- optimize a lot of code
 
- methods/functions resistant to glitches
 
miceFast 0.2.0
- fix imputations with a grouping variable - error if there is
precisly one NA at any group
 
- add data.table to benchmarks - model with a grouping variable
 
- add R functions
(
fill_NA_N,fill_NA,VIF) which
could be used by a data.table user 
miceFast 0.1.0
- add 
impute_N method - optimized multiple
imputations 
- add 
vif method - Variance inflation factors 
miceFast 0.0.3
- vignette,readme,description,todo
 
miceFast 0.0.2
- adjust to solaris
 
- reference - set a grouping variable by a reference but as a numeric
vector - integer vector do not work (randomly lost pointer)