This vignette uses an example of a \(3 \times 3\) matrix to illustrate some properties of eigenvalues and eigenvectors. We could consider this to be the variance-covariance matrix of three variables, but the main thing is that the matrix is square and symmetric, which guarantees that the eigenvalues, \(\lambda_i\) are real numbers, and non-negative, \(\lambda_i \ge 0\).
##      [,1] [,2] [,3]
## [1,]   13   -4    2
## [2,]   -4   11   -2
## [3,]    2   -2    8
Get the eigenvalues and eigenvectors using eigen(); this
returns a named list, with eigenvalues named values and
eigenvectors named vectors. We call these L
and V here, but in formulas they correspond to a diagonal
matrix, \(\mathbf{\Lambda} = diag(\lambda_1,
\lambda_2, \lambda_3)\), and a (orthogonal) matrix \(\mathbf{V}\).
## [1] 17  8  7
##         [,1]    [,2]   [,3]
## [1,]  0.7454  0.6667 0.0000
## [2,] -0.5963  0.6667 0.4472
## [3,]  0.2981 -0.3333 0.8944
##      [,1] [,2] [,3]
## [1,]   13   -4    2
## [2,]   -4   11   -2
## [3,]    2   -2    8
##      [,1] [,2] [,3]
## [1,]   17    0    0
## [2,]    0    8    0
## [3,]    0    0    7
##      [,1] [,2] [,3]
## [1,]   17    0    0
## [2,]    0    8    0
## [3,]    0    0    7
The basic idea here is that each eigenvalue–eigenvector pair generates a rank 1 matrix, \(\lambda_i \mathbf{v}_i \mathbf{v}_i '\), and these sum to the original matrix, \(\mathbf{A} = \sum_i \lambda_i \mathbf{v}_i \mathbf{v}_i '\).
##        [,1]   [,2]   [,3]
## [1,]  9.444 -7.556  3.778
## [2,] -7.556  6.044 -3.022
## [3,]  3.778 -3.022  1.511
##        [,1]   [,2]    [,3]
## [1,]  3.556  3.556 -1.7778
## [2,]  3.556  3.556 -1.7778
## [3,] -1.778 -1.778  0.8889
##      [,1] [,2] [,3]
## [1,]    0  0.0  0.0
## [2,]    0  1.4  2.8
## [3,]    0  2.8  5.6
Then, summing them gives A, so they do decompose
A:
##      [,1] [,2] [,3]
## [1,]   13   -4    2
## [2,]   -4   11   -2
## [3,]    2   -2    8
## [1] TRUE
## [1] 402
## [1] 289  64  49
## [1] 402
## [1] 402
## [1] 289  64  49
## [1] 289 353 402
A## [1] 1
## [1] 2
## [1] 3
## [1] 353
## [1] 0.8781