Latent class discriminant analysis for categorical data, including local and common-components variants.
CRAN:
install.packages("lcda")Development version:
remotes::install_github("mchlbckr/lcda")library(lcda)
# See ?lcda, ?cclcda, and ?cclcda2 for examplesKey functions:
lcda(): fits separate latent class models per
class.cclcda(): fits a common-components latent class model
with class-specific mixing proportions.cclcda2(): fits a common-components model with
class-conditional mixing proportions.Data requirements:
The package includes a vignette with a worked example:
vignette("lcda")Bücker, M., Szepannek, G., Weihs, C. (2010). Local Classification of Discrete Variables by Latent Class Models. In: Locarek-Junge, H., Weihs, C. (eds) Classification as a Tool for Research. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10745-0_13
Bücker, M. (2008). Lokale Diskrimination diskreter Daten. Diplomarbeit, Fakultaet Statistik, TU Dortmund.