Title: | Conditional Expectation Function Estimation with K-Conditional-Means |
Version: | 0.1.0 |
Date: | 2023-11-28 |
Description: | Implementation of the KCMeans regression estimator studied by Wiemann (2023) <doi:10.48550/arXiv.2311.17021> for expectation function estimation conditional on categorical variables. Computation leverages the unconditional KMeans implementation in one dimension using dynamic programming algorithm of Wang and Song (2011) <doi:10.32614/RJ-2011-015>, allowing for global solutions in time polynomial in the number of observed categories. |
License: | GPL (≥ 3) |
URL: | https://github.com/thomaswiemann/kcmeans |
BugReports: | https://github.com/thomaswiemann/kcmeans/issues |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Depends: | R (≥ 3.6) |
Imports: | stats, Ckmeans.1d.dp, MASS, Matrix |
Suggests: | testthat (≥ 3.0.0), covr, knitr, rmarkdown |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2023-11-30 08:37:07 UTC; thomas |
Author: | Thomas Wiemann [aut, cre] |
Maintainer: | Thomas Wiemann <wiemann@uchicago.edu> |
Repository: | CRAN |
Date/Publication: | 2023-11-30 10:50:02 UTC |
K-Conditional-Means Estimator
Description
Implementation of the K-Conditional-Means estimator.
Usage
kcmeans(y, X, which_is_cat = 1, K = 2)
Arguments
y |
The outcome variable, a numerical vector. |
X |
A (sparse) feature matrix where one column is the categorical predictor. |
which_is_cat |
An integer indicating which column of |
K |
The number of support points, an integer greater than 2. |
Value
kcmeans
returns an object of S3 class kcmeans
. An
object of class kcmeans
is a list containing the following
components:
cluster_map
A matrix that characterizes the estimated predictor of the residualized outcome
\tilde{Y} \equiv Y - X_{2:}^\top \hat{\pi}
. The first columnx
denotes the value of the categorical variable that corresponds to the unrestricted sample meanmean_x
of\tilde{Y}
, the sample sharep_x
, the estimated clustercluster_x
, and the estimated restricted sample meanmean_xK
of\tilde{Y}
with justK
support points.mean_y
The unconditional sample mean of
\tilde{Y}
.pi
The best linear prediction coefficients of
Y
onX
corresponding to the non-categorical predictorsX_{2:}
.which_is_cat
,K
Passthrough of user-provided arguments. See above for details.
References
Wang H and Song M (2011). "Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming." The R Journal 3(2), 29–33.
Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021
Examples
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Print the estimated support points of the categorical predictor
print(unique(kcmeans_fit$cluster_map[, "mean_xK"]))
Prediction Method for the K-Conditional-Means Estimator.
Description
Prediction method for the K-Conditional-Means estimator.
Usage
## S3 method for class 'kcmeans'
predict(object, newdata, clusters = FALSE, ...)
Arguments
object |
An object of class |
newdata |
A (sparse) feature matrix where the first column corresponds to the categorical predictor. |
clusters |
A boolean indicating whether estimated clusters should be returned. |
... |
Currently unused. |
Value
A numerical vector with predicted values (if clusters = FALSE
)
or predicted clusters (if clusters = FALSE
).
References
Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021
Examples
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Calculate in-sample predictions
fitted_values <- predict(kcmeans_fit, cbind(Z, X))
# Print sample share of estimated clusters
clusters <- predict(kcmeans_fit, cbind(Z, X), clusters = TRUE)
table(clusters)