| Title: | Poly-Pharmacology Toolkit for Traditional Chinese Medicine Research | 
| Version: | 1.0.3 | 
| Description: | Toolkit for Poly-pharmacology Research of Traditional Chinese Medicine. Based on the biological descriptors and drug-disease interaction networks, it can analyze the potential poly-pharmacological mechanisms of Traditional Chinese Medicine and be used for drug-repositioning in Traditional Chinese Medicine. | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/YuanlongHu/immcp | 
| BugReports: | https://github.com/YuanlongHu/immcp/issues | 
| Depends: | igraph, R (≥ 4.0.0) | 
| Imports: | clusterProfiler, DOSE, dplyr, methods, magrittr, Matrix, openxlsx, org.Hs.eg.db, pbapply, proxyC, purrr, rlang (≥ 1.0.2), stats, utils, visNetwork (≥ 0.3.1), arules, ggplot2, ggheatmap, factoextra | 
| Suggests: | knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.2 | 
| LazyData: | true | 
| NeedsCompilation: | no | 
| Packaged: | 2022-05-12 05:24:26 UTC; DELL | 
| Author: | Yuanlong Hu  | 
| Maintainer: | Yuanlong Hu <huyuanlong1996@163.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-05-12 05:50:02 UTC | 
Class BasicData
This class represents the basic input data.
Description
Class BasicData
This class represents the basic input data.
Slots
drugnetA directed graph
verticesVertices of drug graph.
diseasenetDisease network.
biomarkerDisease-related gene.
Author(s)
Yuanlong Hu
Class BioDescr
This class represents the biological descriptor data.
Description
Class BioDescr
This class represents the biological descriptor data.
Slots
drug_genesetfrom drug to geneset.
geneset_genefrom geneset to gene for each drug.
annoGeneset ID and description.
Author(s)
Yuanlong Hu
CreateBasicData
Description
Create BasicData Object
Usage
CreateBasicData(..., diseasenet = NULL, biomarker = NULL)
Arguments
... | 
 Drug graph from   | 
diseasenet | 
 A graph of Disease-related gene from   | 
biomarker | 
 Character vector, the vector of Disease-related gene.  | 
Value
A BasicData object.
Author(s)
Yuanlong Hu
Examples
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
CreateDisDrugNet
Description
Create Disease-Drug Network
Usage
CreateDisDrugNet(BasicData, drug, disease)
Arguments
BasicData | 
 BasicData object.  | 
drug | 
 Character vector, the drug.  | 
disease | 
 Character vector, the disease.  | 
Value
A igraph object.
Author(s)
Yuanlong Hu
Examples
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
DisDrugNet <- CreateDisDrugNet(BasicData, drug = "Drug1", disease = "disease")
Class HerbResult
This class represents the biological descriptor data.
Description
Class HerbResult
This class represents the biological descriptor data.
Slots
Drug_HerbData frame, Drug-herb relationship.
Herb_HerbHerb-herb association Rule Graph, it is a directed graph.
Author(s)
Yuanlong Hu
PrepareData
Description
Prepare input format.
Usage
PrepareData(..., from, to, diseaseID, format = "single", sep)
Arguments
... | 
 data frame, containing interaction information.  | 
from | 
 A charactor vector, containing "drug", "herb", "compound", or "target".  | 
to | 
 A character vector, containing "drug", "herb", "compound", or "target".  | 
diseaseID | 
 Charactor vector, diseaseID  | 
format | 
 one of "single" or "basket".  | 
sep | 
 Separator.  | 
Value
A igraph object.
Author(s)
Yuanlong Hu
Examples
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
diff_network_char
Description
Calculate the difference of network characters in two network
Usage
diff_network_char(graph1, graph2, output_all = FALSE)
Arguments
graph1 | 
 A igraph object.  | 
graph2 | 
 A igraph object.  | 
output_all | 
 FALSE  | 
Value
A number vector.
Author(s)
Yuanlong Hu
Datasets Demo dataset
Description
Datasets Demo dataset
enrich_f
Description
Enrich Analysis
Usage
enrich_f(
  target_character,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  out_dataframe = TRUE,
  to_ENTREZID = TRUE
)
Arguments
target_character | 
 Charactor vector of gene.  | 
geneset | 
 Charactor vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GO-BP), and "wp"(WikiPathways); a data frame and list.  | 
arguments | 
 A list of the arguments of   | 
out_dataframe | 
 Logical, whether to output data frame,defaults to   | 
to_ENTREZID | 
 Logical, whether to translate to ENTREZID from SYMBOL, defaults to   | 
Value
data frame
Author(s)
Yuanlong Hu
Export an xlsx file to Cytoscape
Description
Export an xlsx file to Cytoscape.
Usage
exportCytoscape(graph, file)
Arguments
graph | 
 igraph object.  | 
file | 
 file  | 
Value
A workbook object
Author(s)
Yuanlong Hu
Extract Biological descriptor
Description
Extract Biological descriptor
Usage
extr_biodescr(
  BasicData,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  ref_type = "drug",
  ref = NULL,
  to_ENTREZID = TRUE
)
Arguments
BasicData | 
 BasicData object.  | 
geneset | 
 Charactor vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GO-BP), and "wp"(WikiPathways); a data frame and list.  | 
arguments | 
 A list of the arguments of   | 
ref_type | 
 Charactor vector, one of "drug", "herb", "compound" or "target", defaults to "drug".  | 
ref | 
 Charactor vector, reference drug, herb, compound or target, defaults to   | 
to_ENTREZID | 
 Logical, whether to translate to ENTREZID from SYMBOL, defaults to TRUE.  | 
Value
A BioDescr object.
Author(s)
Yuanlong Hu
Extract Biological descriptor
Description
Extract Biological descriptor
Usage
## S4 method for signature 'BasicData'
extr_biodescr(
  BasicData,
  geneset = c("kegg", "mkegg", "go", "wp"),
  arguments = list(minGSSize = 5, maxGSSize = 500, pvalue = 0.05, qvalue = 0.1),
  ref_type = "drug",
  ref = NULL,
  to_ENTREZID = TRUE
)
Arguments
BasicData | 
 BasicData object.  | 
geneset | 
 Charactor vector, one of "kegg"(KEGG), "mkegg"(KEGG Module), "go"(GO-BP), and "wp"(WikiPathways); a data frame and list.  | 
arguments | 
 A list of the arguments of   | 
ref_type | 
 Charactor vector, one of "drug", "herb", "compound" or "target", defaults to "drug".  | 
ref | 
 Charactor vector, reference drug, herb, compound or target, defaults to   | 
to_ENTREZID | 
 Logical, whether to translate to ENTREZID from SYMBOL, defaults to TRUE.  | 
Value
A BioDescr object.
Examples
## Not run: 
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
biodescr <- extr_biodescr(BasicData, geneset= "kegg")
## End(Not run)
natural_connectivity
Description
Calculate the natural connectivity
Usage
natural_connectivity(graph)
Arguments
graph | 
 A igraph object.  | 
Value
A numeric vector.
Author(s)
Yuanlong Hu
network_char
Description
Calculate the network characters
Usage
network_char(graph, total_network = FALSE)
Arguments
graph | 
 The graph.  | 
total_network | 
 Calculate for total network or each nodes.  | 
Value
A number vector or data frame.
Author(s)
Yuanlong Hu
network_node_ks
Description
Kolmogorov-Smirnov tests for node characters between networks
Usage
network_node_ks(graph1, graph2, replicate = 1000)
Arguments
graph1 | 
 A igraph object.  | 
graph2 | 
 A igraph object.  | 
replicate | 
 Number vector, the number of conduct bootstrapping sampling replications.  | 
Value
A data frame
Author(s)
Yuanlong Hu
Plot Biological descriptor
Description
Plot Biological descriptor
Usage
plot_BioDescr(
  BioDescr,
  type = "heatmap",
  cluster_k = 2,
  colors = c("#2E9FDF", "#E7B800")
)
Arguments
BioDescr | 
 BioDescr object.  | 
type | 
 one of "heatmap" and "clusterplot".  | 
cluster_k | 
 Number vector, number of cluster.  | 
colors | 
 vector of colors.  | 
Value
Returns NULL, invisibly.
Plot Disease-Drug Network
Description
Plot Disease-Drug Network
Usage
plot_graph(
  graph,
  drug,
  disease,
  Isolated = TRUE,
  vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
  width = 1,
  size = 20,
  ...
)
## S4 method for signature 'BasicData'
plot_graph(
  graph,
  drug,
  disease,
  Isolated = TRUE,
  vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
  width = 1,
  size = 20,
  ...
)
## S4 method for signature 'igraph'
plot_graph(
  graph,
  drug,
  disease,
  Isolated = TRUE,
  vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
  width = 1,
  size = 20,
  ...
)
## S4 method for signature 'HerbResult'
plot_graph(
  graph,
  drug,
  disease,
  Isolated = TRUE,
  vis = "visNetwork",
  color = c(drug = "#cca4e3", herb = "#ff461f", compound = "#ffc773", target =
    "#70f3ff"),
  width = 1,
  size = 20,
  ...
)
Arguments
graph | 
 graph.  | 
drug | 
 drug.  | 
disease | 
 disease.  | 
Isolated | 
 Whether to delect Isolated nodes.  | 
vis | 
 one of "igraph", "visNetwork" and "shiny".  | 
color | 
 Nodes Color  | 
width | 
 Edges width  | 
size | 
 Nodes size  | 
... | 
 Arguments  | 
Value
Returns NULL, invisibly.
Author(s)
Yuanlong Hu
write_gmt
Description
parse gmt file to a data.frame
Usage
read_gmt(gmtfile, out_dataframe = TRUE)
Arguments
gmtfile | 
 A GMT file name or URL containing gene sets.  | 
out_dataframe | 
 TRUE or FALSE  | 
Value
data.frame, list
Author(s)
Yuanlong Hu
score_network
Description
Calculating differences in disease network characteristics before and after removal of drug targets
Usage
score_network(BasicData, n = 1000)
Arguments
BasicData | 
 A BasicData object.  | 
n | 
 Number vector, the number of times random permutation sampling, default to 1000.  | 
Value
A list.
Author(s)
Yuanlong Hu
Examples
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
res <- score_network(BasicData, n = 100)
Mining herb-herb associations with Apriori
Description
Mine herb-herb association rules of prescription using the Apriori algorithm.
Usage
score_rule(BasicData, drug = NULL, support = 0.1, confidence = 0.8)
Arguments
BasicData | 
 BasicData object.  | 
drug | 
 Charactor vector of drug names to analyze, default to   | 
support | 
 A numeric value for the minimal support of an item set, default to 0.1.  | 
confidence | 
 A numeric value for the minimal confidence of an item set, default to 0.8.  | 
Value
A HerbResult object.
Author(s)
Yuanlong Hu
Examples
## Not run: 
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
res <- score_rule(BasicData, support = 0.1,confidence = 0.8)
## End(Not run)
Calculating similarity between drug and disease
Description
Calculating drug-disease similarity based on biological descriptors
Usage
score_sim(BioDescr, method = "jaccard", n = 1000)
Arguments
BioDescr | 
 BioDescr object.  | 
method | 
 method to compute similarity, default "jaccard". See   | 
n | 
 number.  | 
Value
A list.
Author(s)
Yuanlong Hu
Examples
## Not run: 
data(drugdemo)
drug_herb <- PrepareData(drugdemo$drug_herb, from = "drug", to="herb")
herb_compound <- PrepareData(drugdemo$herb_compound, from = "herb", to="compound")
compound_target <- PrepareData(drugdemo$compound_target, from = "compound", to="target")
disease <- PrepareData(drugdemo$disease, diseaseID = "disease",from = "target", to="target")
BasicData <- CreateBasicData(drug_herb, herb_compound, compound_target, diseasenet = disease)
biodescr <- extr_biodescr(BasicData, geneset= "kegg")
res <- score_sim(biodescr, method="jaccard", n=1000)
## End(Not run)
to_biodescr
Description
Convert BioDescr object to a list of adjacency matrix
Usage
to_biodescr(BioDescr)
Arguments
BioDescr | 
 A BioDescr object.  | 
Value
A list.
Author(s)
Yuanlong Hu
Examples
## Not run: 
  to_biodescr(BioDescr)
## End(Not run)
to_df
Description
Convert list to data.frame
Usage
to_df(list)
Arguments
list | 
 A list containing gene sets.  | 
Value
A data frame.
Author(s)
Yuanlong Hu
Examples
## Not run: 
  to_df(list)
## End(Not run)
to_list
Description
Create a new list from a data.frame of drug target and disease biomarker as input
Usage
to_list(dataframe, input = "single", sep = ", ")
Arguments
dataframe | 
 a data frame of 2 column with term/drug and gene  | 
input | 
 one of the single or basket  | 
sep | 
 When 'input' is 'basket'.  | 
Value
list
Author(s)
Yuanlong Hu
Examples
## Not run: 
  to_list(dataframe)
## End(Not run)
write_gmt
Description
prints data frame to a gmt file
Usage
write_gmt(geneset, gmt_file)
Arguments
geneset | 
 A data.frame of 2 column with term/drug and gene.  | 
gmt_file | 
 A character of gmt file name.  | 
Value
gmt file
Author(s)
Yuanlong Hu