Main results
Let’s inspect the main results
There exist different, equivalent ways of accessing the output
With
$operator:results_pm_copd$health_main$impact_rounded(as in the example above)By mouse: go to the Environment tab in RStudio and click on the variable you want to inspect, and then open the
health_mainresults tableWith
[[]]operatorresults_pm_copd[["health_main"]]With
pluck()&pull(): use thepurrr::pluckfunction to select a list and then thedplyr::pullfunction extract values from a specified column, e.g.results_pm_copd |> purrr::pluck("health_main") |> dplyr::pull("impact_rounded")
results_pm_copd$health_main
#> # A tibble: 1 × 24
#> geo_id_micro erf_ci exp_ci bhd_ci cutoff_ci exp_category sex age_group
#> <chr> <chr> <chr> <chr> <chr> <int> <chr> <chr>
#> 1 a central central central central 1 all all
#> # ℹ 16 more variables: impact <dbl>, impact_rounded <dbl>, approach_risk <chr>,
#> # rr_increment <dbl>, erf_shape <chr>, prop_pop_exp <dbl>, exp_length <int>,
#> # exp_type <chr>, exp <dbl>, bhd <dbl>, cutoff <dbl>, rr <dbl>,
#> # is_lifetable <lgl>, pop_fraction_type <chr>, rr_at_exp <dbl>,
#> # pop_fraction <dbl>It is a table of the format tibble (very similar to a
data.frame) of 3 rows and 23 columns. Let’s zoom in on some
relevant aspects
results_pm_copd$health_main |>
dplyr::select(exp, bhd, rr, erf_ci, pop_fraction, impact_rounded) |>
knitr::kable() # For formatting reasons only: prints tibble in nice layout| exp | bhd | rr | erf_ci | pop_fraction | impact_rounded |
|---|---|---|---|---|---|
| 8.85 | 30747 | 1.369 | central | 0.1138961 | 3502 |
Interpretation: this table shows us that exposure was 8.85 \(\mu g/m^3\), the baseline health data
(bhd_central) was 30747 (COPD incidence in this instance).
The 1st row further shows that the impact attributable to this exposure
using the central relative risk (rr_central) estimate of
1.369 is 3502 COPD cases, or ~11% of all baseline cases.
Some of the most results columns include:
- impact_rounded rounded attributable health impact/burden
- impact raw impact/burden
- pop_fraction population attributable fraction (PAF) or population impact fraction (PIF)
NOTE: The main output contains more columns that provide additional information about the assessment.