gwaRs

Lindokuhle Nkambule

2021-01-16

library(gwaRs)

Introduction to the gwaRs package

1. Example data

The gwaRs package includes functions for creating: (1) Manhattan and Q-Q plots from GWAS results; and (2) PCA plots from PCA results. The gwasData data.frame included with the package has example GWAS results for 179,493 SNPs on 22 chromosomes. The The pcaData data.frame has 89 samples and 20 eigenvalues for each sample. Take a look at the data:

1.A gwasData

head(gwasData)
   CHR        SNP      BP A1     F_A     F_U A2  CHISQ      P     OR
1:   1  rs3094315  792429  G 0.14890 0.08537  A 1.6840 0.1944 1.8750
2:   1  rs4040617  819185  G 0.13540 0.08537  A 1.1110 0.2919 1.6780
3:   1  rs4075116 1043552  C 0.04167 0.07317  T 0.8278 0.3629 0.5507
4:   1  rs9442385 1137258  T 0.37230 0.42680  G 0.5428 0.4613 0.7966
5:   1 rs11260562 1205233  A 0.02174 0.03659  G 0.3424 0.5585 0.5852
6:   1  rs6685064 1251215  C 0.38540 0.43900  T 0.5253 0.4686 0.8013
tail(gwasData)
   CHR       SNP       BP A1     F_A     F_U A2   CHISQ       P     OR
1:  22 rs6151429 49353621  C 0.04167 0.02439  T 0.40530 0.52440 1.7390
2:  22 rs6009945 49379357  C 0.28120 0.46340  A 6.33100 0.01187 0.4531
3:  22 rs9616913 49405670  C 0.14580 0.06098  T 3.34000 0.06762 2.6290
4:  22  rs739365 49430460  C 0.45830 0.35370  T 2.00300 0.15700 1.5460
5:  22 rs6010063 49447077  G 0.42710 0.46340  A 0.23650 0.62680 0.8632
6:  22 rs9616985 49519949  C 0.03125 0.03659  T 0.03865 0.84410 0.8495

1.B pcaData

head(pcaData)
    V1      V2        V3         V4         V5         V6          V7         V8         V9        V10        V11
1: CHB NA18526 0.1021620 -0.0802695 -0.1175090  0.0435543  0.00398304  0.0701086  0.0464041  0.0828898  0.0233586
2: CHB NA18524 0.1159210  0.0462588  0.1016290  0.1024390  0.08276540  0.0487820  0.0432661  0.1950300  0.2325210
3: CHB NA18529 0.1035350 -0.0486933 -0.0505614  0.0942688  0.03805160  0.0563719 -0.0683714 -0.0130493  0.0208264
4: CHB NA18558 0.0856630  0.2369130  0.0671311  0.0925527  0.09222490 -0.0362263  0.3114080 -0.0410947  0.2180270
5: CHB NA18532 0.0994843  0.0868266 -0.0940931 -0.0849465  0.08330130 -0.1718800  0.0296239 -0.0176911  0.0981263
6: CHB NA18561 0.1170740 -0.0780894  0.0489280 -0.1065820 -0.14925700  0.1557580  0.1858770 -0.0760417 -0.1083460
          V12        V13          V14         V15         V16        V17         V18         V19        V20
1: -0.0559799  0.1788920 -0.000688469  0.06752420  0.07811050 -0.0226015  0.20033900  0.04568660  0.0336244
2:  0.0121295 -0.2013410  0.077125300 -0.00243438  0.23360400  0.2268170 -0.07663490  0.00644756 -0.0310955
3:  0.0337496  0.1621830  0.074122200 -0.02600130 -0.00319425  0.0532833  0.17227600 -0.01104990 -0.0399919
4:  0.0638962 -0.0543214  0.065519000  0.16062200 -0.02528600  0.0337762  0.11059100 -0.02698640 -0.1621610
5:  0.0705554  0.1054110 -0.175174000  0.11226400 -0.10821300  0.1744200 -0.18048100  0.02727720  0.0596685
6: -0.0979118  0.1824230 -0.148591000 -0.17594500  0.17813900  0.1732660  0.00318751 -0.19459100 -0.1230800
           V21        V22
1: -0.00833644  0.0131147
2: -0.18368500 -0.1209090
3:  0.24053500  0.0228002
4:  0.27951200  0.2174900
5:  0.00733837 -0.1272560
6: -0.08097990  0.0168803
tail(pcaData)
    V1      V2         V3          V4          V5         V6          V7          V8           V9         V10
1: JPT NA18998 -0.1341370 -0.00684702  0.02648860  0.0361811  0.01006460 -0.12428400 -8.05897e-05 -0.06494070
2: JPT NA19000 -0.1273780  0.02050720  0.00204791  0.0983349  0.00327401  0.00202355 -6.71315e-03 -0.05049620
3: JPT NA19005 -0.0817858 -0.05797780 -0.02154850  0.0777595  0.01300850  0.04618270  6.97462e-02 -0.01127060
4: JPT NA18999 -0.1091960  0.07656090 -0.18612700 -0.1745370 -0.24334100  0.00346269  1.24032e-01  0.01317670
5: JPT NA19007 -0.0944116  0.01029870  0.11444800 -0.0141372 -0.05771370 -0.19853500 -2.35007e-02  0.00712097
6: JPT NA19003 -0.1239330  0.38619200 -0.38445800 -0.0144185  0.04296190 -0.01776520 -2.35986e-01 -0.08887380
          V11        V12        V13        V14        V15        V16         V17        V18        V19        V20
1:  0.0540273 -0.1585970  0.1849220  0.0428487  0.0185219 -0.0761500 -0.05062780  0.0706693 -0.0228829  0.1067870
2: -0.0585140  0.0478342 -0.0490029 -0.0155314  0.0633804 -0.0908284 -0.04767790 -0.0057602  0.0290054  0.1484800
3: -0.0597138 -0.0216306 -0.0223577  0.0629585 -0.0512563  0.0541781 -0.02620120 -0.0475181  0.1207370  0.0931941
4: -0.0849584  0.1531680 -0.1525280  0.0495856  0.0829920  0.0563818  0.06968250  0.0815255  0.2290310 -0.2646310
5: -0.0856837 -0.1907780  0.0512221  0.1912130 -0.0679721 -0.0429544  0.08268860  0.1785510  0.2326160  0.1290180
6:  0.1032770 -0.0346665 -0.1253720 -0.1068850 -0.2154660  0.0517122 -0.00279075  0.2537610 -0.1343860  0.0451126
           V21        V22
1: -0.11810800 -0.0207741
2: -0.05718480  0.0760405
3: -0.00467034 -0.0146390
4: -0.03763110 -0.1481140
5:  0.00592505  0.0479006
6: -0.22849800  0.1155260

2. Manhattan plots

2A. Basic Manhattan plot

Create a basic Manhattan plot.

man_plot(gwasData)

figure-1 plot

2B. Change graphical parameters

We can also pass in other graphical parameters. Let’s add a title (title=), change the chromosome colors (chromCol=), and remove the suggestive and genome-wide significance lines:

man_plot(gwasData, title = "Man Plot", chromCol = c("blue4", "orange3"),
    genomewideline = F, suggestiveline = F)

figure-2 plot

2C. Annotate SNPs by p-value

We can also annotate SNPs by passing a p-value threshold using (annotatePval=) and choosing the point color for annotated SNPs using (annotateCol=)

man_plot(gwasData, annotatePval = 0.000005, annotateCol = "orange")

figure-3 plot

2D. Annotate SNPs by rsids

We can also annotate SNPs by passing a character vector containing rsids using (annotateSNP=) and choosing the point color for annotated SNPs using (annotateCol=)

man_plot(gwasData, annotateSNP = c("rs636006", "rs1570484", "rs16976702", "rs898311", "rs16910850", "rs7207095"),
         annotateCol = "red")

figure-4 plot

2E. Highlight SNPs by rsid

We can also highlight SNPs by passing a character vector containing rsids using (highlight=) and choosing the point color for highlighted SNPs using (highlightCol=)

head(highlightSNPS)
[1] "rs636420"   "rs12221774" "rs4477460"  "rs4639959"  "rs4945035"  "rs10899166"
man_plot(gwasData, highlight = highlightSNPS)

figure-5 plot

2F. Looking at a single chromosome

We can also look at a single chromosome passing an integer indicating which chromosome to plot using (chromosome=).

man_plot(gwasData, chromosome = 1)

figure-6 plot ## 3. Mirrored Manhattan Plots If you have two traits and want to plot the results on a single plot, you can use the mirrored_man_plot function to plot a mirrored Manhattan plot. Currently, the function takes a tab-delimited text file or a data.frame with the following compulsory columns: “CHR”, “SNP”, “BP”, “P”, “Trait”. You can use the gwasData to test this function.

library(gwaRs)
f1 <- gwasData[, c("CHR", "SNP", "BP", "P")]
f2 <- gwasData[, c("CHR", "SNP", "BP", "P")]
f1$Trait <- "trait1"
f2$Trait <- "trait2"
mirroredData <- rbind(f1, f2)

mirrored_man_plot(mirroredData, trait1 = "trait1", trait2 = "trait2")

figure-11 plot

You can also change the graphical parameters. Each trait has its own graphical parameters, denoted with either trait1 or trait1 in the function argument. For example, if you want to annotate trait1 SNPs by p-value, you can pass the annotate_trait1_pval argument. There are other arguments such as genomewideline_trait1/2, suggestiveline_trait1/2 for modifying the plot.

mirrored_man_plot(mirroredData1, trait1 = "trait1", trait2 = "trait2",
                  annotate_trait1_pval = 0.000005, annotate_trait2_pval = 0.0000005,
                  genomewideline_trait1 = -log10(5e-08), highlight = highlightSNPS,
                  suggestiveline_trait1 = -log10(1e-06), suggestiveline_trait2 = -log10(1e-06),
                  suggestiveline_color = "black", suggestiveline_type = "solid",
                  trait2_chromCols = c("seagreen2", "seagreen4"), highlightcolor = "blue")

figure-12 plot

4. Q-Q plots

To create a Q-Q plot, simply supply a PLINK assoc output, tab-delimited, or a data.frame with “P” column to the qq_plot() function.

qq_plot(gwasData)

figure-7 plot

You can also change many other graphical parameters.

qq_plot(gwasData, title = "GWAS Q-Q Plot", point_col = "blue",
    diag_col = "black", diag_line = "dashed")

figure-8 plot

5. PCA plots

To create a PCA plot, simply supply PLINK pca output, or EIGENSTRAT smartpca output, or any tab-delimited file or data.frame with the same format as PLINK pca or EIGENSTRAT smartpca output.

pca_plot(pcaData)

figure-9 plot

You can also change many other graphical parameters like the x- and y-axis component using (xComponent= and yComponent=) respectively. You can also change the legend position using (legendPos=), color palette using (colPalette=), title using (title=)

pca_plot(pcaData, xComponent = "PC3", yComponent = "PC4", legendPos = "left",
         colPalette = "Paired", title = "PC3 vs PC4")

figure-10 plot

6. Karyotype plots

If you want to see how density of SNPs in a specific window size, you can use the karyotype_plot function.

karyotype_plot(gwasData)

figure-13 plot

mirror server hosted at Truenetwork, Russian Federation.