epiworldRcalibrate: Fast and Effortless Calibration of Agent-Based Models using Machine Learning

Provides tools and pre-trained Machine Learning [ML] models for calibration of Agent-Based Models [ABMs] built with the R package 'epiworldR'. Implements methods described in Najafzadehkhoei, Vega Yon, Modenesi, and Meyer (2025) <doi:10.48550/arXiv.2509.07013>. Users can automatically calibrate ABMs in seconds with pre-trained ML models, effectively focusing on simulation rather than calibration. Bridges a gap by allowing public health practitioners to run their own ABMs without the advanced technical expertise often required by calibration.

Version: 0.1.2
Depends: R (≥ 3.5)
Imports: reticulate (≥ 1.2), utils
Suggests: testthat (≥ 3.0.0), epiworldR
Published: 2026-02-18
DOI: 10.32614/CRAN.package.epiworldRcalibrate (may not be active yet)
Author: Sima Najafzadehkhoei ORCID iD [aut, cre], George Vega Yon ORCID iD [aut], Bernardo Modenesi [aut], Centers for Disease Control and Prevention [fnd] (Award number 1U01CK000585; 75D30121F00003)
Maintainer: Sima Najafzadehkhoei <sima.njf at utah.edu>
BugReports: https://github.com/sima-njf/epiworldRcalibrate/issues
License: MIT + file LICENSE
URL: https://sima-njf.github.io/epiworldRcalibrate/, https://github.com/sima-njf/epiworldRcalibrate
NeedsCompilation: no
Citation: epiworldRcalibrate citation info
Materials: README, NEWS
CRAN checks: epiworldRcalibrate results

Documentation:

Reference manual: epiworldRcalibrate.html , epiworldRcalibrate.pdf

Downloads:

Package source: epiworldRcalibrate_0.1.2.tar.gz
Windows binaries: r-devel: epiworldRcalibrate_0.1.2.zip, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): epiworldRcalibrate_0.1.2.tgz, r-oldrel (arm64): epiworldRcalibrate_0.1.2.tgz, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=epiworldRcalibrate to link to this page.

mirror server hosted at Truenetwork, Russian Federation.