Package ‘easyViz’

July 22, 2025

Title Easy Visualization of Conditional Effects from Regression Models
Version 1.0.0

Description Offers a flexible and user-friendly interface for visualizing conditional ef-
fects from a broad range of regression models, including mixed-effects and generalized addi-
tive (mixed) models. Compatible model types in-
clude Im(), rlm(), glm(), glm.nb(), and gam() (from 'mgecv'); nonlinear models via nls(); and gen-
eralized least squares via gls(). Mixed-effects models with random inter-
cepts and/or slopes can be fitted us-
ing Imer(), glmer(), glmer.nb(), glmmTMB(), or gam() (from 'mgcVv', via smooth terms). Plots are ren-
dered using base R graphics with extensive customization options. Robust standard er-
rors for rlm() are computed using the sandwich estima-
tor (Zeileis 2004) <doi:10.18637/jss.v011.110>. For mixed models us-
ing 'glmmTMB', see Brooks et al. (2017) <doi:10.32614/RJ-2017-066>. For linear mixed-
effects models with 'Ime4', see Bates et al. (2015) <doi:10.18637/jss.v067.101>. Meth-
ods for generalized additive models follow Wood (2017) <doi:10.1201/9781315370279>.

Maintainer Luca Corlatti <lucac1980@yahoo.it>

Imports stats, utils, graphics, grDevices

Suggests nlme, Ime4, MASS, glmmTMB, mgcv, numDeriv, sandwich
License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Luca Corlatti [aut, cre]

Repository CRAN

Date/Publication 2025-07-22 10:10:06 UTC

Contents
asYVIZ e 2

Index 16

https://doi.org/10.18637/jss.v011.i10
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1201/9781315370279

easyViz

easyViz

Easy Visualization of Conditional Effects from Regression Models

Description

easyViz offers a flexible and user-friendly interface for visualizing conditional effects from a broad

range of regression and mixed-effects models using base R graphics.

Usage

easyViz(
model,
data,
predictor,
by = NULL,
pred_type

"response”,
pred_range_limit = TRUE,
pred_on_top = FALSE,
num_conditioning = "median”,
cat_conditioning = "mode”,
fix_values = NULL,
backtransform_response = NULL,
re.form = NULL,

xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
font_family =
las = 1,

bty = "o",

nn

’

plot_args = list(),

show_data_points
binary_data_type

bins = 10,

= TRUE,
= "plain”,

jitter_data_points = FALSE,

point_col

point_pch =

point_cex
pred_line_

ci_type =

ci_polygon_col = c("gray”, "black", "lightgray", "darkgray"),

ci_line_co
ci_line_1t
ci_line_lw

pred_point_col = c("black”, "gray"”, "darkgray”, "lightgray"),

rgb(0, @, 0, alpha

16,
75,

0.

col
pred_line_lty
pred_line_lwd
"polygon”,

1

y
d

"black”,
c(1, 2, 3, 8,
2,

"black”,
c(1, 2, 3, 4,

1

0.4),

easyViz 3

pred_point_pch 16,
pred_point_cex = 1,
ci_bar_col = "black",
ci_bar_lty =1,
ci_bar_lwd =1,
ci_bar_caps = 0.1,
cat_labels = NULL,
add_legend = FALSE,
legend_position = "top”,
legend_text_size = 0.9,
legend_labels = NULL

Arguments

model [required] A fitted model object (e.g., model = your.model). Supported models
include a wide range of regression types, including linear, robust linear, non-
linear, generalized least squares, generalized linear, mixed-effects, and gener-
alized additive (mixed) models. Compatible model-fitting functions include:
stats::1m /MASS::rlm, stats::nls,nlme::gls, stats::glm MASS::glm.nb,
1me4: :1mer, Ime4: :glmer, lme4: :glmer.nb, glmmTMB: : glmmTMB, and mgcv: : gam.

data [required] The data frame used to fit the model (e.g., data = your.data). This
data frame is used internally for generating predictions. All variables used in
the model formula (including predictors, offsets, grouping variables, and
interaction terms) must be present in this data frame. If the model was fitted
without using a data argument (e.g., using variables from the global environ-
ment), you must ensure that data includes all required variables. Otherwise,
prediction may fail or produce incorrect results.

predictor [required] The name of the target explanatory variable to be plotted (e.g., predictor
="x1").

by The name of an interaction or additional variable for conditioning (e.g., by =
"x2"). If a continuous variable is used, cross-sections are taken at the 10th, 50th,
and 90th quantiles. If a categorical variable is used, a separate line or point will
be plotted for each level. This can also be used to visualize group-level random
effects all at once: namely, when by corresponds to a grouping variable used
in a random effect term (e.g., if by = "group” when the random term is speci-
fied as (1|group) or s(group, bs="re")) and re. form = NULL, predictions are
conditional on each group’s estimated random effect. Although easyViz does
not natively support direct visualization of three-way interactions in a multi-
panel plot, this can be easily achieved by combining the by and fix_values
arguments. For example, if your model includes a term like x1*x2xx3, you
can visualize the effect of x1 across levels of x2 by setting predictor = "x1",
by = "x2", and fixing x3 at a specific value using fix_values=c(x3=...).
Repeating this with different values of x3 produces multiple plots that can be
arranged to visualize the full three-way interaction.

pred_type Character string indicating the type of predictions to plot. Either "response”
(default), which returns predictions on the original outcome scale by applying
the inverse of the model’s link function (e.g., probabilities for binary models),

easyViz

or "1ink"”, which returns predictions on the linear predictor (link) scale (e.g.,
log-odds, log-counts, or other transformed scales depending on the model).

pred_range_limit

pred_on_top

Logical. Applies only when the predictor is numeric and a categorical by vari-
able is specified. If TRUE (default), the prediction range for each level of the
by variable is limited to the range of the predictor observed within that level.
This avoids extrapolating predictions beyond the available data for each sub-
group. If FALSE, predictions span the entire range of the predictor across all
levels of the by variable. If the by variable is numeric, pred_range_limit is
automatically set to FALSE, since numeric by values are treated as continuous
rather than grouping factors.

Logical. If TRUE, prediction lines (and their confidence intervals) for numeric
predictors are drawn after raw data, so they appear on top. Default is FALSE,
which draws predictions underneath the data. This has no effect for categorical
predictors — for those, predictions are always drawn on top of raw data.

num_conditioning

How to condition non-target numeric predictors. Either "median” (default) or
"mean”. This determines how numeric variables that are not directly plotted
are held constant during prediction, while varying the predictor of interest —
a common approach when visualizing effects in multivariable models. To fix
specific variables at custom values instead, use the fix_values argument.

cat_conditioning

fix_values

How to condition non-target categorical predictors. Either "mode"” (default) or
"reference”. As for "num_conditioning”, conditioning means holding these
variables constant while varying the predictor of interest. If multiple levels are
equally frequent when "mode” is selected, the level chosen will be the first in
the factor’s level order (which by default is alphabetical and typically coincides
with the reference level, unless explicitly re-leveled). This behavior also ap-
plies to grouping variables used as random effects when re.form = NULL. To
fix categorical variables (including grouping variables) at specific levels, use
fix_values.

A named vector or named list specifying fixed values for one or more vari-
ables during prediction. Supports both numeric and categorical variables. For
numeric variables, specify a fixed value (e.g., fix_values = c(x = 1)). For cat-
egorical variables (factors), provide the desired level as a character string or fac-
tor (e.g., fix_values = c(group = "levelA"”) or fix_values = list(group =
levels(data$group)[11)). This overrides the default conditioning behavior
specified via num_conditioning and cat_conditioning. Note: This argu-
ment also applies to grouping variables used as random effects: when re. form
= NULL, predictions are conditional on the level specified in fix_values; if not
specified, the level is chosen based on cat_conditioning. This argument is
useful for setting offsets, forcing predictions at specific values, or ensuring con-
sistent conditioning across models. For example, it is particularly useful when
you want to visualize the effect of a predictor at a specific level of an interacting
variable, without conditioning on all levels. E.g., to plot the conditional effect of
a continuous predictor x1 at a specific value of another variable x2 (numeric or
categorical), simply set fix_values = c(x2 = ...) and omit the by argument.

easyViz

This creates a clean single-effect plot for x1 at the desired level of x2, without
plotting multiple lines or groups as by would. This argument can also be used to
visualize three-way interactions when combined with by. See the by argument
description for details and an example of how to apply this approach.

backtransform_response

re.form

x1lim

ylim

xlab
ylab
font_family

A custom function to back-transform predictions for transformed response vari-
ables (e.g., exp for log-transformed responses, or function(x) x*2 for square
root-transformed responses). Note: If you wish to model a transformed re-
sponse, it is recommended to apply the transformation directly in the model
formula (e.g., log(y)), rather than modifying the response variable in the data
set. This ensures that observed data points are correctly plotted on the original
(back-transformed) scale. Otherwise, raw data and predicted values may not
align properly in the plot.

A formula specifying which random effects to include when generating pre-
dictions. This argument is relevant for mixed-effects models only (e.g., from
1me4, glmmTMB, or mgcv: : gam). Use re. form = NULL (default) to include group-
specific predictions, conditional on the random-effect levels present in the data.
By default, easyViz fixes grouping variables at their mode (i.e., the most fre-
quent level), so that, when re.form = NULL, the prediction reflects the condi-
tional estimate for that group level. However, you can explicitly fix the level
of the grouping variable using the fix_values argument — this allows you to
visualize group-specific predictions for a specific level of the random term (e.g.,
fix_values = c(group = "levelA")). If all levels are equally frequent and no
value is specified via fix_values, the first level (in factor order) is used, which
typically follows alphabetical order unless manually re-leveled. Use re.form =
NA or re.form = ~@ to obtain population-level predictions based only on fixed
effects — this means that random effects are part of the model fit but are ex-
cluded from the prediction, resulting in population-level (i.e., marginal) predic-
tions based solely on fixed effects. This is equivalent to assuming the random
effects are zero — i.e., an ‘average’ group or subject. For mgcv: :gam() mod-
els, random effects are typically modeled using smooth terms such as s(group,
bs ="re"). Although predict.gam() does not support a re.form argument,
easyViz emulates its behavior: re. form = NULL includes random-effect smooths
in the prediction, while re.form = NA or re.form = ~@ excludes them by inter-
nally using the exclude argument in predict.gam(). For all types of mixed
models, when re.form=NULL and by corresponds to a grouping variable used
in a random effect term, group-specific (i.e., conditional) predictions are vi-
sualized for all levels of the grouping variable. Note: For models fitted with
1me4 (e.g., Imer(), glmer()), standard errors are not available when re. form
= NULL.

x-axis limits for the plot (e.g., x1im = c(@, 10)). Defaults to automatic scaling
based on the data range.

y axis limits for the plot (e.g., ylim = c (10, 20)). Defaults to automatic scaling
based on the data and prediction range.

x axis labels (e.g., x1ab = "x"). Defaults to "predictor”.
y axis labels (e.g., ylab = "y"). Defaults to "response”.

Font family for the plot. E.g., "sans” (default), "serif”, "mono”.

las
bty
plot_args

easyViz

Text orientation for axis labels (default: 1).
Box type around the plot. E.g., "o” (default), "n", "L".

A named list of additional graphical parameters passed to base R’s plot () func-
tion. These arguments allow users to override default appearance settings in a
flexible way. Common options include axis label size, color, margin settings,
font family, and tick mark style. Common plot() parameters you may over-
ride:

» Label/Text size and style: cex. lab, cex.axis, cex.main, font.lab, font.axis,

font.main

* Colors: col.lab, col.axis, col.main, col.sub, col, bg, fg

e Label/Text content: x1ab, ylab, main, sub

* Margins and layout: mar, oma, mgp, tcl, las, adj

* Box and axis rendering: bty, axes, frame.plot, ann

* Coordinate settings: x1im, ylim, xaxs, yaxs, asp, xlog, ylog
This is a flexible alternative to manually setting individual plot parameters in
the function signature. For a full list of supported parameters, see ?par and
?plot.default. Example usage:
plot_args =1list(main="Title", cex.lab=1.2, col.axis = "gray40", mar
=c(5, 4, 4, 2), las=1).

show_data_points

Logical. Whether to display raw data points (default: TRUE). For binomial
models where the response is expressed in the formula as cbind(successes,
failures) or as successes / trials, the raw data points plotted on the y-axis
are based on the calculated proportions: successes / (successes + failures)
or successes / trials, respectively. These proportions are computed inter-
nally from the original data and temporarily added to the data set for visualiza-
tion purposes.

binary_data_type

bins

For binary responses, how to display raw data points in the plot. Either "plain”
(default), which plots each individual 0/1 observation as-is, or "binned”, which
groups observations into intervals (bins) of the predictor and plots the proportion
of Os and 1s within each bin. This makes it easier to visualize trends in binary
outcomes, especially when many points overlap.

Number of bins for displaying binary response raw data (default: 10).

jitter_data_points

point_col

Logical. If TRUE, raw data points are jittered horizontally to reduce overplotting.
Applies to both categorical and numeric predictors. Default is FALSE. For cat-
egorical predictors, jittering helps distinguish overlapping points. For numeric
predictors, it can be useful when many data points share the same x-value (e.g.,
integers or rounding).

Point color for raw data (default: rgh(@,@,0, alpha=10.4)). Can be spec-
ified as a color name (e.g., "gray"”), an integer (e.g., 1), or an RGB (e.g.,
rgb(0,0,0,alpha=0.4)) or hex string (e.g., "#808080"). Dynamic: accepts
multiple values when points are plotted for different values/levels of a variable.
Tip: For large data sets with many overlapping data points, it is recommended to

easyViz 7

use semi-transparent colors to reduce overplotting. You can achieve this by set-
ting a low alpha value (e.g., rgb(1,0,0, alpha=0.1), or by using adjustcolor()
with the argument alpha.f (e.g., adjustcolor(”red”, alpha.f =0.1)). In
such cases, consider setting pred_on_top = TRUE to ensure that prediction lines
and confidence intervals remain clearly visible above the dense cloud of raw
points.

point_pch Point shape for raw data (default: 16). Dynamic: accepts multiple values when
points are plotted for different values/levels of a variable.

point_cex Point size for raw data (default: @.75). Dynamic: accepts multiple values when
points are plotted for different values/levels of a variable.

pred_line_col Color of the predicted line for numerical predictors (default: "black"). Can be
specified as a color name, number or RGB/hex string. Dynamic: accepts multi-
ple values (e.g., c("red”, "green”, "blue")) when multiple lines are plotted
(i.e., when by is specified).

pred_line_lty Type of the predicted line for numerical predictors (default: 1). Dynamic: ac-
cepts multiple values (e.g., c(1, 2, 3)) when multiple lines are plotted (i.e.,
when by is specified).

pred_line_lwd Width of the predicted line for numerical predictors (default: 2). Dynamic:
accepts multiple values (e.g., c(1, 2, 3)) when multiple lines are plotted (i.e.,
when by is specified).

ci_type Type of 95 percent confidence intervals for numerical predictors. "polygon”
(default) or "1ines".

ci_polygon_col Color for 95 percent confidence interval polygon (default: "gray"). Requires
ci_type = "polygon”. Can be specified as a color name, number or RGB/hex
string. Dynamic: accepts multiple values (e.g., c("red”, "green”, "blue"))
when 95 percent CIs are plotted for multiple lines (i.e., when by is specified).
Tip: To hide confidence bands entirely, set this to rgh(@,0,0,0).

ci_line_col Color for 95 percent confidence interval lines (default: "black”). Requires
ci_type ="lines"”. Can be specified as a color name, number or RGB/hex
string. Dynamic: accepts multiple values (e.g., c("red"”, "green"”, "blue"))
when 95 percent CIs are plotted for multiple lines (i.e., when by is specified).

ci_line_lty Type for 95 percent confidence interval lines (default: 1). Requires ci_type =
"lines"”. Dynamic: accepts multiple values (e.g., c(1, 2, 3)) when 95 percent
CIs are plotted for multiple lines (i.e., when by is specified).

ci_line_1lwd Width for 95 percent confidence interval lines (default: 1). Requires ci_type =
"lines"”. Dynamic: accepts multiple values (e.g., c(1, 2, 3)) when 95 percent
ClIs are plotted for multiple lines (i.e., when by is specified).

pred_point_col Color for predicted point values of categorical predictors (default: "black").
Can be specified as a color name, number or RGB/hex string. Dynamic: accepts
multiple values (e.g., c("red”, "green”, "blue”)) when points are plotted for
an interaction (i.e., when by is specified).

pred_point_pch Shape for predicted point values of categorical predictors (default: 16). Dy-
namic: accepts multiple values (e.g., c(1, 2, 3)) when points are plotted for an
interaction (i.e., when by is specified).

8 easyViz

pred_point_cex Size for predicted point values of categorical predictors (default: 1). Dynamic:
accepts multiple values (e.g., c(1, 2, 3)) when points are plotted for an inter-
action (i.e., when by is specified).

ci_bar_col Color for 95 percent confidence interval bars (default: "black”). Applies only
when the predictor is categorical. Can be specified as a color name, number, or
RGB/hex string.

ci_bar_lty Type for 95 percent confidence interval bars (default: 1). Applies only when the
predictor is categorical.

ci_bar_lwd Width for 95 percent confidence interval bars (default: 1). Applies only when
the predictor is categorical.

ci_bar_caps Size of the caps on 95 percent confidence interval bars (default: @.1). Increase
for more visible caps, set to O to remove caps and draw plain vertical bars.

cat_labels Custom labels for levels of a categorical predictor (e.g., cat_labels = c("Level
A", "Level B", "Level C")).

add_legend Logical. Whether to add a legend for by variable levels (default: FALSE).

legend_position
Legend position. Either a named position string ("top”, "bottom”, "left",
"right”, "topleft”, "topright”, "bottomleft"”, "bottomright"”) or a nu-
meric vector c(x, y) specifying exact coordinates for the legend placement.
legend_text_size
Legend text size (default: 0.9).

legend_labels Custom labels for the legend (e.g., legend_labels = c("Label 1", "Label 2",
"Label 3")).

Details

This function provides an easy-to-use yet highly flexible tool for visualizing conditional effects
from a wide range of regression models, including mixed-effects and generalized additive (mixed)
models. Compatible model types include 1m, rim, glm, glm.nb, and mgcv: : gam; nonlinear models
via nls; and generalized least squares via gls. Mixed-effects models with random intercepts and/or
slopes can be fitted using lmer, glmer, glmer.nb, glmmTMB, or mgcv: :gam (via smooth terms).
The function handles nonlinear relationships (e.g., splines, polynomials), two-way interactions, and
supports visualization of three-way interactions via conditional plots. Plots are rendered using base
R graphics with extensive customization options available through the plot_args argument. Users
can pass any valid graphical parameters accepted by plot or par, enabling full control over axis
labels, font styles, colors, margins, tick orientation, and more. The arguments model, data, and
predictor are required. The function will return an error if any of them is missing or invalid.

Value

A base R plot visualizing the conditional effect of a predictor on the response variable. Additionally,
a data frame is invisibly returned containing the predictor values, conditioning variables, predicted
values (fit), and their 95 percent confidence intervals (lower, upper). To extract prediction data
for further use (e.g., custom plotting or tabulation), assign the output to an object: pred_df <-
easyViz(...). You can then inspect it using head (pred_df) or save it withwrite.csv(pred_df,

D).

easyViz

Examples

library(nlme)
library(MASS)
library(1lme4)
library(glmmTMB)
library(mgcv)

set.seed(123)

n <- 100

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <- runif(n, @, 5)

x4 <- factor(sample(letters[1:3], n, replace = TRUE))
group_levels <- paste@("G", 1:10)

group <- factor(sample(group_levels, n, replace = TRUE))

Generate random intercepts for each group

group_effects <- rnorm(length(group_levels), mean = @, sd = 2) # non-zero variance
names(group_effects) <- group_levels

group_intercept <- group_effects[as.character(group)]

Non-linear continuous response

true_y <- 5 * sin(x3) + 3 * x1 + group_intercept + model.matrix(~x4)[, -11 %*% c(2, -2)
noise <- rnorm(n, sd = 3)

y <- as.vector(true_y + noise)

Binary response with group effect added to logit
logit_p <- 2 *x x1 - 1 + group_intercept

p<-1/ (1 + exp(-logit_p))

binary_y <- rbinom(n, size = 1, prob = p)

Binomial response: number of successes and failures
y3 <- sample(10:30, n, replace = TRUE)

logit_p_prop <- -1.5 * scale(x1)

p_prop <- 1 / (1 + exp(-logit_p_prop))

y1 <- rbinom(n, size = y3, prob = p_prop) # successes
y2 <- y3 - y1 # failures

Count response with group effect in log(mu)

mu_count <- exp(1 + 0.8 * x2 - 0.5 * (x4 == "b") + group_intercept)
size <- 1.2

count_y <- rnbinom(n, size = size, mu = mu_count)

Offset variable

offset_var <- log(runif(n, 1, 10))

easyViz

Assemble dataset
sim_data <- data.frame(x1, x2, x3, x4, group, y, binary_y, y1, y2, y3, count_y, offset_var)

mod_lm <- 1Im(y ~ x1 + x4,
data = sim_data)
easyViz(model = mod_1m, data = sim_data, predictor = "x1",
by = "x4",
pred_range_limit = FALSE,
pred_on_top = TRUE,

bty = "n",

xlab = "Predictor x1",

ylab = "Response y",

point_col = ifelse(sim_data$x4=="a", "red",
ifelse(sim_data$x4=="b", "orange”,

"yellow")),
point_cex = 0.5,
pred_line_col = c("red”, "orange"”, "yellow"),

pred_line_lty =1,

ci_polygon_col = c(rgb(1,0,0,0.5),
rgb(1,0.5,0,0.5),
rgb(1,1,0,0.5)),

add_legend = TRUE,

legend_position = "topleft”,

legend_labels = c("a", "b", "c"))

Extract prediction data
pred_df <- easyViz(model = mod_lm, data = sim_data, predictor = "x1", by = "x4")
head (pred_df)

mod_1m2 <- Im(sqrt(x3) ~ x1 * x4,
data = sim_data)

easyViz(model = mod_Im2, data = sim_data, predictor = "x1",
by="x4",
backtransform_response = function(x) x*2,
ylim = c(0,8),

show_data_points = FALSE,
add_legend = TRUE)

mod_1m3 <- 1m(y ~ poly(x3, 3),
data = sim_data)

easyViz(model = mod_Im3, data = sim_data, predictor = "x3",
pred_on_top = TRUE,
font_family = "mono",

point_col = rgb(1,0,0,0.3),
point_pch = "+",

ci_type = "lines”,
ci_line_lty = 2)

2. Robust linear model (rlm)

easyViz

mod_rlm <- rlm(y ~ x1 + x4,
data = sim_data)

easyViz(model = mod_rlm, data = sim_data, predictor = "x1",
by = "x4",
pred_on_top = TRUE,
bty = "n",
xlab = "Predictor x1",
ylab = "Response y",
point_col = ifelse(sim_data$x4=="a", "red",
ifelse(sim_data$x4=="b", "orange”,
"yellow")),

point_cex = 0.5,

pred_line_col = c("red”, "orange"”, "yellow"),

pred_line_lty =1,

ci_polygon_col = c(rgb(1,0,0,0.5),
rgb(1,0.5,0,0.5),
rgb(1,1,0,0.5)),

add_legend = TRUE,

legend_position = c(1.25,-1),

legend_labels = c("a", "b", "c"))

__
3. Generalized least squares (gls)
__
mod_gls <- gls(y ~ x1 + x2 + x4,
correlation = corAR1(form = ~1|group),
data = sim_data)
easyViz(model = mod_gls, data = sim_data, predictor = "x4",
jitter_data_points = TRUE,
bty = "n",
xlab = "Predictor x4",

ylab = "Response y”",

point_col = rgb(0,0,1,0.2),

pred_point_col = "blue”,

cat_labels = c("group A", "group B", "group C"))

sim_data$x5 <- sample(c(rep(”CatA”, 50), rep("CatB”, 50)))
mod_gls2 <- gls(y ~ x1 + x2 + x4 * x5,

correlation = corAR1(form = ~1|group),
data = sim_data)
easyViz(model = mod_gls2, data = sim_data, predictor = "x4",
by = "x5",
jitter_data_points = TRUE,
bty = "n",
ylim = c(-15,20),
xlab = "Predictor x4",

ylab = "Response y",

point_col = c(rgb(0,0,1,0.2), rgb(1,0,0,0.2)),
pred_point_col = c("blue”, "red"),

ci_bar_caps = 0,

cat_labels = c("group A", "group B", "group C"),
add_legend = TRUE,

easyViz

legend_position = "topright”,
legend_labels = c("Category A", "Category B"))

mod_nls <- nls(y ~ a * sin(b * x3) + c,
data = sim_data,
start = list(a =5, b =1, ¢ =0))
summary (mod_nls)
easyViz(model = mod_nls, data = sim_data, predictor = "x3",
pred_on_top = TRUE,
font_family = "serif",
bty = "n",
xlab = "Predictor x3",
ylab = "Response y",
point_col = rgb(0,1,0,0.7),
point_pch =1,
ci_type = "lines”,
ci_line_col = "black”,
ci_line_lty = 2)
text(x = 2.5, y = 11,
labels = expression(Y %~% 5.31584 %*% sin(1.08158 %*% X[3]) + 0.51338),

cex = 0.7)
__
5. Generalized linear model (glm)
__

mod_glm <- glm(binary_y ~ x1 + x4 + offset(log(offset_var)),
family = binomial(link="cloglog"),
data = sim_data)

easyViz(model = mod_glm, data = sim_data, predictor = "x1",
fix_values = list(x4="b", offset_var=1),
xlab = "Predictor x1",

ylab = "Response y",
binary_data_type = "binned"”,
point_col = "black”,
ci_polygon_col = "red")

easyViz(model = mod_glm, data = sim_data, predictor = "x4",
bty = "n”,
xlab = "Predictor x4",

ylab = "Response y",
binary_data_type = "plain”,
jitter_data_points = TRUE,
point_col = "black”,
point_pch = "|"
point_cex = 0.5)

’

mod_glm2 <- glm(y1/y3 ~ x1 + x4, weights = y3,
family = binomial(link="logit"),
data = sim_data)
easyViz(model = mod_glm2, data = sim_data, predictor = "x1",

easyViz

pred_on_top = TRUE,
xlab = "Predictor x1",
ylab = "Response y”,
point_col = "black”,
ci_polygon_col = "red")

mod_glm_nb <- glm.nb(count_y ~ x2,
data = sim_data)

easyViz(model = mod_glm_nb, data = sim_data, predictor = "x2",
font_family = "mono”,
bty = "L",
plot_args = list(main = "NB model”),
xlab = "Predictor x2",

ylab = "Response y",
ci_polygon_col = "blue”)

mod_lmer <- 1lmer(y ~ x1 + x4 + (1 | group),
data = sim_data)
easyViz(model = mod_lmer, data = sim_data, predictor = "x1",
by="group"”,
re.form = NULL,
bty = "n",
plot_args = list(xaxp = c(round(min(sim_data$x1),1),
round(max(sim_data$x1),1), 5)),

ylim = c(-15, 15),

xlab = "Predictor x1",
ylab = "Response y",
pred_line_col = "green",

pred_line_lty =1,
pred_line_lwd = 1)
oldpar <- par(new = TRUE)

easyViz(model = mod_lmer, data = sim_data, predictor = "x1",
re.form = NA,
bty = Ilnll,

plot_args = list(xaxp = c(round(min(sim_data$x1),1),
round(max(sim_data$x1),1), 5)),
show_data_points = FALSE,
xlab = "Predictor x1",
ylab = "Response y",
ylim = c(-15, 15),
pred_line_col = "red”,
pred_line_lty =1,
pred_line_lwd = 2,
ci_polygon = rgh(0,0,0,0))
par(oldpar)

easyViz

8. Generalized linear mixed model (glmer)

mod_glmer <- glmer(binary_y ~ x1 + x4 + (1 | group),
family = binomial,
data = sim_data)

easyViz(model = mod_glmer, data = sim_data, predictor = "x1",
by = "group”,
re.form = NULL,
cat_conditioning = "reference”,
font_family = "serif",
xlab = "Predictor x1",

ylab = "Response y",
binary_data_type = "binned”,
pred_range_limit = FALSE,
pred_line_col = "blue”,
pred_line_lty = 1,

pred_line_lwd = 1)
__
9. GLMM with negative binomial (glmer.nb)
__

mod_glmer_nb <- glmer.nb(count_y ~ x2 + x4 + (1 | group),
data = sim_data)

easyViz(model = mod_glmer_nb, data = sim_data, predictor = "x2",
re.form = NA,
bty = "n”,
xlab = "Predictor x2",

ylab = "Response y",
ylim = c(@, 120),
point_pch = 1)

__
10. GLMM using glmmTMB
__
mod_glmmTMB <- glmmTMB(count_y ~ x2 + x4 + (1 | group),
ziformula = ~ x2,
family = nbinom2,
data = sim_data)
easyViz(model = mod_glmmTMB, data = sim_data, predictor = "x2",
re.form = NA,
bty = "n",
xlab = "Predictor x2",
ylab = "Response y",
ylim = c(@, 120),
point_pch = 1)
__
11. GAM with random smooth for group
__

mod_gam <- gam(y ~ s(x3) + s(group, bs = "re"),
data = sim_data)
easyViz(model = mod_gam, data = sim_data, predictor = "x3",
re.form = NA,

easyViz

las = 0,

bty = "n",

xlab = "Predictor x3",

ylab = "Response y”,

point_col = "black”,

point_pch =1,

ci_polygon_col = rgb(1,0,0,0.5))

15

Index

easyViz, 2

16

	easyViz
	Index

