Type: | Package |
Title: | Discrete Transmuted Generalized Inverse Weibull Distribution |
Version: | 1.0.0 |
Language: | en-US |
Maintainer: | Atchanut Rattanalertnusorn <atchanut_r@rmutt.ac.th> |
Description: | The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <doi:10.14456/sjst-psu.2021.149>. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | stats,graphics |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
RoxygenNote: | 7.1.2 |
NeedsCompilation: | no |
Packaged: | 2022-03-31 03:44:05 UTC; COM |
Author: | Atchanut Rattanalertnusorn [cre, aut], Sirinapa Aryuyuen [aut] |
Repository: | CRAN |
Date/Publication: | 2022-03-31 07:20:05 UTC |
The probability mass function (PMF) for Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution.
Description
This function calculated the PMF of the DTGIW distribution.
Usage
dDTGIW(x, alpha, beta, lambda, theta, log = FALSE)
Arguments
x |
vector of quantiles. |
alpha |
shape parameter#1. |
beta |
scale parameter. |
lambda |
shape pameter#2. |
theta |
the transmuted parameter. |
log |
logical(TRUE or FALSE); if log=FALSE, then return the PMF; if log=TRUE, then return the natural logarithms of the PMF. |
Details
The PMF of the DTGIW distribution is shown in Theorem 1 based on the research paper in references.
Value
the PMF of DTGIW distribution
References
Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021). The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications, Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151. DOI: 10.14456/sjst-psu.2021.149
Examples
x <- c(0:10)
dDTGIW(x,3.45,0.7,1.05,0)
Negative Log-Likelihood value of DTGIW distribution.
Description
The function for calculating negative log-likelihood value of DTGIW distribution.
Usage
loglikeDTGIW(x, alpha, beta, lambda, theta)
Arguments
x |
a vector of quantile |
alpha |
shape parameter#1 |
beta |
scale parameter |
lambda |
shape pameter#2 |
theta |
the transmuted parameter |
Value
the negative log-likelihood value of DTGIW distribution
References
Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021). The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications, Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151 <DOI: 10.14456/sjst-psu.2021.149>.
Examples
x <- rDTGIW(n=20,3.45,0.7,1.05,0)
loglikeDTGIW(x,3.45,0.7,1.05,0)
The cumulative distribution function (CDF) for Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution.
Description
This function calculated the CDF of the DTGIW distribution.
Usage
pDTGIW(q, alpha, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
Arguments
q |
vector of quantiles. |
alpha |
shape parameter#1. |
beta |
scale parameter. |
lambda |
shape pameter#2. |
theta |
the transmuted parameter. |
lower.tail |
logical; if TRUE (default), probabilities are Prob of X less than or equal to x. Otherwise, Prob of X greater than x. |
log.p |
logical(TRUE or FALSE); if log.p=FALSE, then return the CDF; if log.p=TRUE, then return the natural logarithms of the CDF. |
Details
The PMF of DTGIW distribution is shown in Theorem 1. based on the research paper in references. For discrete random variables, the CDF of DTGIW distribution can be calculated by summation of the PMF.
Value
the cdf of DTGIW distribution
References
Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021). The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications, Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151. DOI: 10.14456/sjst-psu.2021.149
Examples
x <- c(0:10)
pDTGIW(x,3.45,0.7,1.05,0)
Plot Discrete Transmuted Generalized Inverse Weibull(DTGIW) distribution.
Description
This function for the plot of DTGIW distribution.
Usage
plotDTGIW(x, fx, alpha = 3.45, beta = 0.7, lambda = 1.05, theta = 0)
Arguments
x |
a vector of quantile |
fx |
probability mass function |
alpha |
shape parameter#1. |
beta |
scale parameter. |
lambda |
shape pameter#2. |
theta |
the transmuted parameter. |
Value
the figure of DTGIW distribution
Examples
x <- c(0:10)
fx<- dDTGIW(x,3.45,0.7,1.05,0)
plotDTGIW(x,fx,alpha=3.45,beta=0.7,lambda=1.05,theta=0)
fx2 <- dDTGIW(x,2.50,0.5,1.00,0)
plotDTGIW(x,fx2,alpha=2.50,beta=0.5,lambda=1.00,theta=0)
The quantile function for Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution.
Description
This function calculated the quantile values of the DTGIW distribution.
Usage
qDTGIW(p, alpha, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
Arguments
p |
vector of probabilities |
alpha |
shape parameter#1. |
beta |
scale parameter. |
lambda |
shape pameter#2. |
theta |
the transmuted parameter. |
lower.tail |
logical; if TRUE (default), probabilities are Prob of X less than or equal to x. Otherwise, Prob of X greater than x. |
log.p |
logical(TRUE or FALSE); if log.p=FALSE, then return the cdf; if log.p=TRUE, then return the natural logarithms of the cdf. |
Details
The R script calculated the quantile values of the DTGIW distribution is shown based on the research paper in references.
Value
the quantile values of DTGIW distribution
References
Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021). The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications, Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151. DOI: 10.14456/sjst-psu.2021.149.
Examples
x <- c(0:10)
p<- pDTGIW(x,3.45,0.7,1.05,0)
qDTGIW(p,3.45,0.7,1.05,0)
The random generating function for Discrete Transmuted Generalized Inverse Weibull(DTGIW) distribution.
Description
This function generates random numbers for the DTGIW distribution.
Usage
rDTGIW(n, alpha, beta, lambda, theta)
Arguments
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
alpha |
shape parameter#1. |
beta |
scale parameter. |
lambda |
shape pameter#2. |
theta |
the transmuted parameter. |
Details
The R script generates the n random values of the DTGIW distribution is shown based on the research paper in references.
Value
the n random number of DTGIW distribution.
References
Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021). The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications, Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151. DOI: 10.14456/sjst-psu.2021.149.
Examples
rDTGIW(n=100,3.45,0.7,1.05,0)