Type: | Package |
Title: | Computational Tools for Meta-Analysis of Diagnostic Accuracy Test |
Version: | 1.1.1 |
Date: | 2023-05-27 |
Maintainer: | Hisashi Noma <noma@ism.ac.jp> |
Description: | Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available (Noma et al. (2021) <doi:10.1080/23737484.2021.1894408>). |
Imports: | MASS, mada |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
NeedsCompilation: | no |
Packaged: | 2023-05-30 05:07:12 UTC; Hisashi |
Author: | Hisashi Noma |
Repository: | CRAN |
Date/Publication: | 2023-05-30 10:50:10 UTC |
The 'dmetatools' package.
Description
Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available.
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Influence diagnostics based on the AUC of summary ROC curve
Description
Influence diagnostics based on AUC of the summary ROC curve by leave-one-out analysis. The threshold to determine influential outlying study is computed by parametric bootstrap.
Usage
AUC_IF(TP, FP, FN, TN, B=2000, alpha=0.95)
Arguments
TP |
A vector of the number of true positives (TP) |
FP |
A vector of the number of false positives (FP) |
FN |
A vector of the number of false negatives (FN) |
TN |
A vector of the number of true negatives (TN) |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The error level to be calculated for the bootstrap interval of |
Value
Influence diagnostic statistics based on the AUC of the summary ROC curve. The output is sorted by the absolute size of deltaAUC
.
-
AUC
: The AUC of the summary ROC curve. -
id
: identification number. -
AUC(-i)
: The AUC estimate ifi
th study is excluded. -
deltaAUC
: The difference of AUC estimates for all study and for the subpopulation thati
th study is excluded. -
Q1
: Default 2.5th percentile of the bootstrap distribution ofdeltaAUC
(can be changed byalpha
). -
Q2
: Default 97.5th percentile of the bootstrap distribution ofdeltaAUC
(can be changed byalpha
).
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(asthma)
fit1 <- reitsma(asthma) # DTA analysis using the Reitsma model
summary(fit1)
plot(fit1) # Plot the SROC curves
points(fpr(asthma), sens(asthma), cex = .5)
attach(asthma)
AUC_IF(TP, FP, FN, TN, B=2) # Influential analysis based on the AUC
detach(asthma)
# This is an example command for illustration. B should be >= 1000.
Confidence interval for AUC of summary ROC curve
Description
Calculating the confidence interval for AUC of summary ROC curve by parametric bootstrap.
Usage
AUC_boot(TP, FP, FN, TN, B=2000, alpha=0.95)
Arguments
TP |
A vector of the number of true positives (TP) |
FP |
A vector of the number of false positives (FP) |
FN |
A vector of the number of false negatives (FN) |
TN |
A vector of the number of true negatives (TN) |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The confidence level (default: 0.95) |
Value
The confidence interval for AUC of summary ROC curve is calculated.
-
AUC
: The AUC of the summary ROC curve. -
AUC_CI
: The 95% confidence interval for the AUC of the summary ROC curve (the confidence level can be changed byalpha
).
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(cervical)
CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]
fit1 <- reitsma(CT) # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)
plot(fit1) # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))
AUC_boot(CT$TP,CT$FP,CT$FN,CT$TN,B=5)
AUC_boot(LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_boot(MRI$TP,MRI$FP,MRI$FN,MRI$TN,B=5)
# These are example commands for illustration. B should be >= 1000.
Bootstrap test for the difference of AUCs of summary ROC curves for multiple diagnostic tests
Description
Calculating the difference of AUCs of summary ROC curves (dAUC
) and its confidence interval, and the p-value for the test of "dAUC=0
" by parametric bootstrap.
Usage
AUC_comparison(TP1, FP1, FN1, TN1, TP2, FP2, FN2, TN2, B=2000, alpha=0.05)
Arguments
TP1 |
A vector of the number of true positives (TP) of test 1 |
FP1 |
A vector of the number of false positives (FP) of test 1 |
FN1 |
A vector of the number of false negatives (FN) of test 1 |
TN1 |
A vector of the number of true negatives (TN) of test 1 |
TP2 |
A vector of the number of true positives (TP) of test 2 |
FP2 |
A vector of the number of false positives (FP) of test 2 |
FN2 |
A vector of the number of false negatives (FN) of test 2 |
TN2 |
A vector of the number of true negatives (TN) of test 2 |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The significance level (default: 0.05) |
Value
The AUCs of the summary ROC curves and their confidence intervals are calculated.
Also, the difference of the AUCs (dAUC
) and its confidence interval, and the p-value for the test of "dAUC=0
" are provided.
-
AUC1
: The AUC of the summary ROC curve for test 1. -
AUC1_CI
: The 95% confidence interval for the AUC of the summary ROC curve for test 1 (the confidence level can be changed byalpha
). -
AUC2
: The AUC of the summary ROC curve for test 2. -
AUC2_CI
: The 95% confidence interval for the AUC of the summary ROC curve for test 2 (the confidence level can be changed byalpha
). -
dAUC
: The difference of the AUC1 and AUC2. -
dAUC_CI
: The 95% confidence interval fordAUC
(the confidence level can be changed byalpha
). -
pvalue
: The p-value of the test ofdAUC=0
.
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(cervical)
CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]
fit1 <- reitsma(CT) # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)
plot(fit1) # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))
AUC_comparison(CT$TP,CT$FP,CT$FN,CT$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,CT$TP,CT$FP,CT$FN,CT$TN,B=5)
# These are example commands for illustration. B should be >= 1000.
Korevaar et al. (2015)'s data of minimally invasive markers for detection of airway eosinophilia in asthma
Description
-
TP
: A vector of the number of true positives (TP) -
FP
: A vector of the number of false positives (FP) -
FN
: A vector of the number of false negatives (FN) -
TN
: A vector of the number of true negatives (TN)
Usage
data(asthma)
Format
A data frame with 12 rows and 4 variables
References
Korevaar, D. A., Westerhof, G. A., Wang, J., et al. (2015). Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respiratory Medicine. 3: 290-300. doi:10.1016/S2213-2600(15)00050-8
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Scheidler et al. (1997)'s cervical cancer data
Description
-
id
: identification number -
author
: The first author name of the corresponding study -
year
: The published year of the corresponding study -
method
: The diagnostic method; 1=CT (computed tomography), 2=LAG (lymphangiography), 3=MRI (magnetic resonance imaging) -
TP
: A vector of the number of true positives (TP) -
FP
: A vector of the number of false positives (FP) -
FN
: A vector of the number of false negatives (FN) -
TN
: A vector of the number of true negatives (TN)
Usage
data(cervical)
Format
A data frame with 44 rows and 8 variables
References
Scheidler, J., Hricak, H., Yu, K. K., Subak, L., and Segal, M. R. (1997). Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278: 1096-1101.
Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M., and Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 58: 982-990. doi:10.1016/j.jclinepi.2005.02.022
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408