This document introduces you to a basic set of functions that describe data continuous data. The other two vignettes introduce you to functions that describe categorical data and visualization options.
We have modified the mtcars
data to create a new data
set mtcarz
. The only difference between the two data sets
is related to the variable types.
str(mtcarz)
#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
#> $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
#> $ am : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
#> $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
#> $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...
The ds_screener()
function will screen a data set and
return the following: - Column/Variable Names - Data Type - Levels (in
case of categorical data) - Number of missing observations - % of
missing observations
ds_screener(mtcarz)
#> -----------------------------------------------------------------------
#> | Column Name | Data Type | Levels | Missing | Missing (%) |
#> -----------------------------------------------------------------------
#> | mpg | numeric | NA | 0 | 0 |
#> | cyl | factor | 4 6 8 | 0 | 0 |
#> | disp | numeric | NA | 0 | 0 |
#> | hp | numeric | NA | 0 | 0 |
#> | drat | numeric | NA | 0 | 0 |
#> | wt | numeric | NA | 0 | 0 |
#> | qsec | numeric | NA | 0 | 0 |
#> | vs | factor | 0 1 | 0 | 0 |
#> | am | factor | 0 1 | 0 | 0 |
#> | gear | factor | 3 4 5 | 0 | 0 |
#> | carb | factor |1 2 3 4 6 8| 0 | 0 |
#> -----------------------------------------------------------------------
#>
#> Overall Missing Values 0
#> Percentage of Missing Values 0 %
#> Rows with Missing Values 0
#> Columns With Missing Values 0
The ds_summary_stats
function returns a comprehensive
set of statistics including measures of location, variation, symmetry
and extreme observations.
ds_summary_stats(mtcarz, mpg)
#> -------------------------------- Variable: mpg --------------------------------
#>
#> Univariate Analysis
#>
#> N 32.00 Variance 36.32
#> Missing 0.00 Std Deviation 6.03
#> Mean 20.09 Range 23.50
#> Median 19.20 Interquartile Range 7.38
#> Mode 10.40 Uncorrected SS 14042.31
#> Trimmed Mean 19.95 Corrected SS 1126.05
#> Skewness 0.67 Coeff Variation 30.00
#> Kurtosis -0.02 Std Error Mean 1.07
#>
#> Quantiles
#>
#> Quantile Value
#>
#> Max 33.90
#> 99% 33.44
#> 95% 31.30
#> 90% 30.09
#> Q3 22.80
#> Median 19.20
#> Q1 15.43
#> 10% 14.34
#> 5% 12.00
#> 1% 10.40
#> Min 10.40
#>
#> Extreme Values
#>
#> Low High
#>
#> Obs Value Obs Value
#> 15 10.4 20 33.9
#> 16 10.4 18 32.4
#> 24 13.3 19 30.4
#> 7 14.3 28 30.4
#> 17 14.7 26 27.3
You can pass multiple variables as shown below:
ds_summary_stats(mtcarz, mpg, disp)
#> -------------------------------- Variable: mpg --------------------------------
#>
#> Univariate Analysis
#>
#> N 32.00 Variance 36.32
#> Missing 0.00 Std Deviation 6.03
#> Mean 20.09 Range 23.50
#> Median 19.20 Interquartile Range 7.38
#> Mode 10.40 Uncorrected SS 14042.31
#> Trimmed Mean 19.95 Corrected SS 1126.05
#> Skewness 0.67 Coeff Variation 30.00
#> Kurtosis -0.02 Std Error Mean 1.07
#>
#> Quantiles
#>
#> Quantile Value
#>
#> Max 33.90
#> 99% 33.44
#> 95% 31.30
#> 90% 30.09
#> Q3 22.80
#> Median 19.20
#> Q1 15.43
#> 10% 14.34
#> 5% 12.00
#> 1% 10.40
#> Min 10.40
#>
#> Extreme Values
#>
#> Low High
#>
#> Obs Value Obs Value
#> 15 10.4 20 33.9
#> 16 10.4 18 32.4
#> 24 13.3 19 30.4
#> 7 14.3 28 30.4
#> 17 14.7 26 27.3
#>
#>
#>
#> -------------------------------- Variable: disp --------------------------------
#>
#> Univariate Analysis
#>
#> N 32.00 Variance 15360.80
#> Missing 0.00 Std Deviation 123.94
#> Mean 230.72 Range 400.90
#> Median 196.30 Interquartile Range 205.18
#> Mode 275.80 Uncorrected SS 2179627.47
#> Trimmed Mean 228.00 Corrected SS 476184.79
#> Skewness 0.42 Coeff Variation 53.72
#> Kurtosis -1.07 Std Error Mean 21.91
#>
#> Quantiles
#>
#> Quantile Value
#>
#> Max 472.00
#> 99% 468.28
#> 95% 449.00
#> 90% 396.00
#> Q3 326.00
#> Median 196.30
#> Q1 120.83
#> 10% 80.61
#> 5% 77.35
#> 1% 72.53
#> Min 71.10
#>
#> Extreme Values
#>
#> Low High
#>
#> Obs Value Obs Value
#> 20 71.1 15 472
#> 19 75.7 16 460
#> 18 78.7 17 440
#> 26 79 25 400
#> 28 95.1 5 360
If you do not specify any variables, it will detect all the continuous variables in the data set and return summary statistics for each of them.
The ds_freq_table
function creates frequency tables for
continuous variables. The default number of intervals is 5.
ds_freq_table(mtcarz, mpg, 4)
#> Variable: mpg
#> |---------------------------------------------------------------------------|
#> | Bins | Frequency | Cum Frequency | Percent | Cum Percent |
#> |---------------------------------------------------------------------------|
#> | 10.4 - 16.3 | 10 | 10 | 31.25 | 31.25 |
#> |---------------------------------------------------------------------------|
#> | 16.3 - 22.1 | 13 | 23 | 40.62 | 71.88 |
#> |---------------------------------------------------------------------------|
#> | 22.1 - 28 | 5 | 28 | 15.62 | 87.5 |
#> |---------------------------------------------------------------------------|
#> | 28 - 33.9 | 4 | 32 | 12.5 | 100 |
#> |---------------------------------------------------------------------------|
#> | Total | 32 | - | 100.00 | - |
#> |---------------------------------------------------------------------------|
If you want to view summary statistics and frequency tables of all or
subset of variables in a data set, use
ds_auto_summary()
.
ds_auto_summary_stats(mtcarz, disp, mpg)
#> -------------------------------- Variable: disp --------------------------------
#>
#> ------------------------------ Summary Statistics ------------------------------
#>
#> -------------------------------- Variable: disp --------------------------------
#>
#> Univariate Analysis
#>
#> N 32.00 Variance 15360.80
#> Missing 0.00 Std Deviation 123.94
#> Mean 230.72 Range 400.90
#> Median 196.30 Interquartile Range 205.18
#> Mode 275.80 Uncorrected SS 2179627.47
#> Trimmed Mean 228.00 Corrected SS 476184.79
#> Skewness 0.42 Coeff Variation 53.72
#> Kurtosis -1.07 Std Error Mean 21.91
#>
#> Quantiles
#>
#> Quantile Value
#>
#> Max 472.00
#> 99% 468.28
#> 95% 449.00
#> 90% 396.00
#> Q3 326.00
#> Median 196.30
#> Q1 120.83
#> 10% 80.61
#> 5% 77.35
#> 1% 72.53
#> Min 71.10
#>
#> Extreme Values
#>
#> Low High
#>
#> Obs Value Obs Value
#> 20 71.1 15 472
#> 19 75.7 16 460
#> 18 78.7 17 440
#> 26 79 25 400
#> 28 95.1 5 360
#>
#>
#>
#> NULL
#>
#>
#> ---------------------------- Frequency Distribution ----------------------------
#>
#> Variable: disp
#> |---------------------------------------------------------------------------|
#> | Bins | Frequency | Cum Frequency | Percent | Cum Percent |
#> |---------------------------------------------------------------------------|
#> | 71.1 - 151.3 | 12 | 12 | 37.5 | 37.5 |
#> |---------------------------------------------------------------------------|
#> | 151.3 - 231.5 | 5 | 17 | 15.62 | 53.12 |
#> |---------------------------------------------------------------------------|
#> | 231.5 - 311.6 | 6 | 23 | 18.75 | 71.88 |
#> |---------------------------------------------------------------------------|
#> | 311.6 - 391.8 | 5 | 28 | 15.62 | 87.5 |
#> |---------------------------------------------------------------------------|
#> | 391.8 - 472 | 4 | 32 | 12.5 | 100 |
#> |---------------------------------------------------------------------------|
#> | Total | 32 | - | 100.00 | - |
#> |---------------------------------------------------------------------------|
#>
#>
#> -------------------------------- Variable: mpg --------------------------------
#>
#> ------------------------------ Summary Statistics ------------------------------
#>
#> -------------------------------- Variable: mpg --------------------------------
#>
#> Univariate Analysis
#>
#> N 32.00 Variance 36.32
#> Missing 0.00 Std Deviation 6.03
#> Mean 20.09 Range 23.50
#> Median 19.20 Interquartile Range 7.38
#> Mode 10.40 Uncorrected SS 14042.31
#> Trimmed Mean 19.95 Corrected SS 1126.05
#> Skewness 0.67 Coeff Variation 30.00
#> Kurtosis -0.02 Std Error Mean 1.07
#>
#> Quantiles
#>
#> Quantile Value
#>
#> Max 33.90
#> 99% 33.44
#> 95% 31.30
#> 90% 30.09
#> Q3 22.80
#> Median 19.20
#> Q1 15.43
#> 10% 14.34
#> 5% 12.00
#> 1% 10.40
#> Min 10.40
#>
#> Extreme Values
#>
#> Low High
#>
#> Obs Value Obs Value
#> 15 10.4 20 33.9
#> 16 10.4 18 32.4
#> 24 13.3 19 30.4
#> 7 14.3 28 30.4
#> 17 14.7 26 27.3
#>
#>
#>
#> NULL
#>
#>
#> ---------------------------- Frequency Distribution ----------------------------
#>
#> Variable: mpg
#> |-----------------------------------------------------------------------|
#> | Bins | Frequency | Cum Frequency | Percent | Cum Percent |
#> |-----------------------------------------------------------------------|
#> | 10.4 - 15.1 | 6 | 6 | 18.75 | 18.75 |
#> |-----------------------------------------------------------------------|
#> | 15.1 - 19.8 | 12 | 18 | 37.5 | 56.25 |
#> |-----------------------------------------------------------------------|
#> | 19.8 - 24.5 | 8 | 26 | 25 | 81.25 |
#> |-----------------------------------------------------------------------|
#> | 24.5 - 29.2 | 2 | 28 | 6.25 | 87.5 |
#> |-----------------------------------------------------------------------|
#> | 29.2 - 33.9 | 4 | 32 | 12.5 | 100 |
#> |-----------------------------------------------------------------------|
#> | Total | 32 | - | 100.00 | - |
#> |-----------------------------------------------------------------------|
The ds_group_summary()
function returns descriptive
statistics of a continuous variable for the different levels of a
categorical variable.
k <- ds_group_summary(mtcarz, cyl, mpg)
k
#> by
#> -----------------------------------------------------------------------------------------
#> | Statistic/Levels| 4| 6| 8|
#> -----------------------------------------------------------------------------------------
#> | Obs| 11| 7| 14|
#> | Minimum| 21.4| 17.8| 10.4|
#> | Maximum| 33.9| 21.4| 19.2|
#> | Mean| 26.66| 19.74| 15.1|
#> | Median| 26| 19.7| 15.2|
#> | Mode| 22.8| 21| 10.4|
#> | Std. Deviation| 4.51| 1.45| 2.56|
#> | Variance| 20.34| 2.11| 6.55|
#> | Skewness| 0.35| -0.26| -0.46|
#> | Kurtosis| -1.43| -1.83| 0.33|
#> | Uncorrected SS| 8023.83| 2741.14| 3277.34|
#> | Corrected SS| 203.39| 12.68| 85.2|
#> | Coeff Variation| 16.91| 7.36| 16.95|
#> | Std. Error Mean| 1.36| 0.55| 0.68|
#> | Range| 12.5| 3.6| 8.8|
#> | Interquartile Range| 7.6| 2.35| 1.85|
#> -----------------------------------------------------------------------------------------
ds_group_summary()
returns a tibble which can be used
for further analysis.
k$tidy_stats
#> # A tibble: 3 × 15
#> cyl length min max mean median mode sd variance skewness kurtosis
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4 11 21.4 33.9 26.7 26 22.8 4.51 20.3 0.348 -1.43
#> 2 6 7 17.8 21.4 19.7 19.7 21 1.45 2.11 -0.259 -1.83
#> 3 8 14 10.4 19.2 15.1 15.2 10.4 2.56 6.55 -0.456 0.330
#> # ℹ 4 more variables: coeff_var <dbl>, std_error <dbl>, range <dbl>, iqr <dbl>
A plot()
method has been defined for comparing
distributions.
If you want grouped summary statistics for multiple variables in a
data set, use ds_auto_group_summary()
.
ds_auto_group_summary(mtcarz, cyl, gear, mpg)
#> by
#> -----------------------------------------------------------------------------------------
#> | Statistic/Levels| 4| 6| 8|
#> -----------------------------------------------------------------------------------------
#> | Obs| 11| 7| 14|
#> | Minimum| 21.4| 17.8| 10.4|
#> | Maximum| 33.9| 21.4| 19.2|
#> | Mean| 26.66| 19.74| 15.1|
#> | Median| 26| 19.7| 15.2|
#> | Mode| 22.8| 21| 10.4|
#> | Std. Deviation| 4.51| 1.45| 2.56|
#> | Variance| 20.34| 2.11| 6.55|
#> | Skewness| 0.35| -0.26| -0.46|
#> | Kurtosis| -1.43| -1.83| 0.33|
#> | Uncorrected SS| 8023.83| 2741.14| 3277.34|
#> | Corrected SS| 203.39| 12.68| 85.2|
#> | Coeff Variation| 16.91| 7.36| 16.95|
#> | Std. Error Mean| 1.36| 0.55| 0.68|
#> | Range| 12.5| 3.6| 8.8|
#> | Interquartile Range| 7.6| 2.35| 1.85|
#> -----------------------------------------------------------------------------------------
#>
#>
#>
#> by
#> -----------------------------------------------------------------------------------------
#> | Statistic/Levels| 3| 4| 5|
#> -----------------------------------------------------------------------------------------
#> | Obs| 15| 12| 5|
#> | Minimum| 10.4| 17.8| 15|
#> | Maximum| 21.5| 33.9| 30.4|
#> | Mean| 16.11| 24.53| 21.38|
#> | Median| 15.5| 22.8| 19.7|
#> | Mode| 10.4| 21| 15|
#> | Std. Deviation| 3.37| 5.28| 6.66|
#> | Variance| 11.37| 27.84| 44.34|
#> | Skewness| -0.09| 0.7| 0.56|
#> | Kurtosis| -0.38| -0.77| -1.83|
#> | Uncorrected SS| 4050.52| 7528.9| 2462.89|
#> | Corrected SS| 159.15| 306.29| 177.37|
#> | Coeff Variation| 20.93| 21.51| 31.15|
#> | Std. Error Mean| 0.87| 1.52| 2.98|
#> | Range| 11.1| 16.1| 15.4|
#> | Interquartile Range| 3.9| 7.08| 10.2|
#> -----------------------------------------------------------------------------------------
To look at the descriptive statistics of a continuous variable for
different combinations of levels of two or more categorical variables,
use ds_group_summary_interact()
.
ds_group_summary_interact(mtcarz, mpg, cyl, gear)
#> # A tibble: 8 × 17
#> cyl gear min max mean t_mean median mode range variance stdev
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4 3 21.5 21.5 21.5 21.5 21.5 21.5 0 NA NA
#> 2 6 3 18.1 21.4 19.8 19.8 19.8 18.1 3.30 5.44 2.33
#> 3 8 3 10.4 19.2 15.0 15.0 15.2 10.4 8.8 7.70 2.77
#> 4 4 4 21.4 33.9 26.9 26.9 25.8 22.8 12.5 23.1 4.81
#> 5 6 4 17.8 21 19.8 19.8 20.1 21 3.2 2.41 1.55
#> 6 4 5 26 30.4 28.2 28.2 28.2 26 4.4 9.68 3.11
#> 7 6 5 19.7 19.7 19.7 19.7 19.7 19.7 0 NA NA
#> 8 8 5 15 15.8 15.4 15.4 15.4 15 0.800 0.320 0.566
#> # ℹ 6 more variables: skew <dbl>, kurtosis <dbl>, coeff_var <dbl>, q1 <dbl>,
#> # q3 <dbl>, iqrange <dbl>
The ds_tidy_stats()
function returns summary/descriptive
statistics for variables in a data frame/tibble.
ds_tidy_stats(mtcarz, mpg, disp, hp)
#> # A tibble: 3 × 16
#> vars min max mean t_mean median mode range variance stdev skew
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 disp 71.1 472 231. 228 196. 276. 401. 15361. 124. 0.420
#> 2 hp 52 335 147. 144. 123 110 283 4701. 68.6 0.799
#> 3 mpg 10.4 33.9 20.1 20.0 19.2 10.4 23.5 36.3 6.03 0.672
#> # ℹ 5 more variables: kurtosis <dbl>, coeff_var <dbl>, q1 <dbl>, q3 <dbl>,
#> # iqrange <dbl>
If you want to view the measure of location, variation, symmetry,
percentiles and extreme observations as tibbles, use the below
functions. All of them, except for ds_extreme_obs()
will
work with single or multiple variables. If you do not specify the
variables, they will return the results for all the continuous variables
in the data set.
ds_measures_location(mtcarz)
#> variable n missing mean trim_mean median mode
#> 1 disp 32 0 230.72 228.00 196.30 275.80
#> 2 drat 32 0 3.60 3.58 3.70 3.07
#> 3 hp 32 0 146.69 143.57 123.00 110.00
#> 4 mpg 32 0 20.09 19.95 19.20 10.40
#> 5 qsec 32 0 17.85 17.79 17.71 17.02
#> 6 wt 32 0 3.22 3.20 3.33 3.44
ds_measures_variation(mtcarz)
#> var n range iqr variance sd coeff_var std_error
#> 1 disp 32 400.900 205.17500 1.536080e+04 123.9386938 53.71779 21.90947271
#> 2 drat 32 2.170 0.84000 2.858814e-01 0.5346787 14.86638 0.09451874
#> 3 hp 32 283.000 83.50000 4.700867e+03 68.5628685 46.74077 12.12031731
#> 4 mpg 32 23.500 7.37500 3.632410e+01 6.0269481 29.99881 1.06542396
#> 5 qsec 32 8.400 2.00750 3.193166e+00 1.7869432 10.01159 0.31588992
#> 6 wt 32 3.911 1.02875 9.573790e-01 0.9784574 30.41285 0.17296847
ds_percentiles(mtcarz)
#> var n min per_1 per_5 per_10 q1 median q3 per_90
#> 1 disp 32 71.100 72.52600 77.3500 80.6100 120.82500 196.300 326.00 396.0000
#> 2 drat 32 2.760 2.76000 2.8535 3.0070 3.08000 3.695 3.92 4.2090
#> 3 hp 32 52.000 55.10000 63.6500 66.0000 96.50000 123.000 180.00 243.5000
#> 4 mpg 32 10.400 10.40000 11.9950 14.3400 15.42500 19.200 22.80 30.0900
#> 5 qsec 32 14.500 14.53100 15.0455 15.5340 16.89250 17.710 18.90 19.9900
#> 6 wt 32 1.513 1.54462 1.7360 1.9555 2.58125 3.325 3.61 4.0475
#> per_95 per_99 max
#> 1 449.00000 468.28000 472.000
#> 2 4.31450 4.77500 4.930
#> 3 253.55000 312.99000 335.000
#> 4 31.30000 33.43500 33.900
#> 5 20.10450 22.06920 22.900
#> 6 5.29275 5.39951 5.424