Type: Package
Title: Statistical Deadband Algorithms Comparison
Version: 0.1.0
Author: Nunzio Torrisi
Maintainer: Nunzio Torrisi <nunzio.torrisi@ieee.org>
Description: Statistical deadband algorithms are based on the Send-On-Delta concept as in Miskowicz(2006,<doi:10.3390/s6010049>). A collection of functions compare effectiveness and fidelity of sampled signals using statistical deadband algorithms.
License: GPL-2
Depends: R (≥ 2.10)
Imports: TTR
LazyData: TRUE
RoxygenNote: 5.0.1
NeedsCompilation: no
Packaged: 2016-09-12 01:31:23 UTC; robin
Repository: CRAN
Date/Publication: 2016-09-12 08:11:40

deadbandAD Function

Description

This function allows you to compute the Absolute Deadband(AD) algorithm

Usage

deadbandAD(x, EUmax, EUmin, d, offset)

Arguments

x

The vector of the samples before the deadband algorithm

EUmax

The Engineering Unit higher bound

EUmin

The Engineering Unit lower bound

d

Deadband percent parameter in range 0..1

offset

How many sample do you want skip at begin? Defaults is n=20

Value

A list containing the L2 distance and the Number of filtered samples

Examples

deadbandAD(rnorm(40, mean = 0, sd = 1),+0.5,-0.5,0.01,20)

deadbandBD Function

Description

This function allows you to compute the Bollinger Deadband(BD) algorithm

Usage

deadbandBD(x, d, offset, k)

Arguments

x

The vector of the samples before the deadband algorithm

d

Deadband percent parameter in range 0..1

offset

How many sample do you want skip at begin? Defaults is n=20

k

multiplier used in Bollinger theory

Value

A list containing the L2 distance and the Number of filtered samples

Examples

deadbandBD(rnorm(40, mean = 0, sd = 1),0.01,20,2)

deadbandVD Function

Description

This function allows you to compute the Volatility Deadband(VD) algorithm

Usage

deadbandVD(x, d, offset, k)

Arguments

x

The vector of the samples before the deadband algorithm

d

Deadband percent parameter in range 0..1

offset

How many sample do you want skip at begin? Defaults is n=20

k

multiplier used in Bollinger theory

Value

A list containing the L2 distance and the Number of filtered samples

Examples

deadbandVD(rnorm(40, mean = 0, sd = 1),0.01,20,2)

Samples subset of 10 pesudo periodic signals

Description

Sampling rate: 210ms for synthetic.sub35;

Usage

synthetic.sub35

Format

A data table with a column for each signal:

Details

The original dataset containing the 10 pseudo periodoc signal are available for download at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.gz More Info at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.html

Dataset freely available for research use.


Samples subset of 10 pesudo periodic signals

Description

Sampling rate: 240ms for synthetic.sub40;

Usage

synthetic.sub40

Format

A data table with a column for each signal:

Details

The original dataset containing the 10 pseudo periodoc signal are available for download at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.gz More Info at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.html

Dataset freely available for research use.


Samples subset of 10 pesudo periodic signals

Description

Sampling rate: 252ms for synthetic.sub42; The original dataset containing the 10 pseudo periodoc signal are available for download at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.gz More Info at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.html

Usage

synthetic.sub42

Format

A data table with a column for each signal:

Details

Dataset freely available for research use.


Samples subset of 10 pesudo periodic signals

Description

Sampling rate: 300ms for synthetic.sub50;

Usage

synthetic.sub50

Format

A data table with a column for each signal:

Details

The original dataset containing the 10 pseudo periodoc signal are available for download at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.gz More Info at: http://archive.ics.uci.edu/ml/machine-learning-databases/synthetic-mld/synthetic.data.html

Dataset freely available for research use.

mirror server hosted at Truenetwork, Russian Federation.