| Type: | Package | 
| Title: | Desirable Dietary Pattern | 
| Version: | 0.0.3 | 
| Date: | 2021-05-08 | 
| Description: | The desirable Dietary Pattern (DDP)/ PPH score measures the variety of food consumption. The (weighted) score is calculated based on the type of food. This package is intended to calculate the DDP/ PPH score that is faster than traditional method via a manual calculation by BKP (2017) http://bkp.pertanian.go.id/storage/app/uploads/public/5bf/ca9/06b/5bfca906bc654274163456.pdf and is simpler than the nutrition survey http://www.nutrisurvey.de. The database to create weights and baseline values is the Indonesia national survey in 2017. | 
| Depends: | R (≥ 2.10) | 
| License: | GPL-3 | 
| LazyData: | TRUE | 
| RoxygenNote: | 7.1.1 | 
| Suggests: | knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2021-05-08 14:46:09 UTC; Weksi Budiaji | 
| Author: | Weksi Budiaji [aut, cre] | 
| Maintainer: | Weksi Budiaji <budiaji@untirta.ac.id> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-05-08 15:30:02 UTC | 
Calory calculation
Description
This function calculates the total calory of each responden.
Usage
kalori(data, output = "all")
Arguments
data | 
 A data set of (n x 218) (see Details).  | 
output | 
 A desirable output, the default is "all" (see Details).  | 
Details
The data set is an n x 218 data frame. The first column is
the name of the respondent. The rest columns are types of food. The type of
food can be listed as in the data simulation (see in the data example
of simulasi or vignette("ddp")).
The output argument has "all" as the 
default, meaning that all of the calories are yielded. They are
energy, protein, fat, and carbohydrate. Single calory can be produced
by writing the output argument with "protein" for the calory of protein,
for example. The possible inputs for output argument are
"all", "energi", "protein", "lemak" for fat, and "karbohidrat".
Value
Function returns a matrix of n x 4 for "all" and n x 1 for other "output" arguments.
Author(s)
Weksi Budiaji 
 Contact: budiaji@untirta.ac.id
References
BKP, Kementan. 2017. Aplikasi Harmonisasi Analisis PPH Data Susenas 2017. Badan Ketahanan Pangan Kementrian Pertanian.
Examples
#data simulation of 10 person
set.seed(2020)
n <- 10
matsim <- matrix(0, n, 218)
datsim <- as.data.frame(matsim)
datsim$V1 <- LETTERS[1:n]
#calory for boiled rice
datsim$V2 <- rnorm(n, 200, 50)
#calory for boiled egg
datsim$V73 <- rnorm(n, 60, 5)
#calory for fresh milk
datsim$V79 <- rnorm(n, 100, 10)
#calory for tomato
datsim$V93 <- rnorm(n, 19, 2)
#caloty for pineapple
datsim$V134 <- rnorm(n, 20, 2)
kalori(datsim)
Simulation data
Description
A dataset containing 218 columns and 5 rows. The first column is the name of the respondents, while the rest is the type of food. The type of food is expalined in Indonesian. The simulation data set is a family data set with 5 members. They eat rice (nasi) in a particular weight (in gram), cat fish, spinach (bayam), and banana (pisang lainnya). Three family members drink milk powder. Thus, the data have values in column 1, 28, 81, 85, and 135 only.
Usage
simulasi
Format
A data frame with 5 rows and 218 columns:
- Nama
 The name of respondents
- X1
 Beras:beras lokal, kualitas unggul, impor
- X2
 Beras ketan
- X3
 Jagung basah dengan kulit
- X4
 Jagung pipilan/beras jagung
- X5
 Tepung beras
- X6
 Tepung jagung:maizena
- X7
 Tepung terigu
- X8
 Padi-padian lainnya
- X9
 Ketela pohon/singkong
- X10
 Ketela rambat/ubi jalar
- X11
 Sagu:bukan dari ketela pohon
- X12
 Talas/keladi
- X13
 Kentang
- X14
 Gaplek
- X15
 Tepung Gaplek: tiwul
- X16
 Tepung ketela pohon: tapioka/kanji
- X17
 Umbi-umbian lainnya
- X18
 Ekor kuning segar
- X19
 Tongkol/tuna/cakalang segar
- X20
 Tenggiri segar
- X21
 Selar segar
- X22
 Kembung segar
- X23
 Teri segar
- X24
 Bandeng segar
- X25
 Gabus segar
- X26
 Mujair/Nila segar
- X27
 Mas segar
- X28
 lele segar
- X29
 Kakap segar
- X30
 Baronang segar
- X31
 Patin segar
- X32
 Bawalsegar
- X33
 Gurame segar
- X34
 Ikan segar/basah lainnya
- X35
 Udang segar
- X36
 Cumi-cumi/sotong segar
- X37
 Ketam/kepiting/rajungan segar
- X38
 Kerang/siput segar
- X39
 Udang dan hewan air lainnya yang segar lainnya
- X40
 Kembung diawetkan/peda
- X41
 Tenggiri diawetkan
- X42
 Tongkol/tuna/cakalang diawetkan
- X43
 Teri diawetkan
- X44
 Selar diawetkan
- X45
 Sepat diawetkan
- X46
 Bandeng diawetkan
- X47
 Gabus diawetkan
- X48
 Ikan dalam kaleng
- X49
 Ikan diawetkan lainnya
- X50
 Udang: ebi, rebon diawetkan
- X51
 Cumi-cumi/sotong diawetkan
- X52
 Udang dan hewan air lainnya yang diawetkan
- X53
 Daging sapi segar
- X54
 Daging kerbau segar
- X55
 Daging kambing segar
- X56
 Daging babi segar
- X57
 Daging ayam ras segar
- X58
 Daging ayam kampung segar
- X59
 Daging bebek/itik segar
- X60
 Daging unggas segar lainnya
- X61
 Daging segar lainnya
- X62
 Dendeng
- X63
 Abon: sapi, ayam, rusa, dsb
- X64
 Daging dalam kaleng: kornet, dsb
- X65
 Sosis, nuget, daging asap, bakso diawetkan
- X66
 Daging diawetkan lainnya
- X67
 Hati
- X68
 Jeroan: usus, paru, limpa, babat, ampela, dsb
- X69
 Tetelan
- X70
 Tulang
- X71
 Kategori daging lainnya selain dari 53 s.d 70
- X72
 Telur ayam ras
- X73
 Telur ayam kampung
- X74
 Telur itik/manila
- X75
 Telur puyuh
- X76
 Telur lainnya
- X77
 Telur asin
- X78
 Susu murni
- X79
 Susu cair pabrik
- X80
 Susu kental manis
- X81
 Susu bubuk
- X82
 Susu bubuk bayi
- X83
 Keju
- X84
 Hasil lain dari susu
- X85
 Bayam
- X86
 Kangkung
- X87
 Kol/kubis
- X88
 Sawi putih/ petsai
- X89
 Sawi hijau
- X90
 Buncis
- X91
 Kacang panjang
- X92
 Tomat sayur
- X93
 Wortel
- X94
 Mentimun
- X95
 Daun ketela pohon/ daun singkong
- X96
 Terung
- X97
 Tauge
- X98
 Labu
- X99
 Jagung muda
- X100
 Bahan sayur sop/ cap cay
- X101
 Bahan sayur asem/ lodeh
- X102
 Nangka muda
- X103
 Pepaya muda
- X104
 Jamur
- X105
 Petai
- X106
 Jengkol
- X107
 Bawang merah
- X108
 Bawang putih
- X109
 Cabe merah
- X110
 Cabe hijau
- X111
 Cabe rawit
- X112
 Sayur dalam kaleng
- X113
 Sayur-sayuran lainnya
- X114
 Kacang tanah tanpa kulit
- X115
 Kacang tanah dengan kulit
- X116
 Kacang kedelai
- X117
 Kacang hijau
- X118
 Kacang mede
- X119
 Kacang lainnya
- X120
 Tahu
- X121
 Tempe
- X122
 Tauco
- X123
 Oncom
- X124
 Hasil lain dari kacang-kacangan
- X125
 Jeruk
- X126
 Mangga
- X127
 Apel
- X128
 Alpokat
- X129
 Rambutan
- X130
 Duku
- X131
 Durian
- X132
 Salak
- X133
 Nanas
- X134
 Pisang ambon
- X135
 Pisang lainnya
- X136
 Pepaya
- X137
 Jambu
- X138
 Sawo
- X139
 Belimbing
- X140
 Kedondong
- X141
 Semangka
- X142
 Melon
- X143
 Nangka
- X144
 Tomat buah
- X145
 Buah dalam kaleng
- X146
 Buah-buahan lainnya
- X147
 Minyak kelapa
- X148
 Minyak jagung
- X149
 Minyak goreng
- X150
 Kelapa
- X151
 Margin
- X152
 Minyak dan kelapa lainnya
- X153
 Gula pasir
- X154
 Gula merah/ gula cair
- X155
 Teh bubuk
- X156
 Teh celup: sachet
- X157
 Kopi: bubuk, biji
- X158
 Kopi instan: sachet
- X159
 Coklat instan
- X160
 Coklat bubuk
- X161
 Sirup
- X162
 Bahan minuman lainnya
- X163
 Garam
- X164
 Kemiri
- X165
 Ketumbar/ jinten
- X166
 Merica/ lada
- X167
 Asam
- X168
 Terasi/ petis
- X169
 Kecap
- X170
 Penyedap masakan/ vetsin
- X171
 Sambal jadi
- X172
 Saos tomat
- X173
 Bumbu masak jadi/ kemasan
- X174
 Bumbu dapur lainnya: pala, jahe, kunyit, dsb
- X175
 Mie instan
- X176
 Mie basah
- X177
 Bihun
- X178
 Makaroni/ mie kering
- X179
 Kerupuk
- X180
 Emping
- X181
 Bahan agar-agar
- X182
 Bubur bayi kemasan
- X183
 Konsumsi lainnya selain nomor 175 s.d 182
- X184
 Roti tawar
- X185
 Roti manis/ lainnya
- X186
 Kue kering/ biskuit
- X187
 Kue basah
- X188
 Makanan gorengan
- X189
 Bubur kacang hijau
- X190
 Gado-gado/ ketoprak/ pecel
- X191
 Nasi campur/ rames
- X192
 Nasi goreng
- X193
 Nasi putih
- X194
 Lontong/ ketupat sayur
- X195
 Soto/ gulai/ sop/ rawon/ cincang
- X196
 Sayur matang
- X197
 Sate/ tongseng
- X198
 Mie bakso/ rebus/ goreng
- X199
 Mie instan makanan jadi
- X200
 Makanan ringan anak-anak
- X201
 Ikan matang
- X202
 Ayam/ daging matang
- X203
 Daging olahan matang
- X204
 Bubur ayam
- X205
 Siomay/ batagor
- X206
 Makanan jadi lainnya
- X207
 Air kemasan
- X208
 Air kemasan galon
- X209
 Air teh kemasan
- X210
 Saribuah kemasan
- X211
 Minuman ringan C02: soda
- X212
 Minuman kesahatan/ energi
- X213
 Minuman jadi: kopi, susu, teh, susu coklat, dsb
- X214
 Es krim
- X215
 Es lainnya
- X216
 Bir
- X217
 Minuman beralkohol lainnya
Desirable dietary pattern calculation
Description
This function calculates the desirable dietary pattern (DDP).
Usage
skorpph(data, wilayah = "Indonesia", baseline = 2000)
Arguments
data | 
 A data set of (n x 218) (see Details).  | 
wilayah | 
 An origin of the responden residence. (see Details).  | 
baseline | 
 A baseline value of personal calory required.  | 
Details
The data set is an n x 218 data frame. The first column is
the name of the respondent. wilayah argument has "Indonesia" as the 
default, meaning that the DPP are calculated based on the national (Indonesia)
baseline. The other possible inputs for wilayah are "Aceh", "Sumut",
"Sumbar", "Riau", "KepRiau", "Jambi", "Sumsel", "Babel", "Bengkulu",
"Lampung", "Jakarta", "Jabar", "Banten", "Jateng", "DIY", "Jatim", "Bali",
"NTB", "NTT", "Kalbar", "Kalteng", "Kalsel", "Kaltim", "Kalut", "Sulut",
"Sulteng", "Sultra", "Sulsel", "Gorontalo", "Sulbar", "Maluku", "Malut",
"Papua", "Papbar". For baseline argument, it is 2000 as the default 
value because the minimal calory required in Indonesia is 2000 calory.
Value
Function returns a vector with n length indicates the index/ indices of the DDP per peson.
Author(s)
Weksi Budiaji 
 Contact: budiaji@untirta.ac.id
References
BKP, Kementan. 2017. Aplikasi Harmonisasi Analisis PPH Data Susenas 2017. Badan Ketahanan Pangan Kementrian Pertanian.
Examples
#data simulation of 10 person
set.seed(2020)
n <- 10
matsim <- matrix(0, n, 218)
datsim <- as.data.frame(matsim)
datsim$V1 <- LETTERS[1:n]
#calory for boiled rice
datsim$V2 <- rnorm(n, 200, 50)
#calory for boiled egg
datsim$V73 <- rnorm(n, 60, 5)
#calory for fresh milk
datsim$V79 <- rnorm(n, 100, 10)
#calory for tomato
datsim$V93 <- rnorm(n, 19, 2)
#caloty for pineapple
datsim$V134 <- rnorm(n, 20, 2)
skorpph(datsim)
Validity and Reliability check.
Description
This function calculates the item-rest correlation.
Usage
valid(data, alpha = 0.05, total = NULL)
Arguments
data | 
 A data set/ matrix (see Details).  | 
alpha | 
 An alpha value (see Details).  | 
total | 
 A single numeric value of the index column (see Details).  | 
Details
The data set is a data frame/ matrix n x k. The row is
the name of the respondent as many as n, while the column is 
the variables (k). The alpha value is set between 0.0001 and 
0.20, the default is 0.05. If the total input is NULL,
it means that the total score will be calculated first, 
the column index of the total score can be also stated otherwise.
The index of the column is a numeric value with a length of one.
It has to be between 1 and (k).
Value
Function returns a data frame with k row and four columns. the columns indicate the item-rest correlation, correlation threshold, p value, and validity and reliability conclusion.
Author(s)
Weksi Budiaji 
 Contact: budiaji@untirta.ac.id
Examples
#data simulation of 10 person 5 variables
set.seed(1)
dat <- matrix(sample(1:7,10*5, replace = TRUE), 10,5)
valid(dat)