An efficient cross-validated approach for covariance matrix
    estimation, particularly useful in high-dimensional settings. This
    method relies upon the theory of high-dimensional loss-based covariance
    matrix estimator selection developed by Boileau et al. (2022)
    <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator
    from among a prespecified set of candidates.
| Version: | 
1.2.2 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
matrixStats, Matrix, stats, methods, origami, coop, Rdpack, rlang, dplyr, stringr, purrr, tibble, assertthat, RSpectra, ggplot2, ggpubr, RColorBrewer, RMTstat | 
| Suggests: | 
future, future.apply, MASS, testthat, knitr, rmarkdown, covr, spelling | 
| Published: | 
2024-02-17 | 
| DOI: | 
10.32614/CRAN.package.cvCovEst | 
| Author: | 
Philippe Boileau  
    [aut, cre, cph],
  Nima Hejazi   [aut],
  Brian Collica  
    [aut],
  Jamarcus Liu [ctb],
  Mark van der Laan  
    [ctb, ths],
  Sandrine Dudoit  
    [ctb, ths] | 
| Maintainer: | 
Philippe Boileau  <philippe_boileau at berkeley.edu> | 
| BugReports: | 
https://github.com/PhilBoileau/cvCovEst/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/PhilBoileau/cvCovEst | 
| NeedsCompilation: | 
no | 
| Language: | 
en-US | 
| Citation: | 
cvCovEst citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
cvCovEst results |