
Package ‘clinCompare’
February 18, 2026

Type Package

Title Dataset Comparison with 'CDISC' Validation for Clinical Trial
Data

Version 1.0.0

Description A general-purpose toolkit for comparing any two data frames
with optional 'CDISC' (Clinical Data Interchange Standards Consortium)
validation for clinical trial data. Core comparison functions work on
arbitrary datasets: variable-level and observation-level comparison, data
type checking, metadata attribute analysis (types, labels, lengths,
formats), missing value handling, key-based row matching, tolerance-based
numeric comparisons, and group-wise comparisons. Optional z-score
outlier detection is available when enabled. When working with clinical
data, the package additionally
validates 'SDTM' (Study Data Tabulation Model) and 'ADaM' (Analysis Data
Model) datasets against CDISC standards (SDTM IG 3.3/3.4, ADaM IG
1.1/1.2/1.3), automatically detecting domains and flagging non-conformant
variables. Generates unified comparison reports in text or HTML format
with interactive dashboards. For CDISC standards, see
<https://www.cdisc.org/standards>.

License MIT + file LICENSE

URL https://github.com/siddharthlokineni/clinCompare

BugReports https://github.com/siddharthlokineni/clinCompare/issues

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports dplyr (>= 1.0.0), haven (>= 2.0.0), rlang (>= 0.4.0), tidyr
(>= 1.0.0), methods, stats, tools, utils

Suggests ggplot2 (>= 3.0.0), openxlsx (>= 4.0.0), testthat (>= 3.0.0),
knitr, rmarkdown

VignetteBuilder knitr

Config/testthat/edition 3

1

https://www.cdisc.org/standards
https://github.com/siddharthlokineni/clinCompare
https://github.com/siddharthlokineni/clinCompare/issues

2 clinCompare-package

NeedsCompilation no

Author Siddharth Lokineni [aut, cre]

Maintainer Siddharth Lokineni <sidhu871@gmail.com>

Repository CRAN

Date/Publication 2026-02-18 19:00:07 UTC

Contents

clinCompare-package . 2
cdisc_compare . 3
clean_dataset . 6
compare_by_group . 7
compare_datasets . 7
compare_observations . 9
compare_submission . 10
compare_variables . 11
detect_cdisc_domain . 11
export_report . 12
generate_cdisc_report . 14
generate_detailed_report . 15
generate_summary_report . 16
get_all_differences . 17
prepare_datasets . 18
print.cdisc_comparison . 19
print.dataset_comparison . 19
print_cdisc_validation . 20
summary.cdisc_comparison . 21
validate_cdisc . 21

Index 23

clinCompare-package clinCompare: Dataset Comparison with CDISC Validation

Description

A comprehensive toolkit for comparing clinical trial datasets. Provides functions for dataset com-
parison including variable-level and observation-level differences, data type checking, and missing
value analysis. Integrates CDISC validation for SDTM and ADaM datasets.

cdisc_compare 3

Main Functions

compare_datasets High-level comparison of two datasets
compare_variables Compare variable names and types
compare_observations Row-wise value comparison
cdisc_compare Compare datasets with CDISC validation
validate_cdisc Validate a dataset against CDISC standards
detect_cdisc_domain Auto-detect CDISC domain or ADaM dataset

CDISC Standards Supported

SDTM DM, AE, LB, VS, EX, CM, MH, DS, SV, TA, TE domains
ADaM ADSL, ADAE, ADLB, ADTTE, ADEFF datasets

Author(s)

Maintainer: Siddharth Lokineni <sidhu871@gmail.com>

See Also

Useful links:

• https://github.com/siddharthlokineni/clinCompare

• Report bugs at https://github.com/siddharthlokineni/clinCompare/issues

cdisc_compare Compare Two Datasets with CDISC Validation

Description

Flagship function that compares two datasets AND runs CDISC validation on both. Combines
dataset comparison with CDISC conformance analysis to provide comprehensive insights into both
differences and regulatory compliance.

Usage

cdisc_compare(
df1,
df2,
domain = NULL,
standard = NULL,
id_vars = NULL,
vars = NULL,
ts_data = NULL,
detect_outliers = FALSE,
tolerance = 0,
where = NULL

)

https://github.com/siddharthlokineni/clinCompare
https://github.com/siddharthlokineni/clinCompare/issues

4 cdisc_compare

Arguments

df1 First data frame to compare, or a file path (character string ending in .xpt,
.sas7bdat, .csv, or .rds). When a file path is provided, the dataset is loaded
automatically. Domain is auto-detected from filename if not specified (e.g.,
"dm.xpt" sets domain to "DM").

df2 Second data frame to compare, or a file path.

domain Optional character string specifying the CDISC domain code or dataset name
(e.g., "DM", "AE", "ADSL"). Strongly recommended – auto-detection can be
ambiguous for datasets with common columns. If NULL, auto-detected from
df1.

standard Optional character string: "SDTM" or "ADaM". If NULL, auto-detected from
df1.

id_vars Optional character vector of ID variable names (e.g., c("USUBJID", "VISITNUM"))
used to match rows between datasets. When provided, rows are joined by
these keys instead of matched by position. Unmatched rows are reported sep-
arately. When NULL (default) and domain is known, CDISC-standard keys are
auto-detected (e.g., STUDYID + USUBJID + \<DOMAIN\>SEQ for SDTM).
Only variables present in both datasets are used. To add extra keys on top of
the defaults, prefix with "+": e.g., id_vars = c("+", "AETOXGR") appends AE-
TOXGR to the standard keys. To override completely, pass without "+".

vars Optional character vector of variable names to compare. Only these columns
are included in value comparison. Structural and CDISC validation still covers
all columns.

ts_data Optional data frame of the TS (Trial Summary) domain. When provided, CDISC
standard versions (e.g., SDTM IG 3.4, ADaM IG 1.3) are extracted and included
in the results and reports. If NULL (default), version information is omitted.

detect_outliers

Logical. When TRUE, runs z-score outlier detection on numeric columns and
includes results in the output. Defaults to FALSE.

tolerance Numeric tolerance value for floating-point comparisons (default 0). When tol-
erance > 0, numeric values are considered equal if their absolute difference is
within the tolerance threshold. Character and factor columns always use exact
matching regardless of tolerance.

where Optional filter expression as a string (e.g., "AESEV == ’SEVERE’"). Applied
to both datasets before comparison. Equivalent to a WHERE clause.

Value

A list containing:

domain Character: detected or supplied CDISC domain

standard Character: detected or supplied CDISC standard (SDTM/ADaM)

nrow_df1 Integer: number of rows in df1

ncol_df1 Integer: number of columns in df1

nrow_df2 Integer: number of rows in df2

cdisc_compare 5

ncol_df2 Integer: number of columns in df2

id_vars Character vector of ID variables used for matching (NULL if positional match-
ing was used)

comparison Result of compare_datasets() function
variable_comparison

Result of compare_variables() function
metadata_comparison

List of metadata differences: type_mismatches, label_mismatches, length_mismatches,
format_mismatches, column ordering

observation_comparison

Result of compare_observations() if dimensions match, otherwise NULL
with explanatory message

unified_comparison

Data frame combining attribute and value differences per variable. Columns:
variable, attribute, base_value, compare_value, and optionally id columns and
row when value differences exist

unmatched_rows List with df1_only and df2_only data frames of rows that could not be matched
by id_vars (NULL when id_vars is not used)

cdisc_validation_df1

CDISC validation results for df1
cdisc_validation_df2

CDISC validation results for df2
cdisc_conformance_comparison

Data frame showing which CDISC issues are unique to df1, unique to df2, or
common to both

outlier_notes Data frame of z-score outliers (|z| > 3) found in numeric columns of either
dataset (NULL when detect_outliers is FALSE)

cdisc_version List of CDISC version information extracted from TS domain (NULL when
ts_data is not provided). See extract_cdisc_version()

Examples

Create sample SDTM DM domains
dm1 <- data.frame(

STUDYID = "STUDY001",
USUBJID = c("SUBJ001", "SUBJ002"),
DMSEQ = c(1, 1),
RACE = c("WHITE", "BLACK OR AFRICAN AMERICAN"),
stringsAsFactors = FALSE

)

dm2 <- data.frame(
STUDYID = "STUDY001",
USUBJID = c("SUBJ001", "SUBJ003"),
DMSEQ = c(1, 1),
RACE = c("WHITE", "ASIAN"),
ETHNIC = c("NOT HISPANIC", "NOT HISPANIC"),

6 clean_dataset

stringsAsFactors = FALSE
)

Positional matching (default)
result <- cdisc_compare(dm1, dm2, domain = "DM", standard = "SDTM")

Key-based matching by ID variables
result <- cdisc_compare(dm1, dm2, domain = "DM", id_vars = c("USUBJID"))
names(result)

clean_dataset Clean Dataset

Description

Removes duplicate rows, standardizes column names and text values to uppercase or lowercase, and
performs basic data cleaning on a data frame.

Usage

clean_dataset(
df,
variables = NULL,
remove_duplicates = TRUE,
convert_to_case = NULL

)

Arguments

df A data frame to be cleaned.
variables Optional; a vector of variable names to specifically clean. If NULL, applies

cleaning to all variables.
remove_duplicates

Logical; whether to remove duplicate rows.
convert_to_case

Optional; convert character variables to "lower" or "upper" case.

Value

A cleaned data frame.

Examples

df <- data.frame(name = c("Alice", "Bob", "Alice"),
score = c(90, 85, 90),
stringsAsFactors = FALSE)

clean_dataset(df, remove_duplicates = TRUE, convert_to_case = "upper")

compare_by_group 7

compare_by_group Compare Two Datasets by Group

Description

Compares two datasets within subgroups defined by grouping variables. Performs separate com-
parisons for each group and returns results organized by group.

Usage

compare_by_group(df1, df2, group_vars)

Arguments

df1 A data frame representing the first dataset.

df2 A data frame representing the second dataset.

group_vars A character vector of column names to group by.

Value

A list of comparison results for each group.

Examples

df1 <- data.frame(region = c("A", "A", "B"), value = c(10, 20, 30),
stringsAsFactors = FALSE)

df2 <- data.frame(region = c("A", "A", "B"), value = c(10, 25, 30),
stringsAsFactors = FALSE)

compare_by_group(df1, df2, group_vars = "region")

compare_datasets Compare Two Datasets

Description

Compares two datasets at three levels in a single call:

1. Dataset level – dimensions, column overlap, missing-value totals.

2. Variable level – column name discrepancies and data-type mismatches (delegates to compare_variables()).

3. Observation level – row-by-row value differences on common columns. Uses positional
matching by default, or key-based matching when id_vars is provided.

The return value is a list with class "dataset_comparison", which has a tidy print() method.
The same object is accepted by generate_summary_report(), generate_detailed_report(),
and compare_by_group().

8 compare_datasets

Usage

compare_datasets(df1, df2, tolerance = 0, vars = NULL, id_vars = NULL)

Arguments

df1 A data frame (the base dataset).

df2 A data frame (the compare dataset).

tolerance Numeric tolerance value for floating-point comparisons (default 0). When tol-
erance > 0, numeric values are considered equal if their absolute difference is
within the tolerance threshold. Character and factor columns always use exact
matching regardless of tolerance.

vars Optional character vector of variable names to compare. When provided, only
these columns are included in the observation-level comparison. Structural com-
parison (extra columns, type mismatches) still covers all columns. Default is
NULL (compare all common columns).

id_vars Optional character vector of column names to use as matching keys. When
provided, rows are matched by these key columns instead of by position. This
allows comparison of datasets with different row counts or different row orders.
Rows that exist in only one dataset are reported in unmatched_rows. Default is
NULL (positional matching).

Value

A dataset_comparison list containing:

nrow_df1, ncol_df1
Dimensions of df1.

nrow_df2, ncol_df2
Dimensions of df2.

common_columns Character vector of columns present in both.

extra_in_df1 Columns only in df1.

extra_in_df2 Columns only in df2.
type_mismatches

Data frame of columns whose class differs (columns: column, type_df1, type_df2),
or NULL if none.

missing_values Data frame summarising NA counts per column per dataset (columns: column,
na_df1, na_df2), or NULL if no missingness.

variable_comparison

Output of compare_variables().
observation_comparison

Output of compare_observations(), or a list with a message element when
row counts differ.

id_vars Character vector of key columns used for matching, or NULL if positional match-
ing was used.

unmatched_rows List with df1_only and df2_only data frames of rows with no match in the
other dataset (key-based matching only), or NULL.

compare_observations 9

Examples

Positional matching (default)
df1 <- data.frame(id = 1:3, val = c(10, 20, 30))
df2 <- data.frame(id = 1:3, val = c(10, 25, 30))
result <- compare_datasets(df1, df2)
result

Key-based matching (for different row counts or row orders)
df1 <- data.frame(id = c(1, 2, 3), val = c(10, 20, 30))
df2 <- data.frame(id = c(2, 3, 4), val = c(20, 35, 40))
result <- compare_datasets(df1, df2, id_vars = "id")
result
result$unmatched_rows

compare_observations Compare Observations of Two Datasets

Description

Performs row-by-row comparison of two datasets on common columns, identifying specific value
differences at the cell level. Returns discrepancy counts and details showing which rows differ and
how their values diverge.

Usage

compare_observations(df1, df2, tolerance = 0)

Arguments

df1 A data frame representing the first dataset.

df2 A data frame representing the second dataset.

tolerance Numeric tolerance value for floating-point comparisons (default 0). When tol-
erance > 0, numeric values are considered equal if their absolute difference is
within the tolerance threshold. Character and factor columns always use exact
matching regardless of tolerance.

Value

A list containing discrepancy counts and details of row differences.

Examples

df1 <- data.frame(id = 1:3, value = c(1.0, 2.0, 3.0))
df2 <- data.frame(id = 1:3, value = c(1.0, 2.5, 3.0))
compare_observations(df1, df2)
compare_observations(df1, df2, tolerance = 0.00001)

10 compare_submission

compare_submission Batch Compare CDISC Datasets Across Submission Directories

Description

Scans two directories for matching dataset files, runs cdisc_compare() on each pair, and optionally
generates a consolidated Excel report.

Usage

compare_submission(
base_dir,
compare_dir,
format = NULL,
id_vars = NULL,
tolerance = 0,
output_file = NULL

)

Arguments

base_dir Path to directory containing base/reference files.

compare_dir Path to directory containing comparison files.

format File format to match: "xpt", "sas7bdat", "csv", or "rds". When NULL (default),
auto-detected from the most common file type in base_dir.

id_vars Optional character vector of ID variables (passed to each comparison). When
NULL, CDISC-standard keys are auto-detected per domain.

tolerance Numeric tolerance for floating-point comparisons (default 0).

output_file Optional path to Excel (.xlsx) file for consolidated report.

Value

Named list of cdisc_compare() results, one per matched domain.

Examples

Not run:
Auto-detects format from directory contents
results <- compare_submission("v1/", "v2/",

output_file = "submission_diff.xlsx")

Explicit format
results <- compare_submission("v1/", "v2/", format = "csv")

End(Not run)

compare_variables 11

compare_variables Compare Variables of Two Datasets

Description

Compares the structural attributes of two datasets including column names, data types, and variable
ordering. Identifies common columns and reports columns that exist in only one dataset.

Usage

compare_variables(df1, df2)

Arguments

df1 A data frame representing the first dataset.

df2 A data frame representing the second dataset.

Value

A list containing variable comparison details and discrepancy count.

Examples

df1 <- data.frame(id = 1:3, name = c("A", "B", "C"))
df2 <- data.frame(id = 1:3, name = c("A", "B", "C"), score = c(90, 80, 70))
compare_variables(df1, df2)

detect_cdisc_domain Detect CDISC Domain Type

Description

Detects whether a data frame looks like an SDTM domain or ADaM dataset by comparing column
names against known CDISC standards. Calculates a confidence score based on the percentage of
expected variables present.

Auto-detection is a convenience for exploratory use. For anything important – validation reports,
regulatory submissions, scripted pipelines – always pass domain and standard explicitly. Datasets
with common columns (STUDYID, USUBJID, etc.) can match multiple domains, and a warning is
issued when the top two candidates score within 10 percentage points of each other.

Usage

detect_cdisc_domain(df, name_hint = NULL)

12 export_report

Arguments

df A data frame to analyze.

name_hint Optional character string with the dataset name (e.g., "DM", "ADLB", or a file-
name like "adlb.xpt"). When provided and it matches a known CDISC domain,
that candidate receives a strong confidence boost. This makes detection much
more accurate when the filename is available.

Value

A list containing:

standard Character: "SDTM", "ADaM", or "Unknown"

domain Character: domain code (e.g., "DM", "AE") or dataset name (e.g., "ADSL"), or
NA

confidence Numeric between 0 and 1 indicating match quality

message Character: human-readable explanation

Examples

Create a sample SDTM DM domain
dm <- data.frame(

STUDYID = "STUDY001",
USUBJID = "SUBJ001",
SUBJID = "001",
DMSEQ = 1,
RACE = "WHITE",
ETHNIC = "NOT HISPANIC OR LATINO",
ARMCD = "ARM01",
ARM = "Treatment A",
stringsAsFactors = FALSE

)

result <- detect_cdisc_domain(dm)
print(result)

export_report Export Comparison Report to File

Description

Exports a dataset or CDISC comparison result to a file in multiple formats. Automatically detects
format from file extension (.html, .txt, .xlsx).

Usage

export_report(result, file, format = NULL)

export_report 13

Arguments

result A list from compare_datasets() or cdisc_compare().

file Character string specifying the output file path. File extension determines for-
mat: .html, .txt, or .xlsx.

format Character string specifying output format: "html", "text", or "excel". If NULL
(default), format is auto-detected from file extension.

Details

Supported formats:

• HTML (.html): Self-contained HTML report with styling and interactive charts.

• Text (.txt): Plain text report suitable for console review.

• Excel (.xlsx): Multi-sheet workbook with tabbed data:

– "Summary": Dataset dimensions, domain, standard, matching type, tolerance
– "Variable Diffs": Metadata attribute differences
– "Value Diffs": Unified diff data frame from get_all_differences()

– "CDISC Validation": Combined validation results (for CDISC comparisons only)

The result object can be either a dataset_comparison (from compare_datasets()) or cdisc_comparison
(from cdisc_compare()). All features are supported for both.

Value

Invisibly returns the input result (useful for piping).

Examples

Create sample datasets
df1 <- data.frame(

ID = c(1, 2, 3),
NAME = c("Alice", "Bob", "Charlie"),
AGE = c(25, 30, 35)

)

df2 <- data.frame(
ID = c(1, 2, 3),
NAME = c("Alice", "Bob", "Charles"),
AGE = c(25, 30, 36)

)

Compare datasets
result <- compare_datasets(df1, df2)

Export to different formats (write to tempdir)
export_report(result, file.path(tempdir(), "report.html"))
export_report(result, file.path(tempdir(), "report.txt"))

Explicit format specification

14 generate_cdisc_report

export_report(result, file.path(tempdir(), "report.xlsx"), format = "excel")

generate_cdisc_report Generate CDISC Validation Report

Description

Generates a formatted report from the results of cdisc_compare(). Supports both text-based con-
sole output and HTML reports with professional styling and color-coding.

Usage

generate_cdisc_report(cdisc_results, output_format = "text", file_name = NULL)

Arguments

cdisc_results A list output from cdisc_compare().

output_format Character string: either "text" (default) for console output or "html" for HTML
report.

file_name Optional character string specifying the output file path. For text format, the
report is appended to this file. For HTML format, must be explicitly provided
by the user. If NULL, output is not written to file.

Details

The report includes:

• Dataset Comparison Summary

• CDISC Compliance for each dataset

• CDISC Conformance Comparison

For text output, formatting uses console-friendly layout. For HTML output, a self-contained report
is generated with color-coded severity levels: red for ERROR, orange for WARNING, blue for
INFO.

Value

Invisibly returns the input cdisc_results (useful for piping).

generate_detailed_report 15

Examples

Not run:
Create sample datasets
dm1 <- data.frame(

STUDYID = "STUDY001",
USUBJID = c("SUBJ001", "SUBJ002"),
DMSEQ = c(1, 1),
RACE = c("WHITE", "BLACK OR AFRICAN AMERICAN")

)

dm2 <- data.frame(
STUDYID = "STUDY001",
USUBJID = c("SUBJ001", "SUBJ003"),
DMSEQ = c(1, 1),
RACE = c("WHITE", "ASIAN")

)

result <- cdisc_compare(dm1, dm2, domain = "DM")

Generate text report to console
generate_cdisc_report(result, output_format = "text")

Generate HTML report to file
out <- file.path(tempdir(), "report.html")
generate_cdisc_report(result, output_format = "html", file_name = out)

End(Not run)

generate_detailed_report

Generate a Detailed Report of Dataset Comparison

Description

Creates a detailed report outlining all the differences found in the comparison, including variable
differences, observation differences, and group-based discrepancies.

Usage

generate_detailed_report(
comparison_results,
output_format = "text",
file_name = NULL

)

Arguments

comparison_results

A list containing the results of dataset comparisons.

16 generate_summary_report

output_format Format of the output (’text’ or ’html’).

file_name Name of the file to save the report to (applicable for ’html’ format).

Value

The detailed report. For ’text’, prints to console. For ’html’, writes to file.

Examples

Not run:
generate_detailed_report(comparison_results, output_format = "text")

End(Not run)

generate_summary_report

Generate a Summary Report of Dataset Comparison

Description

Provides a summary of the comparison results, highlighting key points such as the number of dif-
fering observations and variables.

Usage

generate_summary_report(
comparison_results,
detail_level = "high",
output_format = "text",
file_name = NULL

)

Arguments

comparison_results

A list containing the results of dataset comparisons.

detail_level The level of detail (’high’, ’medium’, ’low’) for the summary.

output_format Format of the output (’text’ or ’html’).

file_name Name of the file to save the report to (applicable for ’html’ format).

Value

The summary report. For ’text’, prints to console. For ’html’, writes to file.

get_all_differences 17

Examples

Not run:
generate_summary_report(comparison_results, detail_level = "high", output_format = "text")

End(Not run)

get_all_differences Extract All Differences as a Unified Data Frame

Description

Converts per-variable observation differences into a single long-format data frame suitable for fil-
tering with dplyr, writing to CSV, or programmatic analysis. This is the R equivalent of SAS PROC
COMPARE’s OUT= dataset with _TYPE_ and _DIF_ variables.

Accepts output from compare_datasets(), cdisc_compare(), or any list containing an observation_comparison
element with the standard discrepancies / details / id_details structure.

Usage

get_all_differences(comparison_results)

Arguments

comparison_results

A dataset_comparison or cdisc_comparison object, or any list with an observation_comparison
element.

Value

A data frame with one row per differing cell. Columns:

Variable Character: column name where the difference was found.

Row Integer: row index in df1 (positional matching).

Base The value in df1 (base dataset).

Compare The value in df2 (compare dataset).

Diff Numeric: Base - Compare (NA for character columns).

PctDiff Numeric: absolute percentage difference relative to Base (NA when Base is 0 or column is
character).

When key-based matching was used (id_vars), the ID columns are prepended to the left of the data
frame.

Returns an empty data frame with the expected columns when no differences exist or observation
comparison was skipped.

18 prepare_datasets

Examples

df1 <- data.frame(id = 1:3, value = c(10, 20, 30), name = c("A", "B", "C"))
df2 <- data.frame(id = 1:3, value = c(10, 25, 30), name = c("A", "B", "D"))
result <- compare_datasets(df1, df2)
diffs <- get_all_differences(result)
head(diffs)

prepare_datasets Prepare Datasets for Comparison

Description

Prepares two datasets for comparison by optionally sorting by specified columns and filtering rows
based on a condition.

Usage

prepare_datasets(df1, df2, sort_columns = NULL, filter_criteria = NULL)

Arguments

df1 First dataset to be prepared.

df2 Second dataset to be prepared.

sort_columns Columns to sort the datasets by.

filter_criteria

Criteria for filtering the datasets.

Value

A list containing two prepared datasets.

Examples

df1 <- data.frame(id = c(3, 1, 2), score = c(70, 90, 80))
df2 <- data.frame(id = c(2, 3, 1), score = c(80, 75, 90))
prepare_datasets(df1, df2, sort_columns = "id", filter_criteria = "score > 75")

print.cdisc_comparison 19

print.cdisc_comparison

Print CDISC Comparison Results

Description

Prints a concise summary of CDISC comparison results. Shows dataset dimensions, domain, num-
ber of differences, and a pass/fail verdict based on CDISC validation errors.

Usage

S3 method for class 'cdisc_comparison'
print(x, ...)

Arguments

x A cdisc_comparison object returned by cdisc_compare().

... Additional arguments (ignored).

Value

Invisibly returns x.

print.dataset_comparison

Print Dataset Comparison Results

Description

Print Dataset Comparison Results

Usage

S3 method for class 'dataset_comparison'
print(x, ...)

Arguments

x A dataset_comparison object from compare_datasets().

... Ignored.

Value

Invisibly returns x.

20 print_cdisc_validation

print_cdisc_validation

Print CDISC Validation Results

Description

Pretty-prints CDISC validation results to the console with a summary and grouped output by cate-
gory. Displays counts of errors, warnings, and info messages.

Usage

print_cdisc_validation(validation_result)

Arguments

validation_result

A data frame from validate_cdisc().

Details

Output includes:

• Summary counts of errors, warnings, and info messages

• Issues grouped by category

• Each issue displayed with its variable name and message

Value

Invisibly returns the input (useful for piping).

Examples

Not run:
Validate a dataset
dm <- data.frame(

STUDYID = "STUDY001",
USUBJID = c("SUBJ001", "SUBJ002"),
DMSEQ = c(1, 1),
RACE = c("WHITE", "BLACK OR AFRICAN AMERICAN")

)

validation_result <- validate_cdisc(dm, domain = "DM", standard = "SDTM")
print_cdisc_validation(validation_result)

End(Not run)

summary.cdisc_comparison 21

summary.cdisc_comparison

Summarize CDISC Comparison Results

Description

Returns a concise one-row data frame summarizing the comparison: domain, standard, row/col
counts, number of differences, and CDISC error/warning counts.

Usage

S3 method for class 'cdisc_comparison'
summary(object, ...)

Arguments

object A cdisc_comparison object returned by cdisc_compare().

... Additional arguments (ignored).

Value

A one-row data frame with summary metrics.

validate_cdisc Validate CDISC Compliance

Description

Main validation entry point that checks whether a data frame conforms to CDISC standards. If do-
main and standard are not provided, they are automatically detected via detect_cdisc_domain().
Dispatches to validate_sdtm() or validate_adam() as appropriate.

Usage

validate_cdisc(df, domain = NULL, standard = NULL)

Arguments

df A data frame to validate.

domain Optional character string specifying the CDISC domain code (e.g., "DM", "AE")
or ADaM dataset name (e.g., "ADSL", "ADAE"). If NULL, auto-detected.

standard Optional character string: "SDTM" or "ADaM". If NULL, auto-detected.

22 validate_cdisc

Value

A data frame with columns:

category Character: type of validation issue ("Missing Required Variable", "Missing Ex-
pected Variable", "Type Mismatch", "Non-Standard Variable", "Variable Info")

variable Character: variable name

message Character: description of the issue

severity Character: "ERROR", "WARNING", or "INFO"

Examples

Auto-detect domain
dm <- data.frame(

STUDYID = "STUDY001",
USUBJID = "SUBJ001",
DMSEQ = 1,
RACE = "WHITE",
stringsAsFactors = FALSE

)
results <- validate_cdisc(dm)
print(results)

Validate with explicit domain specification
results <- validate_cdisc(dm, domain = "DM", standard = "SDTM")

Index

cdisc_compare, 3, 3
cdisc_compare(), 10, 13, 14, 17, 19, 21
clean_dataset, 6
clinCompare (clinCompare-package), 2
clinCompare-package, 2
compare_by_group, 7
compare_by_group(), 7
compare_datasets, 3, 7
compare_datasets(), 5, 13, 17, 19
compare_observations, 3, 9
compare_observations(), 5, 8
compare_submission, 10
compare_variables, 3, 11
compare_variables(), 5, 7, 8

detect_cdisc_domain, 3, 11
detect_cdisc_domain(), 21

export_report, 12
extract_cdisc_version(), 5

generate_cdisc_report, 14
generate_detailed_report, 15
generate_detailed_report(), 7
generate_summary_report, 16
generate_summary_report(), 7
get_all_differences, 17
get_all_differences(), 13

prepare_datasets, 18
print(), 7
print.cdisc_comparison, 19
print.dataset_comparison, 19
print_cdisc_validation, 20

summary.cdisc_comparison, 21

validate_adam(), 21
validate_cdisc, 3, 21
validate_cdisc(), 20
validate_sdtm(), 21

23

	clinCompare-package
	cdisc_compare
	clean_dataset
	compare_by_group
	compare_datasets
	compare_observations
	compare_submission
	compare_variables
	detect_cdisc_domain
	export_report
	generate_cdisc_report
	generate_detailed_report
	generate_summary_report
	get_all_differences
	prepare_datasets
	print.cdisc_comparison
	print.dataset_comparison
	print_cdisc_validation
	summary.cdisc_comparison
	validate_cdisc
	Index

