Package 'bootLRTpairwise'

July 10, 2025

Type Package

Title Bootstrap Hypothesis Tests for Treatment Effects in One-Way ANOVA with Unequal Variances

Version 0.2.0

Maintainer Sagar Salvi <sagar Salvi2713@gmail.com>

Description

Implements three test procedures using bootstrap resampling techniques for assessing treatment effects in one-way ANOVA models with unequal variances (heteroscedasticity). It includes a parametric bootstrap likelihood ratio test (PB_LRT()), a pairwise parametric bootstrap mean test (PPBMT()), and a Rademacher wild pairwise non-parametric bootstrap test (RW-PNPBT()). These methods provide robust alternatives to classical ANOVA and standard pairwise comparisons when the assumption of homogeneity of variances is violated.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Author Sagar Salvi [aut, cre], Diya Somichan [aut], Anjana Mondal [aut]

Repository CRAN

Date/Publication 2025-07-10 14:40:02 UTC

Contents

Index

PB_LRT	 	 				•	 								 	•		2
PPBMT	 	 					 								 			3
RWPNPBT	 	 					 								 			4
																		5

1

PB_LRT

Description

Performs a parametric bootstrap likelihood ratio test for comparing group means under heteroscedasticity (unequal variances). This test serves as a robust alternative to classical one-way ANOVA when the assumption of equal variances is violated.

Usage

```
PB_LRT(means, vars, ns, tol = 1e-05, H = 1000, alpha = 0.05)
```

Arguments

means	A numeric vector of group sample means.
vars	A numeric vector of group sample variances.
ns	A numeric vector of group sample sizes.
tol	Convergence tolerance for iterative re-estimation under the null hypothesis. De- fault is 1e-5.
Н	Number of bootstrap iterations. Default is 1000.
alpha	Significance level for the hypothesis test. Default is 0.05.

Value

A list of class "PB_LRT" containing:

test_statistic	Observed value of the likelihood ratio statistic.
critical_value	Bootstrap-based critical value under the null hypothesis.
decision	Conclusion of the hypothesis test.

Examples

```
# Example with 3 groups
set.seed(123)
means <- c(5.1, 6.3, 7.0)
vars <- c(1.2, 1.8, 2.5)
ns <- c(20, 25, 22)
result <- PB_LRT(means, vars, ns)
print(result)</pre>
```

PPBMT

Description

Performs a parametric bootstrap test to compare all pairwise group means under heteroscedasticity, assuming normality of the data.

Usage

PPBMT(means, vars, ns, B = 1000, alpha = 0.05)

Arguments

means	A numeric vector containing the sample means for each group.
vars	A numeric vector containing the sample variances for each group.
ns	An integer vector indicating the sample sizes of each group.
В	Number of bootstrap re-samples. Default is 1000.
alpha	Significance level for the hypothesis test. Default is 0.05.

Value

A list of class "PPBMT" containing:

test_statisticObserved value of the test statistic.critical_valueBootstrap-based critical value.decisionConclusion of the hypothesis test.

Examples

```
# Example with 3 groups
set.seed(123)
g1 <- rnorm(20, mean = 5, sd = 1.5)
g2 <- rnorm(25, mean = 6.5, sd = 2)
g3 <- rnorm(22, mean = 7.2, sd = 2.5)
means <- c(mean(g1), mean(g2), mean(g3))
vars <- c(var(g1), var(g2), var(g3))
ns <- c(length(g1), length(g2), length(g3))
result <- PPBMT(means, vars, ns, B = 1000, alpha = 0.05)
print(result)
```

RWPNPBT

Description

Performs a non-parametric bootstrap test using Rademacher wild bootstrap re-sampling. This test compares all pairwise group means using a standardized distance metric, making it robust to violations of normality and heteroscedasticity.

Usage

RWPNPBT(group_list, B = 1e+05, alpha = 0.05)

Arguments

group_list	A list where each element is a numeric vector of raw observations for a group.
В	Number of bootstrap re-samples. Default is 100000.
alpha	Significance level for the hypothesis test. Default is 0.05.

Details

The test statistic sums the absolute standardized differences between all pairs of group means. Rademacher weights are applied to centered observations for wild bootstrapping.

Value

A list of class "RWPNPBT" containing:

test_statistic	Observed value of the test statistic.
critical_value	Bootstrap-based critical value at the given alpha level.
decision	Conclusion of the hypothesis test based on the critical value.

Examples

```
set.seed(123)
group1 <- rexp(18, rate = 1/10)  # Exponential distribution
group2 <- runif(22, min = 10, max = 18)  # Uniform distribution
group3 <- rchisq(20, df = 5) + 7  # Right-skewed Chi-square + shift
RWPNPBT(list(group1, group2, group3), B = 1000)</pre>
```

Index

PB_LRT, 2 PPBMT, 3

RWPNPBT, 4