
Package ‘bitfield’
May 1, 2025

Type Package

Title Handle Bitfields to Record Meta Data

Version 0.6.1

Description Record algorithmic and analytic meta data along a workflow to store that in a bit-
field, which can be published alongside any (modelled) data products.

URL https://github.com/bitfloat/bitfield,

https://bitfloat.github.io/bitfield/

BugReports https://github.com/bitfloat/bitfield/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports base64enc, checkmate, codetools, crayon, dplyr, gh, gitcreds,
glue, httr, methods, purrr, rlang, stringr, terra, tibble,
tidyr, tidyselect, yaml

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Depends R (>= 4.1.0)

Config/testthat/edition 3

NeedsCompilation no

Author Steffen Ehrmann [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2958-0796>)

Maintainer Steffen Ehrmann <steffen.ehrmann@posteo.de>

Repository CRAN

Date/Publication 2025-05-01 10:30:08 UTC

1

https://github.com/bitfloat/bitfield
https://bitfloat.github.io/bitfield/
https://github.com/bitfloat/bitfield/issues
https://orcid.org/0000-0002-2958-0796

2 bitfield-package

Contents

bitfield-package . 2
.getDependencies . 3
.makeEncoding . 3
.rast . 4
.toBin . 5
.toDec . 6
.updateMD5 . 6
.validateProtocol . 7
.validateToken . 7
bf_decode . 8
bf_encode . 9
bf_map . 9
bf_pcl . 12
bf_protocol . 12
bf_registry . 14
bf_standards . 14
bf_tbl . 15
registry-class . 16
show,registry-method . 17

Index 18

bitfield-package bitfield: Handle Bitfields to record Meta Data

Description

The bitfield package provides tools to record analytic and algorithmic meta data or just any ordinary
values to store in a bitfield. A bitfield can accompany any (modelled) dataset and can give insight
into data quality, provenance, and intermediate values, or can be used to store various output values
per observation in a highly compressed form.

Details

The general workflow consists of defining a registry with bf_registry, mapping tests to bit-flags
with bf_map, to encode this with bf_encode into an integer value that can be stored and pub-
lished, or decoded (with bf_decode) and re-used in a downstream application. Additional bit-
flag protocols can be defined (with bf_protocol) and shared as standard with the community via
bf_standards.

Author(s)

Maintainer, Author: Steffen Ehrmann <steffen.ehrmann@posteo.de>

.getDependencies 3

See Also

• Github project: https://github.com/bitfloat/bitfield

• Report bugs: https://github.com/bitfloat/bitfield/issues

.getDependencies Identify packages to custom functions

Description

Identify packages to custom functions

Usage

.getDependencies(fun)

Arguments

fun function(...)
the custom function in which to identify dependencies.

Value

vector of packages that are required to run the function.

.makeEncoding Determine encoding

Description

Determine encoding

Usage

.makeEncoding(var, type, ...)

Arguments

var the variable for which to determine encoding.

type the encoding type for which to determine encoding.

... list(.)
named list of options to determine encoding, see Details.

https://github.com/bitfloat/bitfield
https://github.com/bitfloat/bitfield/issues

4 .rast

Details

Floating point values are encoded with three fields that can be readily stored as bit sequence. Any
numeric value can be represented in scientific notation, for example, the decimal 923.52 can be
represented as 9.2352 * 10^2. These decimal values can be transformed to binary values, which can
then likewise be represented in scientific notation. Here, the 10 is replaced by a 2 (because we go
from decimal to binary), for example the binary value 101011.101 can be represented as 1.01011101
* 2^5. This scientific notation can now be broken down into the three previously mentioned fields,
one for the sign (positive or negative), one for the exponent and one for the remaining part, the
mantissa (or significand). For background information on how these fields are processed, study for
instance ’Floating Point’ by Thomas Finley and check out https://float.exposed/ to play around with
floating point encoding. Depending on the encoding needs, these three values can be adapted, for
example increase the exponent to provide a wider range (i.e., smaller small and larger large values)
or increase the mantissa to provide more precision (i.e., more decimal digits). In the scope of this
package, these three values are documented with a tag of the form [x.y.z], with x = number of sign
bits (either 0 or 1), y = number of exponent bits, and z number of mantissa bits.

When handling values that are not numeric, this package makes use of the same system, only that
sign and exponent are set to 0, while the mantissa bits are set to either 1 (for binary responses
[0.0.1]), or to whatever number of cases are required (i.e., for 8 cases with 3 required bits, resulting
in the tag [0.0.3]).

Possible options (...) of this function are

• precision: switch that determines the configuration of the floating point encoding. Possi-
ble values are "half" [1.5.10], "bfloat16" [1.8.7], "tensor19" [1.8.10], "fp24" [1.7.16],
"pxr24" [1.8.15], "single" [1.8.23] and "double" [1.11.52],

• fields: list of custom values that control how many bits are allocated to sign, exponent and
mantissa for encoding the numeric values,

• range: the ratio between the smallest and largest possible value to be reliably represented
(modifies the exponent),

• decimals: the number of decimal digits that should be represented reliably (modifies the
mantissa).

Value

list of the encoding values for sign, exponent and mantissa, and an additional provenance term.

.rast Extract values and metadata from terra::SpatRaster

Description

Extract values and metadata from terra::SpatRaster

Usage

.rast(x)

https://www.cs.cornell.edu/~tomf/notes/cps104/floating
https://float.exposed/
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

.toBin 5

Arguments

x SpatRaster(1)
the SpatRaster object.

Details

This function simply extracts the values from x and appends the raster metadata as attributes.

Value

the function that extracts values and metadata.

.toBin Make a binary value from an integer

Description

Make a binary value from an integer

Usage

.toBin(x, len = NULL, pad = TRUE, dec = FALSE)

Arguments

x numeric(1)
the numeric value for which to derive the binary value.

len integerish(1)
the number of bits used to capture the value.

pad logical(1)
whether to pad the binary value with 0 values.

dec logical(1)
whether to transform the decimal part to bits, or the integer part.

6 .updateMD5

.toDec Make an integer from a binary value

Description

Make an integer from a binary value

Usage

.toDec(x)

Arguments

x character(1)
the binary value (character of 0s and 1s) for which to derive the integer.

.updateMD5 Determine and write MD5 sum

Description

Determine and write MD5 sum

Usage

.updateMD5(x)

Arguments

x registry(1)
registry for which to determine the MD5 checksum.

Details

This function follows this algorithm:

• set the current MD5 checksum to NA_character_,
• write the registry into the temporary directory,
• calculate the checksum of this file and finally
• store the checksum in the md5 slot of the registry.

This means that when comparing the MD5 checksum in this slot, one first has to set that value also
to NA_character_, otherwise the two values won’t coincide.

Value

this function is called for its side-effect of storing the MD5 checksum in the md5 slot of the registry.

.validateProtocol 7

.validateProtocol Validate a bit-flag protocol

Description

Validate a bit-flag protocol

Usage

.validateProtocol(protocol)

Arguments

protocol the protocol to validate

Value

the validated protocol

.validateToken Validate a github token

Description

This function checks whether the user-provided token is valid for use with this package.

Usage

.validateToken(token)

Arguments

token character(1)
github PAT (personal access token).

Value

the validated user token

8 bf_decode

bf_decode Decode (unpack) a bitfield

Description

This function takes an integer bitfield and the registry used to build it upstream to decode it into bit
representation and thereby unpack the data stored in the bitfield.

Usage

bf_decode(x, registry, flags = NULL, sep = NULL, verbose = TRUE)

Arguments

x integerish(1)
table of the integer representation of the bitfield.

registry registry(1)
the registry that should be used to decode the bitfield.

flags character(.)
the name(s) of flags to extract from this bitfield; leave at NULL to extract the full
bitfield.

sep character(1)
a symbol with which, if given, the distinct fields shall be separated.

verbose logical(1)
whether or not to return the registry legend.

Value

data.frame with the binary values of flags in the registry in columns.

Examples

build registry
reg <- bf_map(protocol = "na", data = bf_tbl, x = commodity)
reg <- bf_map(protocol = "matches", data = bf_tbl, x = commodity, set = c("soybean", "maize"),

registry = reg)
reg

encode the flags into a bitfield
field <- bf_encode(registry = reg)
field

decode (somewhere downstream)
flags <- bf_decode(x = field, registry = reg, sep = "-")
flags

more reader friendly
cbind(bf_tbl, bf_decode(x = field, registry = reg, verbose = FALSE))

bf_encode 9

bf_encode Encode bit flags into a bitfield

Description

This function picks up the flags mentioned in a registry and encodes them as integer values.

Usage

bf_encode(registry)

Arguments

registry registry(1)
the registry that should be encoded into a bitfield.

Value

data.frame of the same length as the input data. Depending on type and amount of bit flags, this can
a table with any number of columns, each of which encodes a sequence of 32 bits into an integer.

Examples

reg <- bf_map(protocol = "na", data = bf_tbl, x = y)

field <- bf_encode(registry = reg)

bf_map Build a bit flag

Description

This function maps values from a dataset into bit flags that can be encoded into a bitfield.

Usage

bf_map(
protocol,
data,
...,
name = NULL,
pos = NULL,
na.val = NULL,
description = NULL,
registry = NULL

)

10 bf_map

Arguments

protocol character(1)
the protocol based on which the flag should be determined, see Details.

data the object to build bit flags for.

... the protocol-specific arguments for building a bit flag, see Details.

name character(1)
optional flag-name.

pos integerish(.)
the position(s) in the bitfield that should be set.

na.val value, of the same encoding type as the flag, that needs to be given, if the test
for this flag results in NAs.

description character(.)
optional description that should be used instead of the default protocol-specific
description. This description is used in the registry legend, so it should have as
many entries as there will be flags (two for a binary flag, as many as there are
cases for a enumeration flag and one for integer or numeric flags).

registry registry(1)
a bitfield registry that has been defined with bf_registry; if it’s undefined, an
empty registry will be defined on-the-fly.

Details

protocol can either be the name of an internal item bf_pcl, a newly built local protocol or one
that has been imported from the bitfield community standards repo on github. Any protocol has
specific arguments, typically at least the name of the column containing the variable values (x). To
make this function as general as possible, all of these arguments are specified via the ... argument
of bf_map. Internal protocols are:

• na (x): test whether a variable contains NA-values (boolean).

• nan (x): test whether a variable contains NaN-values (boolean).

• inf (x): test whether a variable contains Inf-values (boolean).

• identical (x, y): element-wise test whether values are identical across two variables (boolean).

• range (x, min, max): test whether the values are within a given range (boolean).

• matches (x, set): test whether the values match a given set (boolean).

• grepl (x, pattern): test whether the values match a given pattern (boolean).

• case (...): test whether values are part of given cases (enumeration).

• nChar (x): count the number of characters of the values (unsigned integer).

• nInt (x): count the number of integer digits of the values (unsigned integer).

• nDec (x): count the decimal digits of the variable values (unsigned integer).

• integer (x, ...): encode the integer values as bit-sequence (signed integer).

• numeric (x, ...): encode the numeric value as floating-point bit-sequence (with an adapted
precision) (floating-point).

bf_map 11

Value

an (updated) object of class ’registry’ with the additional flag defined here.

Notes

The console output of various classes (such as tibble) shows decimals that are not present or rounds
decimals that are present, even for ordinary numeric vectors. R stores numeric values internally
as double-precision floating-point values (with 64 bits, where 52 bits encode the mantissa), which
corresponds to a decimal precision of ~16 digits (log10(2^52)). Hence, if a bit flag doesn’t seem
to coincide with the values you see in the console, double check the values with sprintf("%16f",
values). If you use a larger decimal precision, you’ll see more digits, but those are not mean-
ingful, as they result merely from the binary-to-decimal conversion (check out .makeEncoding for
additional information.

When testing for cases, they are evaluate in the order they have been defined in. If an observation
is part of two cases, it will thus have the value of the last case it matches. The encoding type of
cases is given as enumeration, which means that the values can be either integer or factor. Both
are handled as if they were integers internally, so even though an enumeration data type could in
principle also be a character, this is possible within the scope of this package. Bitflag protocols
that extend the case protocol must thus always result in integer values.

Examples

opr <- "identical"

identify which arguments need to be given to call a test ...
formalArgs(bf_pcl[[opr]]$test)

put the test together
bf_map(protocol = opr, data = bf_tbl, x = x, y = y, na.val = FALSE)

some other examples of ...
boolean encoding
bf_map(protocol = "matches", data = bf_tbl, x = commodity, set = c("soybean", "honey"))
bf_map(protocol = "range", data = bf_tbl, x = yield, min = 10.4, max = 11)

enumeration encoding
bf_map(protocol = "case", data = bf_tbl,

yield >= 11, yield < 11 & yield > 9, yield < 9 & commodity == "maize")

integer encoding
bf_map(protocol = "integer", data = bf_tbl, x = as.integer(year), na.val = 0L)

floating-point encoding
bf_map(protocol = "numeric", data = bf_tbl, x = yield, decimals = 2)

12 bf_protocol

bf_pcl Internal bit-flag protocols

Description

Internal bit-flag protocols

Usage

bf_pcl

Format

a list containing bit-flag protocols for the internal tests. Each protocol is a list itself with the fields
"name", "version", "extends", "extends_note", "description", "encoding_type", "bits",
"requires", "test", "data" and "reference". For information on how they were set up and how
you can set up additional protocols, go to bf_protocol.

bf_protocol Define a new bit-flag protocol

Description

Define a new bit-flag protocol

Usage

bf_protocol(
name,
description,
test,
example,
type,
bits = NULL,
version = NULL,
extends = NULL,
note = NULL,
author = NULL

)

bf_protocol 13

Arguments

name character(1)
simple name of this protocol.

description character(1)
formalised description of the operation in this protocol. It will be parsed with
glue and used in the bitfield legend, so can include the test arguments as en-
braced expressions.

test function(...)
the function used to build the bit flag.

example list(.)
named list that contains all arguments in test as name with values of the correct
type.

type character(1)
the encoding type according to which the bit flag is determined. Possible values
are bool (for binary flags), enum (for cases), int (for integers) and num (for
floating-point encoding).

bits integer(1)
in case the flag requires more bits than the data in example indicate, provide this
here.

version character(1)
the version of this protocol according to the semantic versioning specification,
i.e., of the form X.Y.Z, where X is a major version, Y is a minor version and Z
is a bugfix. For additional details on when to increase which number, study this
website.

extends character(1)
optional protocol name and version that is extended by this protocol.

note character(1)
note on what the extension adds/modifies.

author person(.)
to attach a reference to this protocol, please provide here the relevant informa-
tion about the author(s). If this is not provided, the author "unknown" will be
used.

Value

list containing bit-flag protocol

Examples

newFlag <- bf_protocol(name = "na",
description = "{x} contains NA-values{result}.",
test = function(x) is.na(x = x),
example = list(x = bf_tbl$commodity),
type = "bool")

https://semver.org/

14 bf_standards

bf_registry Initiate a new registry

Description

Initiate a new registry

Usage

bf_registry(name = NULL, description = NULL)

Arguments

name character(1)
the name of the bitfield.

description character(1)
the description of the bitfield.

Value

an empty registry that captures some metadata of the bitfield, but doesn’t contain any flags yet.

Examples

reg <- bf_registry(name = "currentWorkflow",
description = "this is to document my current workflow so

that I can share it with my colleagues
alongside a publication.")

bf_standards Handle community standard protocols

Description

This function allows the user to list, pull or push bit-flag protocols to the bitfloat/standards reposi-
tory on github

Usage

bf_standards(
protocol = NULL,
remote = NULL,
action = "list",
version = "latest",
change = NULL,
token = NULL

)

https://github.com/bitfloat/standards

bf_tbl 15

Arguments

protocol character(1)
name of the bit-flag protocol to handle. This is either used to filter the list re-
trieved from remote, the name of the protocol to pull from github, or the name
of the new protocol that should be pushed to github.

remote character(1)
the path in the repo, where the protocol is stored or shall be stored. For instance,
to store a protocol in https://github.com/bitfloat/standards/distributions/type/distType.yml,
this should be "distributions/type".

action character(1)
whether to push or pull a protocol, or list the remote contents.

version character(1)
version tag for the protocol, must have a semantic versioning pattern, i.e., MAJOR.MINOR.PATCH.

change character(1)
in case you try to push an updated version of a protocol, you must provide a
brief description of what has changed from the current version to this version.

token character(1)
your github personal access token (PAT).

Details

Create a Personal Access Token in your github developer settings (or by running usethis::create_github_token())
and store it with gitcreds::gitcreds_set(). The token must have the scope ’repo’ so you can
authenticate yourself to pull or push community standards, and will only be accessible to your
personal R session.

Value

description

Examples

Not run:
list all currently available standards
bf_standards()

End(Not run)

bf_tbl Example table

Description

A 10 × 5 tibble with a range of example data to showcase functionality of this package.

16 registry-class

Usage

bf_tbl

Format

object of class tibble has two columns that indicate coordinates, one column that indicates a crop
that is grown there, one column that indicates the yield of that crop there and one column that
indicates the year of harvest. All columns contain some sort of deviation that may occur in data.

registry-class Bit registry class (S4) and methods

Description

A registry stores metadata and flag configuration of a bitfield.

Slots

width integerish(1)
how many bits is the bitfield wide.

length integerish(1)
how many observations are encoded in the bitfield.

name character(1)
short name of the bitfield.

version character(1)
automatically created version tag of the bitfield. This consists of the package version, the
version of R and the date of creation of the bitfield.

md5 character(1)
the MD5 checksum of the bitfield as determined with md5sum.

description character(1)
longer description of the bitfield.

flags list(.)
list of flags in the registry.

show,registry-method 17

show,registry-method Print registry in the console

Description

Print registry in the console

Usage

S4 method for signature 'registry'
show(object)

Arguments

object registry(1)
object to show.

Details

This method produces an overview of the registry by printing a header with information about the
setup of the bitfield and a table with one line for each flag in the bitfield. The table shows the start
position of each flag, the encoding type (see .makeEncoding), the bitfield operator type and the
columns that are tested by the flag.

Index

∗ datasets
bf_pcl, 12
bf_tbl, 15

.getDependencies, 3

.makeEncoding, 3, 11, 17

.rast, 4

.toBin, 5

.toDec, 6

.updateMD5, 6

.validateProtocol, 7

.validateToken, 7

bf_decode, 2, 8
bf_encode, 2, 9
bf_map, 2, 9
bf_pcl, 10, 12
bf_protocol, 2, 12, 12
bf_registry, 2, 10, 14
bf_standards, 2, 14
bf_tbl, 15
bitfield (bitfield-package), 2
bitfield-package, 2

character(.), 8, 10
character(1), 6–8, 10, 13–16

function(...), 3, 13

glue, 13

integer(1), 13
integerish(.), 10
integerish(1), 5, 8, 16

list(.), 3, 13, 16
logical(1), 5, 8

md5sum, 16

numeric(1), 5

person(.), 13

registry (registry-class), 16
registry(1), 6, 8–10, 17
registry-class, 16

show,registry-method, 17
SpatRaster(1), 5

18

	bitfield-package
	.getDependencies
	.makeEncoding
	.rast
	.toBin
	.toDec
	.updateMD5
	.validateProtocol
	.validateToken
	bf_decode
	bf_encode
	bf_map
	bf_pcl
	bf_protocol
	bf_registry
	bf_standards
	bf_tbl
	registry-class
	show,registry-method
	Index

