Package ‘baselinenowcast’

February 3, 2026

Title Baseline Nowcasting for Right-Truncated Epidemiological Data
Version 0.2.0

Description Nowcasting right-truncated epidemiological data is critical
for timely public health decision-making, as reporting delays can create
misleading impressions of declining trends in recent data. This package
provides nowcasting methods based on using empirical
delay distributions and uncertainty from past performance. It is also designed
to be used as a baseline method for developers of new nowcasting methods.
For more details on the performance of the method(s) in this package applied
to case studies of COVID-19 and norovirus, see our recent paper at
<https://wellcomeopenresearch.org/articles/10-614>. The package supports
standard data frame inputs with reference date, report date, and
count columns, as well as the direct use of reporting triangles, and is
compatible with 'epinowcast' objects. Alongside
an opinionated default workflow, it has a low-level pipe-friendly modular
interface, allowing context-specific workflows. It can accommodate a wide
spectrum of reporting schedules, including mixed patterns of reference and
reporting (daily-weekly, weekly-daily). It also supports sharing delay
distributions and uncertainty estimates between strata,
as well as custom uncertainty models and delay estimation methods.

License MIT + file LICENSE

URL https://github.com/epinowcast/baselinenowcast,

https://baselinenowcast.epinowcast.org

BugReports https://github.com/epinowcast/baselinenowcast/issues
Depends R (>=4.1.0)
Imports cli, checkmate, stats, utils, rlang, purrr

Suggests bookdown, ChainlLadder, dplyr, tidyr, stringr, lubridate,
readr, ggplot2, spelling, rmarkdown, testthat (>=3.1.9),
usethis, withr, knitr, zoo, glue

Encoding UTF-8
Language en-GB
LazyData true

https://wellcomeopenresearch.org/articles/10-614
https://github.com/epinowcast/baselinenowcast
https://baselinenowcast.epinowcast.org
https://github.com/epinowcast/baselinenowcast/issues

RoxygenNote 7.3.3

VignetteBuilder knitr

Config/Needs/hexsticker hexSticker, sysfonts, ggplot2
Config/Needs/website r-lib/pkgdown, epinowcast/enwtheme
NeedsCompilation no

Author Kaitlyn Johnson [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8011-0012>),
Emily Tyszka [aut] (ORCID: <https://orcid.org/0009-0005-6088-4017>),
Johannes Bracher [aut] (ORCID: <https://orcid.org/0000-0002-3777-1410>),
Sebastian Funk [aut] (ORCID: <https://orcid.org/0000-0002-2842-3406>),
Sam Abbott [aut] (ORCID: <https://orcid.org/0000-0001-8057-8037>),
Tim Taylor [ctb] (ORCID: <https://orcid.org/0000-0002-8587-7113>)

Maintainer Kaitlyn Johnson <kaitlyn.johnson@lshtm.ac.uk>
Repository CRAN
Date/Publication 2026-02-03 11:10:07 UTC

Contents

allocate_reference_times e e e
apply_delay
apply_reporting_structure oL e e e
apply_reporting_Structureso e e e e e e e e e
as.data.frame.reporting_triangle
as.matrix.reporting_triangleo
assert_baselinenowcast_df e
assert_reporting_triangle
as_ChainLadder_triangle
as_reporting_triangleo
as_reporting_triangle.data.frame oL,
as_reporting_triangle.matrix oL
as_reporting_triangle.triangleo
baselinenowcast L e e
baselinenowcast.data.frame oL oL L
baselinenowcast.reporting_triangle oL L.
baselinenowcast_df-class
combine_obs_with_pred
estimate_and_apply_delay L.
estimate_and_apply_delays
estimate_and_apply_uncertaintyo
estimate_delay
estimate_uncertainty e e e e e e e
estimate_uncertainty_retro e
example_downward_corr_rt Lo
example_reporting_triangle
fit_ by _horizon

Contents

https://orcid.org/0000-0001-8011-0012
https://orcid.org/0009-0005-6088-4017
https://orcid.org/0000-0002-3777-1410
https://orcid.org/0000-0002-2842-3406
https://orcid.org/0000-0001-8057-8037
https://orcid.org/0000-0002-8587-7113

allocate_reference_times 3

Index

fitnb . . . e 42
germany_covidl9_hosp 43
get_delays_from_dates 44
get_delays_unit 45
get_max_delay 45
get_mean_delay L 46
get_quantile_delay 47
get_reference_dates L. 48
EL_TEPOTting_SrUCLUI® v v v it e e e e e e e e e e 49
get_report_dates e e e 50
head.reporting_triangle 51
is_reporting_triangle e 52
new_baselinenowcast_df 52
new_reporting_triangle Lo oL 53
preprocess_negative_valueso e e e e 54
printreporting_triangle oL L 55
reporting_triangle-class L. 56
sample_nb e e e e 58
sample_noweast e 59
sample_NOWCASES L. e e e e e e e 60
sample_prediction 62
sample_predictions 64
summary.reporting_triangle L L Lo e 65
syn_nssp_dfo 66
syn_nssp_line_list L 67
tail.reporting_triangle L. L. 68
truncate_to_delay 69
truncate_to_quantile L. 70
trUNCAtE_tO_TOW v v v v e e e e e e e e e e e e e e 71
tUNCALE_tO_TOWS v v v v e e e e e e e e e e e e e e 72
validate_reporting_triangle L. oL 73
[.reporting_triangle e e 73
[<-reporting_triangle L 74

75

allocate_reference_times

Allocate training volume based on combination of defaults and user-
specified values for training volume for delay and uncertainty estima-
tion.

4 allocate_reference_times
Description
Given the reporting triangle and optionally the user-specified scale factor on the max delay to be
used as total reference times and the proportion of those reference times to be used for delay esti-
mation, allocate reference times to the number used for delay estimation and the number used as
retrospective nowcasts for uncertainty estimation.
This function implements an algorithm which:

* if the specified number of reference times (scale_factor x max delay) is less than or equal to
the number of reference times available in the reporting triangle, split reference times between
delay and uncertainty according to prop_delay, ensuring that the minimum requirements for
delay and uncertainty estimation are met.

« if the specified number of reference times is greater than the number of reference times
available in the reporting triangle, use all the reference times available and satisfy the min-
imum requirement for delay estimation and then split the remainder according to the specified
prop_delay, ensuring that the minimum reference times for delay and uncertainty estimation
are fulfilled.

* the function errors if the minimum requirements for delay and uncertainty estimation are not
possible from the number of reference times in the reporting triangle.

Usage
allocate_reference_times(
reporting_triangle,
scale_factor = 3,
prop_delay = 0.5,
n_min_retro_nowcasts = 2,
validate = TRUE
)
Arguments

reporting_triangle

scale_factor

prop_delay

A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

Numeric value indicating the multiplicative factor on the maximum delay to be
used for estimation of delay and uncertainty. Default is 3.

Numeric value <1 indicating what proportion of all reference times in the re-
porting triangle to be used for delay estimation. Default is 0. 5.

n_min_retro_nowcasts

validate

Integer indicating the minimum number of reference times needed for uncer-
tainty estimation. Default is 2.

Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

apply_delay 5

Value

list of n_history_delay and n_retrospective_nowcasts

See Also

High-level workflow wrapper functions estimate_and_apply_delay(), estimate_and_apply_delays(),
estimate_and_apply_uncertainty(), estimate_uncertainty_retro()

Examples

Create a reporting triangle from package data

data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]

rep_tri <- as_reporting_triangle(data_as_of) |>
truncate_to_delay(max_delay = 25)

Use the defaults (scale_factor = 3, prop_delay = 0.5)
ref_time_allocation_default <- allocate_reference_times(rep_tri)
ref_time_allocation_default

Modify to use less volume and redistribute
ref_time_allocation_alt <- allocate_reference_times(
reporting_triangle = rep_tri,
scale_factor = 2,
prop_delay = 0.6
)

ref_time_allocation_alt

apply_delay Apply the delay to generate a point nowcast

Description

Generate a point estimate of a completed reporting square (or rectangle) from a reporting triangle

that we want to complete with a nowcast and a delay PMF. Each element is computed by taking the

product of the expected number of total cases assigned to a reference time t and the proportion

of those cases reported on delay d. The formula to obtain the expected number of total cases

as a function of the reporting delay and previous observations was derived elsewhere. This code

was adapted from code written (under an MIT license) by the Karlsruhe Institute of Technology
RESPINOW German Hospitalization Nowcasting Hub. Modified from: https://github.com/
KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc@e4ab29074462c24650e/code/baseline/
functions.R#L55 #nolint

Usage

apply_delay(reporting_triangle, delay_pmf, validate = TRUE)

https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55
https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55
https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55

6 apply_reporting_structure

Arguments

reporting_triangle
Matrix of the reporting triangle to be nowcasted, with rows representing the time
points of reference and columns representing the delays

delay_pmf Vector of delays assumed to be indexed starting at the first delay column in
reporting_triangle.
validate Logical. If TRUE (default), validates the object. Set to FALSE only when called

from functions that already validated.

Value

point_nowcast_matrix Matrix of the same number of rows and columns as the rep_mat_to_nowcast
but with the missing values filled in as point estimates

Examples

Example 1: Standard usage with example dataset

delay_pmf <- estimate_delay(example_reporting_triangle)

point_nowcast_matrix <- apply_delay(
reporting_triangle = example_reporting_triangle,
delay_pmf = delay_pmf

)

print(point_nowcast_matrix)

Example 2: Using delay PMF with negative entries from downward corrections
delay_pmf_negative <- c(0.7, 0.4, -0.15, 0.05)
nowcast_with_corrections <- apply_delay(
reporting_triangle = example_downward_corr_rt,
delay_pmf = delay_pmf_negative
)
The nowcast includes negative predictions at delay 2,
correctly reflecting expected downward corrections
print(nowcast_with_corrections)

apply_reporting_structure
Apply reporting structure to generate a single retrospective reporting
triangle

Description

This function applies a reporting structure to a truncated reporting triangle by setting observations
to NA row by row from the bottom up based on the specified structure. It is the singular version of
apply_reporting_structures().

apply_reporting_structures 7

Usage

apply_reporting_structure(
truncated_reporting_triangle,
structure = 1,

validate

Arguments

TRUE

truncated_reporting_triangle

structure

validate

Value

A single truncated reporting_triangle object. May or may not contain NAs.

Integer or vector specifying the reporting structure. If integer, divides columns
evenly by that integer (with last possibly truncated). If vector, the sum must
not be greater than or equal to the number of columns. Default is 1 (standard
triangular structure).

Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

A single retrospective reporting triangle matrix with NAs in the appropriate positions.

See Also

Retrospective data generation functions apply_reporting_structures(), truncate_to_row(),
truncate_to_rows()

Examples

Standard triangular structure (default)
rep_tri <- apply_reporting_structure(example_reporting_triangle)

rep_tri

Ragged structure with 2 columns per delay period
rep_ragged <- apply_reporting_structure(example_reporting_triangle, 2)

rep_ragged

Custom structure with explicit column counts
rep_custom <- apply_reporting_structure(example_reporting_triangle, c(1, 2))

rep_custom

apply_reporting_structures

Apply reporting structures to generate retrospective reporting trian-
gles

8 apply_reporting_structures

Description

This function applies a reporting structure to a list of truncated reporting triangles by setting obser-
vations to NA row by row from the bottom up based on the specified structure. This generates the
reporting triangles that would have been available at each retrospective time point. It operates on
each element in the list in order (from most recent retrospective nowcast time to oldest retrospective
nowcast time).

Usage

apply_reporting_structures(
truncated_reporting_triangles,
structure = 1,
validate = TRUE

Arguments

truncated_reporting_triangles

List of n truncated reporting triangle matrices with as many rows as available
given the truncation.

structure Integer or vector specifying the reporting structure. If integer, divides columns
evenly by that integer (with last possibly truncated). If vector, the sum must
not be greater than or equal to the number of columns. Default is 1 (standard
triangular structure).

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Value

reporting_triangles List of retrospective reporting triangles, generated by removing the bottom
right observations from the truncated reporting triangle matrices.

See Also

Retrospective data generation functions apply_reporting_structure(), truncate_to_row(),
truncate_to_rows()

Examples

Generate retrospective triangles from truncated triangles
trunc_rts <- truncate_to_rows(example_reporting_triangle, n = 2)
retro_rts <- apply_reporting_structures(trunc_rts)

With custom structure

retro_rts_custom <- apply_reporting_structures(
trunc_rts,
structure = 2

)

retro_rts_custom

as.data.frame.reporting_triangle 9

as.data.frame.reporting_triangle
Convert reporting_triangle to data.frame

Description

Convert reporting_triangle to data.frame

Usage
S3 method for class 'reporting_triangle'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X A reporting_triangle object to convert.
row.names NULL or character vector giving row names for the data frame. Missing values

are not allowed.
optional Logical. If TRUE, setting row names and converting column names is optional.

Additional arguments to be passed to or from methods.

Value

A data.frame with columns reference_date, report_date, delay, count

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.matrix.reporting_triangle(), as_ChainLadder_triangle(), as_reporting_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay(),
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Convert reporting triangle to data frame
df <- as.data.frame(example_reporting_triangle)
head(df)

10 as.matrix.reporting_triangle

as.matrix.reporting_triangle
Convert reporting_triangle to plain matrix

Description

Returns a plain matrix representation of a reporting_triangle object, removing the reporting_triangle
class and custom attributes while preserving row and column names.

Usage
S3 method for class 'reporting_triangle'
as.matrix(x, ...)

Arguments
X A reporting_triangle object.

Additional arguments (not used).

Value

A plain matrix without reporting_triangle class or attributes.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as_ChainLadder_triangle(), as_reporting_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay(),
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Convert reporting_triangle to plain matrix
plain_mat <- as.matrix(example_downward_corr_rt)
class(plain_mat) # "matrix" "array"”

assert_baselinenowcast_df 11

assert_baselinenowcast_df
Assert validity of baselinenowcast_df objects

Description

Assert validity of baselinenowcast_df objects

Usage

assert_baselinenowcast_df (data)

Arguments

data A baselinenowcast_df object to check for validity.

Value

Returns NULL invisibly. Throws an error if validation fails.

See Also

Main nowcasting interface functions baselinenowcast(), baselinenowcast.data.frame(), baselinenowcast.reporti
baselinenowcast_df-class, new_baselinenowcast_df ()

Examples

Create a valid baselinenowcast_df object
valid_df <- data.frame(
reference_date = as.Date("2024-01-01") + 0:4,
pred_count = c(10, 15, 12, 18, 20),

draw = 1,
output_type = "point”
)
class(valid_df) <- c("baselinenowcast_df", "data.frame")

Validate the object
assert_baselinenowcast_df (valid_df)

12 assert_reporting_triangle

assert_reporting_triangle
Assert validity of reporting_triangle objects

Description

Assert validity of reporting_triangle objects

Usage

assert_reporting_triangle(data, validate = TRUE)

Arguments
data A reporting_triangle object to check for validity.
validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.
Value

Returns NULL invisibly. Throws an error if validation fails.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(),as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay(),
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Validate an example reporting triangle
assert_reporting_triangle(example_reporting_triangle)

as_ChainLadder_triangle 13

as_ChainLadder_triangle
Convert reporting_triangle to ChainLadder triangle format

Description

This function converts a reporting_triangle object to a triangle object from the ChainLadder pack-
age. ChainLadder is a mature package for claims reserving in general insurance that provides
statistical methods for analysing reporting triangles, including the chain ladder technique, bootstrap
methods, and diagnostic tools. Converting to ChainLadder format enables use of these specialized
methods alongside baselinenowcast’s nowcasting functionality.

Usage
as_ChainLadder_triangle(x, ...)
Arguments
X A reporting_triangle object to convert.
Additional arguments passed to ChainLadder: :as.triangle().
Details

This function converts the reporting triangle to ChainLadder’s triangle format using ChainLadder: :as.triangle().
The ChainLadder package must be installed to use this function.

Once converted, you can use any ChainLadder methods such as:

e ChainlLadder: :MackChainLadder () for the Mack chain ladder method
e ChainLadder: :BootChainLadder () for bootstrap chain ladder

* Standard plotting and summary methods

Note that some ChainLadder methods may require preprocessing for sparse triangles with many
zeros, which can occur in syndromic surveillance data.

To convert back to a reporting_triangle object, use as_reporting_triangle.triangle().

Value
A ChainLadder triangle object (class "triangle" and "matrix"), with rows representing origin periods
(reference dates) and columns representing development periods (delays).

See Also

* as_reporting_triangle.triangle() for converting back

https://CRAN.R-project.org/package=ChainLadder

14 as_reporting_triangle

¢ ChainLadder package documentation

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_reporting_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Create a reporting triangle from synthetic NSSP data
data_as_of_df <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data = data_as_of_df)

Convert to ChainLadder triangle format
cl_triangle <- as_ChainLadder_triangle(rep_tri)
print(cl_triangle)

Visualize the reporting triangle structure
plot(cl_triangle)

as_reporting_triangle Create a reporting_triangle object

Description

Create a reporting_triangle object

Usage
as_reporting_triangle(data, delays_unit = "days"”, ...)
Arguments
data Data to be nowcasted.
delays_unit Character string specifying the temporal granularity of the delays. Options are
"days", "weeks", "months"”, "years". Default is "days".
Additional arguments passed to methods.
Value

A reporting_triangle object

https://mages.github.io/ChainLadder/

as_reporting_triangle.data.frame 15

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Create a reporting triangle from a data.frame
data_as_of_df <- syn_nssp_df[
syn_nssp_df$report_date <= "2026-04-01" &
(syn_nssp_df$report_date - syn_nssp_df$reference_date) <= 25,
1
rt <- as_reporting_triangle(data = data_as_of_df)
rt

as_reporting_triangle.data.frame
Create a reporting_triangle object from a data.frame

Description

This method takes a data.frame containing case counts indexed by reference date and report date
and creates a reporting_triangle object. See as_reporting_triangle.matrix() for other data
input options.

Usage

S3 method for class 'data.frame'
as_reporting_triangle(

data,
delays_unit = "days",
reference_date = "reference_date”,
report_date = "report_date”,
count = "count”,

)

Arguments
data Data.frame in a long tidy format with counts by reference date and report date.

Must contain the following columns: . - Column of type date or character with
the dates of the primary event occurrence (reference date).

16 as_reporting_triangle.data.frame

e Column of type date or character with the dates of report of the primary
event (report_date).

* Column of numeric or integer indicating the new confirmed counts pertain-
ing to that reference and report date (count). Additional columns can be
included but will not be used. The input dataframe for this function must
contain only a single strata, there can be no repeated reference dates and
report dates.

delays_unit Character string specifying the temporal granularity of the delays. Options are

non non n o n

"days"”, "weeks", "months”, "years". Default is "days".

reference_date Character string indicating the name of the column which represents the refer-
ence date, or the date of the primary event occurrence.

report_date Character string indicating the name of the column which represents the date the
primary event was reported.

count Character string indicating the name of the column containing the number of
incident cases on each reference and report date.

Additional arguments not used.

Value

A reporting_triangle object

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(),as.matrix.reporting_triangle(), as_ChainlLadder_triangle(),
as_reporting_triangle(),as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(), validate_reporting_triangle()

Examples

Filter to reasonable max_delay for faster example
data_as_of_df <- syn_nssp_df[
syn_nssp_df$report_date <= "2026-04-01" &
(syn_nssp_df$report_date - syn_nssp_df$reference_date) <= 25,
1
as_reporting_triangle(data = data_as_of_df)

as_reporting_triangle.matrix 17

as_reporting_triangle.matrix
Create a reporting_triangle from a matrix

Description

This method takes a matrix in the format of a reporting triangle, with rows as reference dates and
columns as delays and elements as incident case counts and creates a reporting_triangle object. See
as_reporting_triangle.data.frame() for creating from data frames.

Usage

S3 method for class 'matrix’

as_reporting_triangle(data, delays_unit = "days", reference_dates = NULL, ...)
Arguments

data Matrix of a reporting triangle where rows are reference times, columns are de-

lays, and entries are the incident counts. The number of columns determines the
maximum delay.

delays_unit Character string specifying the temporal granularity of the delays. Options are

non n on n o n

"days", "weeks", "months”, "years". Default is "days".

reference_dates
Vector of Date objects or character strings indicating the reference dates corre-
sponding to each row of the reporting triangle matrix (data). If NULL (default),

dummy dates starting from 1900-01-01 are generated with spacing determined
by delays_unit.

Additional arguments not used.

Value

A reporting_triangle object

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

18 as_reporting_triangle.triangle

Examples

rep_tri_mat <- matrix(

c(

3,5, 7,09,
7, 8, 0, NA,

10, @, NA, NA,
, 0, NA, NA, NA,
, NA, NA, NA, NA

o W W A~ =

)?

nrow = 5,

byrow = TRUE
)

reference_dates <- seq(
from = as.Date("2025-01-01"),
to = as.Date("2025-01-05"),
by = "day"

)

max_delay is inferred from matrix dimensions (4 in this case)
rep_tri <- as_reporting_triangle(

data = rep_tri_mat,

reference_dates = reference_dates

)

rep_tri

as_reporting_triangle.triangle
Convert ChainLadder triangle to reporting_triangle format

Description

This S3 method converts a ChainLadder triangle object to a reporting_triangle object, enabling use
of baselinenowcast’s nowcasting methods.

Usage

S3 method for class 'triangle'

as_reporting_triangle(data, delays_unit = "days"”, reference_dates = NULL, ...)
Arguments

data A ChainLadder triangle object (class "triangle").

delays_unit Character string specifying the temporal granularity of the delays. Options are

non non n o n

"days", "weeks", "months”, "years". Default is "days".

reference_dates
Vector of dates corresponding to the rows of the triangle. If not provided, will
attempt to coerce row names to dates. If row names cannot be coerced to dates
and this is not provided, an error will be raised.

as_reporting_triangle.triangle 19

Additional arguments passed to as_reporting_triangle.matrix().

Details

This method converts a ChainLadder triangle back to baselinenowcast’s reporting_triangle format.
If reference_dates is not provided, the function will attempt to extract dates from the triangle’s
TOW names.

The ChainLadder package must be installed to use this function.

The conversion uses as_reporting_triangle.matrix() internally after extracting the matrix
from the ChainLadder triangle object.

Value

A reporting_triangle object. See reporting_triangle for details on the structure.

See Also

* as_ChainLadder_triangle() for converting to ChainLadder
e as_reporting_triangle.matrix() for the underlying method
* as_reporting_triangle.data.frame() for creating from data frames

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Create a reporting triangle
data_as_of_df <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data = data_as_of_df)

Convert to ChainLadder triangle
cl_triangle <- as_ChainLadder_triangle(rep_tri)

Convert back to reporting_triangle (seamless round-trip)

max_delay is inferred from the ChainlLadder triangle dimensions
rep_tri_2 <- as_reporting_triangle(data = cl_triangle)
print(rep_tri_2)

20

baselinenowcast

baselinenowcast

Generate a nowcast

Description

This function ingests data to be nowcasted and generates a a baselinenowcast_df which contains
a probabilistic or point estimate of the final case counts at each reference date in the data. See
baselinenowcast.reporting_triangle() for details on the input requirements.

Usage

baselinenowcast(

data,

scale_factor
prop_delay =
output_type = ¢
draws = 1000,

= 3,
0.5,
€

samples”, "point"),

uncertainty_model = fit_by_horizon,
uncertainty_sampler = sample_nb,

Arguments

data

scale_factor

prop_delay

output_type

draws

Data to be nowcasted

Numeric value indicating the multiplicative factor on the maximum delay to be
used for estimation of delay and uncertainty. Default is 3.

Numeric value <1 indicating what proportion of all reference times in the re-
porting triangle to be used for delay estimation. Default is 0. 5.

Character string indicating whether the output should be samples ("samples”)
from the estimate with full uncertainty or whether to return the point estimate
("point"). Default is "samples”. If "point"estimates are specified, the mini-
mum number of reference times needed is the number needed for delay estima-
tion, otherwise, if "samples” are specified, at least 2 additional reference times
are required for uncertainty estimation.

Integer indicating the number of probabilistic draws to include if output_type
is "samples”. Default is 1000.

uncertainty_model

Function that ingests a matrix of observations and a matrix of predictions and re-
turns a vector that can be used to apply uncertainty using the same error model.
Default is fit_by_horizon with arguments of obs matrix of observations and
pred the matrix of predictions that fits each column (horizon) to a negative bi-
nomial observation model by default. The user can specify a different fitting
model by replacing the fit_model argument in fit_by_horizon.

baselinenowcast.data.frame 21

uncertainty_sampler
Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

Additional arguments passed to methods.

Value

Data.frame of class baselinenowcast_df

See Also

Main nowcasting interface functions assert_baselinenowcast_df (), baselinenowcast.data.frame(),
baselinenowcast.reporting_triangle(), baselinenowcast_df-class, new_baselinenowcast_df ()

Examples

Generate a point nowcast from a reporting triangle
nowcast <- baselinenowcast(
example_reporting_triangle,
output_type = "point”
)

nowcast

Generate probabilistic nowcast with samples
baselinenowcast(

example_reporting_triangle,

output_type = "samples”,

draws = 100

baselinenowcast.data.frame
Create a dataframe of nowcast results from a dataframe of cases in-
dexed by reference date and report date

Description

This function ingests a data.frame with the number of incident cases indexed by reference date and
report date for one or multiple strata, which define the unit of a single nowcast (e.g. age groups
or locations). It returns a data.frame containing nowcasts by reference date for each strata, which
are by default estimated independently. This function will by default estimate uncertainty using
past retrospective nowcast errors and generate probabilistic nowcasts, which are samples from the
predictive distribution of the estimated final case count at each reference date.

This function implements the full nowcasting workflow on multiple reporting triangles, generating
estimates of the delay and uncertainty parameters for all strata using estimates from across strata if
specified.

22 baselinenowcast.data.frame

1. estimate_delay() - Estimate a delay PMF across strata if strata_sharing contains "delay”

2. estimate_uncertainty_retro() - Estimates uncertainty parameters across strata if strata_sharing
contains "uncertainty”

3. as_reporting_triangle() - Generates a reporting triangle object from a data.frame

4. baselinenowcast.reporting_triangle() - Generates point or probabilistic nowcasts de-
pending on output_type for each strata.

@detail See documentation for the arguments of this function which can be used to set the model
specifications (things like number of reference times for delay and uncertainty estimation, the obser-
vation model, etc.). The function expects that each strata in the dataframe has the same maximum
delay. If sharing estimates across all strata, the shared estimates will be made using the shared set
of reference and report dates across strata.

Usage

S3 method for class 'data.frame'
baselinenowcast(
data,
scale_factor = 3,
prop_delay = 0.5,
output_type = c("s
draws = 1000,
uncertainty_model = fit_by_horizon,
uncertainty_sampler = sample_nb,
max_delay = NULL,
delays_unit = "days",
strata_cols = NULL,
strata_sharing = "none”,
preprocess = preprocess_negative_values,

amples”, "point"),

Arguments

data Data.frame in a long tidy format with counts by reference date and report date
for one or more strata. Must contain the following columns: - reference_date:
Column of type Date containing the dates of the primary event occurrence.

* report_date: Column of type Date containing the dates of report of the
primary event.

* count: Column of numeric or integer indicating the new confirmed counts
pertaining to that reference and report date. Additional columns indicating
the columns which set the unit of a single can be included. The user can
specify these columns with the strata_cols argument, otherwise it will
be assumed that the data contains only data for a single strata.

scale_factor = Numeric value indicating the multiplicative factor on the maximum delay to be
used for estimation of delay and uncertainty. Default is 3.

prop_delay Numeric value <1 indicating what proportion of all reference times in the re-
porting triangle to be used for delay estimation. Default is 0. 5.

baselinenowcast.data.frame 23

output_type Character string indicating whether the output should be samples ("samples”)
from the estimate with full uncertainty or whether to return the point estimate
("point"). Default is "samples”. If "point"estimates are specified, the mini-
mum number of reference times needed is the number needed for delay estima-
tion, otherwise, if "samples” are specified, at least 2 additional reference times
are required for uncertainty estimation.

draws Integer indicating the number of probabilistic draws to include if output_type
is "samples”. Default is 1000.

uncertainty_model
Function that ingests a matrix of observations and a matrix of predictions and re-
turns a vector that can be used to apply uncertainty using the same error model.
Default is fit_by_horizon with arguments of obs matrix of observations and
pred the matrix of predictions that fits each column (horizon) to a negative bi-
nomial observation model by default. The user can specify a different fitting
model by replacing the fit_model argument in fit_by_horizon.

uncertainty_sampler
Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

max_delay Maximum delay (in units of delays_unit) to include in the nowcast. If NULL
(default), all delays in the data are used. If specified, only observations with
delay <= max_delay are included.

delays_unit Character string specifying the temporal granularity of the delays. Options are

non non n on

"days", "weeks", "months”, "years". Default is "days".

strata_cols Vector of character strings indicating the names of the columns in data that
determine how to stratify the data for nowcasting. The unique combinations
of the entries in the strata_cols denote the unit of a single nowcast. Within
a strata, there can be no repeated unique combinations of reference dates and
report dates. Default is NULL which assumes that the data.frame being passed in
represents a single strata (only one nowcast will be produced). All columns that
are not part of the strata_cols will be removed.

strata_sharing Vector of character strings. Indicates if and what estimates should be shared for
different nowcasting steps. Options are "none” for no sharing (each strata_cols
is fully independent), "delay" for delay sharing and "uncertainty” for uncer-
tainty sharing. Both "delay” and "uncertainty” can be passed at the same
time.

preprocess Function to apply to the reporting triangle before estimation, or NULL to skip
preprocessing. Default is preprocess_negative_values(), which handles
negative values by redistributing them to earlier delays. Set to NULL if you
want to preserve negative values. Custom preprocess functions must accept a
validate parameter (defaults to TRUE) to enable validation optimisation in
internal function chains.

Additional arguments passed to estimate_uncertainty() and sample_nowcast().

24 baselinenowcast.reporting_triangle

Value

Data.frame of class baselinenowcast_df

See Also

Main nowcasting interface functions assert_baselinenowcast_df (), baselinenowcast (), baselinenowcast.reportin
baselinenowcast_df-class, new_baselinenowcast_df ()

Examples

Filter data to exclude most recent report dates and limit to 75
reference dates
max_ref_date <- max(germany_covid19_hosp$reference_date)
min_ref_date <- max_ref_date - 74
covid_data_to_nowcast <- germany_covid19_hosp[
germany_covid19_hosp$report_date < max_ref_date &
germany_covid19_hosp$reference_date >= min_ref_date,
1
nowcasts_df <- baselinenowcast(covid_data_to_nowcast,
max_delay = 25,
strata_cols = c("age_group”, "location"),
draws = 100
)

nowcasts_df

baselinenowcast.reporting_triangle
Create a dataframe of nowcast results from a single reporting triangle

Description

This function ingests a single reporting_triangle object and generates a nowcast in the form of a
baselinenowcast_df object.

This function implements a nowcasting workflow for a single reporting triangle:

1. allocate_reference_times() - Allocate the reference times used for delay and uncertainty
estimation

2. estimate_delay() - Estimate a reporting delay PMF
3. apply_delay() - Generate a point nowcast using the delay PMF

4. estimate_and_apply_uncertainty() - Generate a probabilistic nowcast from a point now-
cast and reporting triangle

This function will by default estimate the delay from the reporting_triangle and estimate uncertainty
using past retrospective nowcast errors on that reporting_triangle to generate probabilistic nowcasts,
which are samples from the predictive distribution of the estimated final case count at each refer-
ence date. Alternatives include passing in a separate delay_pmf or uncertainty_params. This
method specifically computes a nowcast for a single reporting triangle. See documentation for the
arguments of this function which can be used to set the model specifications (things like number of
reference times for delay and uncertainty estimation, the observation model, etc.).

baselinenowcast.reporting_triangle 25

Usage

S3 method for class 'reporting_triangle'
baselinenowcast(

data,

scale_factor
prop_delay =
output_type
draws = 1000,

= 3’
0.5,
("s

c("samples”, "point"),

uncertainty_model = fit_by_horizon,
uncertainty_sampler = sample_nb,
delay_pmf = NULL,

uncertainty_params = NULL,

preprocess = preprocess_negative_values,

validate =

Arguments

data

scale_factor

prop_delay

output_type

draws

TRUE,

reporting_triangle class object to be nowcasted. The matrix must contain miss-
ing observations in the form of NAs in order to generate an output from this
function.

Numeric value indicating the multiplicative factor on the maximum delay to be
used for estimation of delay and uncertainty. Default is 3.

Numeric value <1 indicating what proportion of all reference times in the re-
porting triangle to be used for delay estimation. Default is 0. 5.

Character string indicating whether the output should be samples ("samples")
from the estimate with full uncertainty or whether to return the point estimate
("point"). Default is "samples”. If "point"estimates are specified, the mini-
mum number of reference times needed is the number needed for delay estima-
tion, otherwise, if "samples” are specified, at least 2 additional reference times
are required for uncertainty estimation.

Integer indicating the number of probabilistic draws to include if output_type
is "samples”. Default is 1000.

uncertainty_model

Function that ingests a matrix of observations and a matrix of predictions and re-
turns a vector that can be used to apply uncertainty using the same error model.
Default is fit_by_horizon with arguments of obs matrix of observations and
pred the matrix of predictions that fits each column (horizon) to a negative bi-
nomial observation model by default. The user can specify a different fitting
model by replacing the fit_model argument in fit_by_horizon.

uncertainty_sampler

Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

26 baselinenowcast_df-class

delay_pmf Vector of delays assumed to be indexed starting at the first delay column in the
reporting triangle. Default is NULL, which will estimate the delay from the
reporting triangle in data. See estimate_delay() for more details.

uncertainty_params
Vector of uncertainty parameters ordered from horizon 1 to the maximum hori-
zon. Default is NULL, which will result in computing the uncertainty parameters
from the reporting triangle data. See estimate_uncertainty() for more de-
tails.

preprocess Function to apply to the reporting triangle before estimation, or NULL to skip
preprocessing. Default is preprocess_negative_values(), which handles
negative values by redistributing them to earlier delays. Set to NULL if you
want to preserve negative values. Custom preprocess functions must accept a
validate parameter (defaults to TRUE) to enable validation optimisation in
internal function chains.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Additional arguments passed to estimate_uncertainty() and sample_nowcast().

Value

Data.frame of class baselinenowcast_df

See Also

Main nowcasting interface functions assert_baselinenowcast_df (), baselinenowcast(), baselinenowcast.data.fra
baselinenowcast_df-class, new_baselinenowcast_df ()

Examples

Filter to recent data and truncate to reasonable max_delay for faster
example
data_as_of_df <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data = data_as_of_df) |>
truncate_to_delay(max_delay = 25) |>
tail(n = 40)
nowcast_df <- baselinenowcast(rep_tri, draws = 100)
nowcast_df

baselinenowcast_df-class
Nowcast Data.frame Object

Description

A baselinenowcast_df object which contains point or probabilistic nowcasts alongside reference
dates and any additional metadata, in tidy data format. Nowcasts are presented aggregated across
delays, by reference date.

combine_obs_with_pred 27

Value

A baselinenowcast_df object. This is a data.frame subclass containing nowcast results. See the
Structure section for details on the required columns.

Structure

A baselinenowcast_df is a data.frame with the following columns:

reference_date Dates corresponding to the reference times of the nowcast.

pred_count Numeric indicating the estimated total counts aggregated across delays at each refer-
ence date.

draw Integer indexing the sample from the probabilistic nowcast distribution. If output_type =
"point”, this will be set to 1.

output_type Character string indicating whether the pred_count represents a probabilistic draw
from the observation model indicated by "samples” or whether the pred_count is a point
estimate indicated by "point”.

See the corresponding reporting_triangle and baselinenowcast () function for more details on the
required inputs to generate the object.
See Also

Main nowcasting interface functions assert_baselinenowcast_df (), baselinenowcast (), baselinenowcast.data.fra
baselinenowcast.reporting_triangle(), new_baselinenowcast_df ()

combine_obs_with_pred Combine observed data with a single prediction draw

Description

Internally it sums observed counts from the reporting triangle by reference time and adds them to
the predicted counts to form a single draw of the nowcast for the final counts by reference time.

Usage

combine_obs_with_pred(
predicted_counts,
reporting_triangle,
ref_time_aggregator = identity,
delay_aggregator = function(x) rowSums(x, na.rm = TRUE)

28 combine_obs_with_pred

Arguments

predicted_counts
Vector of predicted counts at each reference date. Note that if using a refer-
ence time or delay aggregator function, this is assumed to have already been
aggregated.

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

ref_time_aggregator
Function that operates along the rows (reference times) of the retrospective point
nowcast matrix before it has been aggregated across columns (delays). Default
is identity which does not aggregate across reference times.

delay_aggregator
Function that operates along the columns (delays) of the retrospective point
nowcast matrix after it has been aggregated across reference times. Default is
function(x) rowSums(x, na.rm= TRUE).

Value

A vector of predicted counts at each reference date, for all reference dates in the input reporting_triangle
(or fewer if using ref_time_aggregator)

See Also

Probabilistic nowcast generation functions sample_nb(), sample_nowcast(), sample_nowcasts(),
sample_prediction(), sample_predictions()

Examples

Use example data

reporting_triangle <- apply_reporting_structure(example_reporting_triangle)
pred_counts <- c(10, 20, 30, 40)

combine_obs_with_pred(pred_counts, reporting_triangle)

Example with rolling sum
if (requireNamespace(”zoo"”, quietly = TRUE)) {
combine_obs_with_pred(pred_counts,
reporting_triangle,
ref_time_aggregator = function(x) zoo::rollsum(x, k = 2, align = "right")
)
3

estimate_and_apply_delay 29

estimate_and_apply_delay
Estimate and apply delay from a reporting triangle

Description

This function generates a point nowcast by estimating a delay distribution from the reporting tri-
angle and applying it to complete the triangle. If a delay distribution is specified, this will be used to
generate the nowcast, otherwise, a delay distribution will be estimated from the reporting_triangle.

Usage

estimate_and_apply_delay(
reporting_triangle,
n = nrow(reporting_triangle),
delay_pmf = NULL,
validate = TRUE

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

n Integer indicating the number of reference times (observations) to be used in the
estimate of the reporting delay, always starting from the most recent reporting
delay. The default is to use the whole reporting triangle, so nrow(reporting_triangle).

delay_pmf Vector of delays assumed to be indexed starting at the first delay column in
reporting_triangle. Default is NULL, which will estimate a delay from the
reporting_triangle.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.
Value
pt_nowcast_matrix A reporting_triangle object of point nowcasts with the same structure as
the input
See Also

High-level workflow wrapper functions allocate_reference_times(), estimate_and_apply_delays(),
estimate_and_apply_uncertainty(), estimate_uncertainty_retro()

30 estimate_and_apply_delays

Examples

Estimate and apply delay using default parameters
pt_nowcast_matrix <- estimate_and_apply_delay(
reporting_triangle = example_reporting_triangle

)

pt_nowcast_matrix

Use downward correction example with specific rows for delay estimation
pt_nowcast_matrix <- estimate_and_apply_delay(

reporting_triangle = example_downward_corr_rt,

n=>5
)

pt_nowcast_matrix

Provide a pre-computed delay PMF

delay_pmf <- estimate_delay(
reporting_triangle = example_reporting_triangle

)

pt_nowcast_matrix <- estimate_and_apply_delay(
reporting_triangle = example_reporting_triangle,
delay_pmf = delay_pmf

)

pt_nowcast_matrix

estimate_and_apply_delays
Estimate and apply delays to generate retrospective nowcasts

Description

This function ingests a list of incomplete reporting triangles and generates a list of point nowcast
matrices, based on the delay estimated in each triangle or the corresponding delay passed in. It
uses the specified n number of reference times to estimate the delay in each retrospective reporting
triangle.

Usage

estimate_and_apply_delays(
retro_reporting_triangles,
n = min(sapply(retro_reporting_triangles, nrow)),
delay_pmf = NULL,
validate = TRUE

Arguments

retro_reporting_triangles
List of reporting triangles to generate nowcasts for. Typically created by apply_reporting_structures(

estimate_and_apply_uncertainty 31

n Integer indicating the number of reference times (number of rows) to use to es-
timate the delay distribution for each reporting triangle. Default is the minimum
of the number of rows of all the matrices in retro_reporting_triangles.

delay_pmf Vector or list of vectors of delays assumed to be indexed starting at the first delay
column in each of the matrices in retro_reporting_triangles. If a list, must
be of the same length as retro_reporting_triangles, with elements aligning.
Default is NULL.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Value

point_nowcast_matrices List of the same number of elements as the input retro_reporting_triangles
but with each reporting triangle filled in based on the delay estimated in that reporting triangle.

See Also

High-level workflow wrapper functions allocate_reference_times(), estimate_and_apply_delay(),
estimate_and_apply_uncertainty(), estimate_uncertainty_retro()

Examples

Generate retrospective nowcasts using larger triangle
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01", 1]
rep_tri <- as_reporting_triangle(data_as_of) |>
truncate_to_delay(max_delay = 25) |>
tail(n = 50)
trunc_rts <- truncate_to_rows(rep_tri, n = 2)
retro_rts <- apply_reporting_structures(trunc_rts)
retro_pt_nowcast_mat_list <- estimate_and_apply_delays(retro_rts, n = 30)
retro_pt_nowcast_mat_list[1:2]

Using a pre-computed delay PMF
delay <- estimate_delay(rep_tri, n = 30)
retro_pt_nowcast_mat_list <- estimate_and_apply_delays(
retro_rts,
n = 30,
delay_pmf = delay
)

retro_pt_nowcast_mat_list[1:2]

estimate_and_apply_uncertainty
Estimate and apply uncertainty to a point nowcast matrix

32 estimate_and_apply_uncertainty

Description

Generates probabilistic nowcasts by estimating uncertainty parameters from retrospective nowcasts
and applying them to a point nowcast matrix.

This function combines:

1. estimate_uncertainty_retro() - Estimates uncertainty parameters using retrospective now-
casts

2. sample_nowcasts() - Applies uncertainty to generate draws

To obtain estimates of uncertainty parameters, use estimate_uncertainty_retro(). For full

control over individual steps (e.g., custom matrix preparation, alternative aggregation), use the low-

level functions (truncate_to_rows(), apply_reporting_structures(), estimate_and_apply_delays(),
estimate_uncertainty()) directly.

Usage

estimate_and_apply_uncertainty(
point_nowcast_matrix,
reporting_triangle,
n_history_delay,
n_retrospective_nowcasts,
structure = get_reporting_structure(reporting_triangle),
draws = 1000,
delay_pmf = NULL,
uncertainty_model = fit_by_horizon,
uncertainty_sampler = sample_nb,
validate = TRUE,

Arguments

point_nowcast_matrix
Matrix of point nowcast predictions and observations, with rows representing
the reference times and columns representing the delays.

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

n_history_delay
Integer indicating the number of reference times (observations) to be used in the
estimate of the reporting delay, always starting from the most recent reporting
delay.

n_retrospective_nowcasts
Integer indicating the number of retrospective nowcast times to use for uncer-
tainty estimation.

estimate_and_apply_uncertainty 33

structure Integer or vector specifying the reporting structure. If integer, divides columns
evenly by that integer (with last possibly truncated). If vector, the sum must
not be greater than or equal to the number of columns. Default is 1 (standard
triangular structure).

draws Integer indicating the number of draws of the predicted nowcast vector to gen-
erate. Default is 1000.
delay_pmf Vector or list of vectors of delays assumed to be indexed starting at the first delay

column in each of the matrices in retro_reporting_triangles. If a list, must
be of the same length as retro_reporting_triangles, with elements aligning.
Default is NULL.
uncertainty_model
Function that ingests a matrix of observations and a matrix of predictions and re-
turns a vector that can be used to apply uncertainty using the same error model.
Default is fit_by_horizon with arguments of obs matrix of observations and
pred the matrix of predictions that fits each column (horizon) to a negative bi-
nomial observation model by default. The user can specify a different fitting
model by replacing the fit_model argument in fit_by_horizon.
uncertainty_sampler
Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Additional arguments to estimate_uncertainty() and sample_prediction().

Value

nowcast_draws_df Dataframe containing draws of combined observations and probabilistic pre-
dictions at each reference time.

See Also

High-level workflow wrapper functions allocate_reference_times(), estimate_and_apply_delay(),
estimate_and_apply_delays(), estimate_uncertainty_retro()

Examples

Use package data truncated to appropriate size

data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01", 1]

triangle <- as_reporting_triangle(data_as_of) |>
truncate_to_delay(max_delay = 25)

pt_nowcast_matrix <- estimate_and_apply_delay(
reporting_triangle = triangle,
n=175

)

Use 75 reference times for delay estimation and 40 for uncertainty

34 estimate_delay

nowcast_draws_df <- estimate_and_apply_uncertainty(
pt_nowcast_matrix,
triangle,
n_history_delay = 75,
n_retrospective_nowcasts = 40,
draws = 100
)

head(nowcast_draws_df)

estimate_delay Estimate a delay distribution from a reporting triangle

Description

Provides an estimate of the reporting delay as a function of the delay, based on the reporting triangle
and the number of reference date observations to be used in the estimation. This point estimate of
the delay is computed empirically, using an iterative algorithm starting from the most recent ob-
servations. Use truncate_to_delay() if you want to limit the maximum delay before estimation.
This code was adapted from code written (under an MIT license) by the Karlsruhe Institute of Tech-
nology RESPINOW German Hospitalization Nowcasting Hub. Modified from: https://github.
com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8ccOe4ab29074462c24650e/code/
baseline/functions.R#L55 #nolint

Usage

estimate_delay(
reporting_triangle,
n = nrow(reporting_triangle),
validate = TRUE

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

n Integer indicating the number of reference times (observations) to be used in the
estimate of the reporting delay, always starting from the most recent reporting
delay. The default is to use the whole reporting triangle, so nrow(reporting_triangle).

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.
Value

Vector indexed at 0 of length ncol(reporting_triangle) with columns indicating the point esti-
mate of the empirical probability mass on each delay.

https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55
https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55
https://github.com/KITmetricslab/RESPINOW-Hub/blob/7cce3ae2728116e8c8cc0e4ab29074462c24650e/code/baseline/functions.R#L55

estimate_uncertainty 35

See Also

Delay distribution estimation functions preprocess_negative_values()

Examples

Example 1: Standard usage
delay_pmf <- estimate_delay(
reporting_triangle = example_reporting_triangle
)
delay_pmf

Example 2: Using data with downward corrections (negatives preserved)
Low-level functions process triangles as-is without preprocessing
delay_pmf_negative <- estimate_delay(

reporting_triangle = example_downward_corr_rt,

n=>5
)
delay_pmf_negative

Example 3: Preprocess explicitly before estimation if needed
preprocessed_triangle <- preprocess_negative_values(example_downward_corr_rt)
delay_pmf_preprocessed <- estimate_delay(

reporting_triangle = preprocessed_triangle,

n=>5
)

delay_pmf_preprocessed

estimate_uncertainty Estimate uncertainty parameters

Description

This function ingests a list of point nowcast matrices and a corresponding list of truncated reporting
matrices and uses both to estimate a vector of uncertainty parameters from the observations and
estimates at each horizon, starting at O up until the max delay number of horizons.

Usage

estimate_uncertainty(
point_nowcast_matrices,
truncated_reporting_triangles,
retro_reporting_triangles,
n = length(point_nowcast_matrices),
uncertainty_model = fit_by_horizon,
ref_time_aggregator = identity,
delay_aggregator = function(x) rowSums(x, na.rm = TRUE),
validate = TRUE

36 estimate_uncertainty

Arguments

point_nowcast_matrices
List of point nowcast matrices where rows represent reference time points and
columns represent delays.

truncated_reporting_triangles
List of truncated reporting matrices, containing all observations as of the latest
reference time. Elements of list are paired with elements of point_nowcast_matrices.

retro_reporting_triangles
List of n truncated reporting triangle matrices with as many rows as available
given the truncation.

n Integer indicating the number of reporting matrices to use to estimate the uncer-
tainty parameters.

uncertainty_model
Function that ingests a matrix of observations and a matrix of predictions and re-
turns a vector that can be used to apply uncertainty using the same error model.
Default is fit_by_horizon with arguments of obs matrix of observations and
pred the matrix of predictions that fits each column (horizon) to a negative bi-
nomial observation model by default. The user can specify a different fitting
model by replacing the fit_model argument in fit_by_horizon.

ref_time_aggregator
Function that operates along the rows (reference times) of the retrospective point
nowcast matrix before it has been aggregated across columns (delays). Default
is identity which does not aggregate across reference times.

delay_aggregator
Function that operates along the columns (delays) of the retrospective point
nowcast matrix after it has been aggregated across reference times. Default is
function(x) rowSums(x, na.rm= TRUE).

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Value

uncertainty_params Vector of length of the number of horizons, with each element representing
the estimate of the uncertainty parameter for each horizon. The specific parameter type depends on
the chosen error model.

See Also

Observation error estimation functions fit_by_horizon(), fit_nb()

Examples

Use example data to create reporting triangle
data_as_of_df <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data = data_as_of_df)

Create retrospective nowcasts
trunc_rts <- truncate_to_rows(rep_tri, n = 2)

estimate_uncertainty_retro 37

retro_rts <- apply_reporting_structures(trunc_rts)
retro_nowcasts <- estimate_and_apply_delays(retro_rts)

Estimate dispersion parameters using default negative binomial model
disp_params <- estimate_uncertainty(
point_nowcast_matrices = retro_nowcasts,
truncated_reporting_triangles = trunc_rts,
retro_reporting_triangles = retro_rts

)

disp_params

Estimate dispersion parameters from rolling sum on the reference times
if (requireNamespace("zoo", quietly = TRUE)) {
disp_params_agg <- estimate_uncertainty(
point_nowcast_matrices = retro_nowcasts,
truncated_reporting_triangles = trunc_rts,
retro_reporting_triangles = retro_rts,
ref_time_aggregator = function(x) zoo::rollsum(x, k = 2, align = "right")
)
disp_params_agg

3

estimate_uncertainty_retro
Estimate uncertainty parameters using retrospective nowcasts

Description

Estimates uncertainty parameters for nowcasting by creating a series of retrospective datasets from
the input reporting triangle, generating point nowcasts for those datasets, and calibrating uncertainty
parameters based on retrospective nowcast performance.

This function chains the retrospective nowcasting workflow:

1. truncate_to_rows() - Create retrospective snapshots

2. apply_reporting_structures() - Generate retrospective reporting triangles
3. estimate_and_apply_delays() - Generate point nowcasts
4,

estimate_uncertainty() - Estimate uncertainty parameters

For full probabilistic nowcasts (uncertainty estimation + sampling), use estimate_and_apply_uncertainty().

For more control over individual steps (e.g., custom matrix preparation, alternative aggregation),
use the low-level functions directly.

Usage

estimate_uncertainty_retro(
reporting_triangle,
n_history_delay,
n_retrospective_nowcasts,

38 estimate_uncertainty_retro

structure = get_reporting_structure(reporting_triangle),
delay_pmf = NULL,
validate = TRUE,

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

n_history_delay
Integer indicating the number of reference times (observations) to be used in the
estimate of the reporting delay, always starting from the most recent reporting
delay.

n_retrospective_nowcasts
Integer indicating the number of retrospective nowcast times to use for uncer-
tainty estimation.

structure Integer or vector specifying the reporting structure. If integer, divides columns
evenly by that integer (with last possibly truncated). If vector, the sum must
not be greater than or equal to the number of columns. Default is 1 (standard
triangular structure).

delay_pmf Vector or list of vectors of delays assumed to be indexed starting at the first delay
column in each of the matrices in retro_reporting_triangles. If a list, must
be of the same length as retro_reporting_triangles, with elements aligning.
Default is NULL.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

Additional arguments passed to estimate_uncertainty().

Value

A numeric vector of uncertainty parameters with length equal to one less than the number of
columns in the reporting triangle, with each element representing the estimate of the uncertainty
parameter for each horizon. Returns NULL if insufficient data is available for estimation.

See Also

High-level workflow wrapper functions allocate_reference_times(), estimate_and_apply_delay(),
estimate_and_apply_delays(), estimate_and_apply_uncertainty()

Examples

Create a reporting triangle from syn_nssp_df
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data_as_of) |>

example_downward_corr_rt 39

truncate_to_delay(max_delay = 25)

uncertainty_params <- estimate_uncertainty_retro(
rep_tri,
n_history_delay = 30,
n_retrospective_nowcasts = 10

)

uncertainty_params

example_downward_corr_rt
Example reporting triangle with downward corrections

Description

A reporting_triangle object demonstrating how to handle systematic downward corrections in re-
porting data. This represents a realistic case where data quality reviews at delay 2 consistently
identify false positives or reclassify cases, producing negative values at that specific delay.

Usage

example_downward_corr_rt

Format
A reporting_triangle object with 8 reference dates and 4 delays:
reporting_triangle_matrix 8x4 matrix with negative values at delay 2

reference_dates 8 dates starting from 2024-01-01

delays_unit "days"

Details

Use this example to understand:

* How to work with negative corrections in delay distributions
» The impact of preprocessing negative values on delay estimation

* How PMFs and CDFs behave with systematic downward corrections

See Also

» example_reporting_triangle for a clean example without corrections

* baselinenowcast.reporting_triangle() specifically the preprocess argument for a de-
scription of how to remove negative values if desired.

Example datasets example_reporting_triangle, germany_covid19_hosp, syn_nssp_df, syn_nssp_line_list

40 example_reporting_triangle

Examples

View the example triangle with downward corrections
example_downward_corr_rt

Estimate delay with and without preprocessing

delay_raw <- estimate_delay(example_downward_corr_rt, n = 5)

delay_processed <- estimate_delay(
preprocess_negative_values(example_downward_corr_rt),
n=>5

)

Compare the resulting PMFs
delay_raw
delay_processed

example_reporting_triangle
Simple example reporting triangle for demonstrations

Description
A basic reporting_triangle object demonstrating standard structure with complete early reference
times and progressively incomplete recent times. Useful for simple examples and tests.

Usage

example_reporting_triangle

Format

A reporting_triangle object with 5 reference dates and 4 delays:

reporting_triangle_matrix 5x4 matrix with counts
reference_dates 5 dates starting from 2024-01-01

delays_unit "days"

Details

This is a simple, clean example without complications like negative values or unusual structures.
Ideal for:

» Package examples demonstrating basic functionality
* Unit tests for standard cases

* Vignettes introducing nowcasting concepts

Use example_downward_corr_rt for examples with data quality corrections.

fit_by_horizon 41

See Also

* example_downward_corr_rt for downward corrections example
* as_reporting_triangle() to create reporting triangles

Example datasets example_downward_corr_rt, germany_covid19_hosp, syn_nssp_df, syn_nssp_line_list

Examples

View the example triangle
example_reporting_triangle

Use in nowcasting - requires complete rows for delay estimation
estimate_delay(example_reporting_triangle, n = 6)

fit_by_horizon Helper function that fits its each column of the matrix (horizon) to an
observation model.

Description

Helper function that fits its each column of the matrix (horizon) to an observation model.

Usage

fit_by_horizon(obs, pred, fit_model = fit_nb)

Arguments
obs Matrix or vector of observations.
pred Matrix or vector of predictions.
fit_model Function that ingests observations and expectations and returns uncertainty pa-
rameters, default is fit_nb.
Value

Vector of uncertainty parameters of the same length as the number of columns in the obs matrix.

See Also

Observation error estimation functions estimate_uncertainty(), fit_nb()

42

Examples

obs <- matrix(
c(

’

6, 2,
’ 4! 2,
4, 2

o = Ul

’ ’

),
nrow = 3,
byrow = TRUE
)
pred <- matrix(
c(
.8,
.4,
2

.2,
7,
.3

’

’

2,1
.5, 3
1,01

~N oo b
A w ol

’

),

nrow = 3,

byrow = TRUE
)

disp <- fit_by_horizon(obs = obs, pred = pred)

disp

fit_nb

fit_nb

Fit a negative binomial to a vector of observations and expectations

Description

Takes in a vector of observations and a vector of expectations and performs a MLE estimator to esti-
mate the dispersion parameter of a negative binomial. This code was adapted from code written (un-
der an MIT license) by the Karlsruhe Institute of Technology RESPINOW German Hospitalization
Nowcasting Hub. Modified from: https://github.com/KITmetricslab/RESPINOW-Hub/blob/
7fab4dce7b559c3076ab643cf22048chb5fb84cc2/code/baseline/functions. R#L404 #nolint

Usage
fit_nb(x, mu)

Arguments

X Vector of observed values.

mu Vector of expected values.

Value

the maximum likelihood estimate of the dispersion

See Also

Observation error estimation functions estimate_uncertainty(), fit_by_horizon()

https://github.com/KITmetricslab/RESPINOW-Hub/blob/7fab4dce7b559c3076ab643cf22048cb5fb84cc2/code/baseline/functions.R#L404
https://github.com/KITmetricslab/RESPINOW-Hub/blob/7fab4dce7b559c3076ab643cf22048cb5fb84cc2/code/baseline/functions.R#L404

germany_covidl9_hosp 43

Examples

obs <- c(4, 8, 10)

pred <- ¢(3.1, 7.2, 11)
disp <- fit_nb(obs, pred)
disp

germany_covid19_hosp Incident COVID-19 hospitalisations indexed by the date of positive
test (reference date) and report date from Germany in 2021 and 2022.

Description

Incident COVID-19 hospitalisations indexed by the date of positive test (reference date) and report
date from Germany in 2021 and 2022.

Usage

germany_covid19_hosp

Format

A data.frame with 140,630 rows and 6 columns.

reference_date Date of first positive COVID-19 test formatted in ISO8601 standards as YYY Y-
MM-DD.

location Character string indicating the location of the case counts

age_group Character string indicating the age group of the case counts.

delay Integer specifying the delay, in days, between the reference date and the report date

count Integer indicating the number of cases indexed by reference and report date.

report_date Date of case report, formatted in ISO8601 standards as YYYY-MM-DD.

Source

This data comes directly from the preprocessed data in the German COVID-19 Nowcast Hub from
https://github.com/KITmetricslab/hospitalization-nowcast-hub/blob/main/data-truth/
COVID-19/COVID-19_hospitalizations_preprocessed.csv. #nolint It contains incident case
counts by age group in Germany.

See Also

Example datasets example_downward_corr_rt, example_reporting_triangle, syn_nssp_df,
syn_nssp_line_list

https://github.com/KITmetricslab/hospitalization-nowcast-hub/blob/main/data-truth/COVID-19/COVID-19_hospitalizations_preprocessed.csv
https://github.com/KITmetricslab/hospitalization-nowcast-hub/blob/main/data-truth/COVID-19/COVID-19_hospitalizations_preprocessed.csv

44 get_delays_from_dates

get_delays_from_dates Compute delays between report dates and reference dates

Description

Computes delays between report dates and reference dates using the specified time unit. This is the
inverse operation of get_report_dates().

Usage

get_delays_from_dates(report_dates, reference_dates, delays_unit)

Arguments

report_dates Date vector of report dates.
reference_dates
Date vector of reference dates.

delays_unit Character string specifying the temporal granularity of the delays. Options are

n on non

"days", "weeks", "months”, "years". Default is "days".

Value

Numeric vector of delays.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_unit(),

get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(), validate_reporting_triangle()

Examples

Compute delays in days

ref_date <- as.Date("2024-01-01")

report_date <- as.Date("2024-01-08")
get_delays_from_dates(report_date, ref_date, "days") # 7

Compute delays in weeks
report_date_weeks <- as.Date("2024-01-15")
get_delays_from_dates(report_date_weeks, ref_date, "weeks") # 2

get_delays_unit 45

get_delays_unit Get delays unit from a reporting triangle

Description

Get delays unit from a reporting triangle

Usage

get_delays_unit(x)

Arguments

X A reporting_triangle object.

Value

Character string indicating the delays unit.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

delays_unit <- get_delays_unit(example_reporting_triangle)
delays_unit

get_max_delay Get maximum delay from reporting_triangle

Description

Get maximum delay from reporting_triangle

Usage

get_max_delay(x, non_zero = FALSE)

46 get_mean_delay

Arguments
X A reporting_triangle object
non_zero Logical. If TRUE, returns the maximum delay where at least one observation
is non-zero. Useful for identifying the actual extent of the delay distribution.
Default FALSE.
Value

Maximum delay (integer), or -1 if all zero when non_zero = TRUE

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Get maximum delay from triangle structure
max_delay <- get_max_delay(example_reporting_triangle)
max_delay

Get maximum delay with non-zero observations
max_delay_nz <- get_max_delay(example_reporting_triangle, non_zero = TRUE)
max_delay_nz

get_mean_delay Get mean delay for each row of reporting_triangle

Description

Get mean delay for each row of reporting_triangle

Usage

get_mean_delay(x)

Arguments

X A reporting_triangle object

get_quantile_delay 47

Value

Vector of mean delays for each reference date (numeric)

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

mean_delays <- get_mean_delay(example_reporting_triangle)
mean_delays

get_quantile_delay Get quantile delay for each row of reporting_triangle

Description

Get quantile delay for each row of reporting_triangle

Usage

get_quantile_delay(x, p = 0.99)

Arguments
X A reporting_triangle object
p Numeric value between 0 and 1 indicating the quantile to compute. For example,
p = 0.99 returns the delay at which 99% of cases have been reported. Default is
0.99.
Value

Vector of quantile delays for each reference date (integer). Returns NA for rows with no observa-
tions.

48 get_reference_dates

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(),as.matrix.reporting_triangle(), as_ChainlLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Get 99th percentile delay for each reference date
quantile_delays_99 <- get_quantile_delay(example_reporting_triangle)
quantile_delays_99

Get median delay
median_delays <- get_quantile_delay(example_reporting_triangle, p = 0.5)
median_delays

get_reference_dates Get reference dates from reporting_triangle

Description

Get reference dates from reporting_triangle

Usage

get_reference_dates(x)

Arguments

X A reporting_triangle object

Value

Vector of Date objects

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

get_reporting_structure 49

Examples

ref_dates <- get_reference_dates(example_reporting_triangle)
head(ref_dates)

get_reporting_structure
Get reporting structure from a reporting triangle

Description

Returns an integer or vector specifying the reporting structure, which indicates how the report-
ing triangle is organized. This structure tells apply_reporting_structure() how to create new
reporting triangles with the same reporting pattern.

Usage

get_reporting_structure(reporting_triangle)

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

Value

Integer or vector specifying the reporting structure. If integer, divides columns evenly by that integer
(with last possibly truncated). If vector, the sum must not be greater than or equal to the number of
columns. Default is 1 (standard triangular structure). If there are no NAs, will return 0.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(),
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Get structure from example triangle
structure <- get_reporting_structure(example_reporting_triangle)
structure

50 get_report_dates

get_report_dates Compute report dates from reference dates and delays

Description

Adds delays to reference dates using unit-aware date arithmetic.

Usage

get_report_dates(reference_dates, delays, delays_unit)

Arguments

reference_dates
Date vector of reference dates.

delays Numeric vector of delays.

delays_unit Character string specifying the temporal granularity of the delays. Options are

non non n on

"days", "weeks", "months”, "years". Default is "days".

Value

Date vector of report dates.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Compute report dates with days
ref_date <- as.Date("2024-01-01")
get_report_dates(ref_date, 7, "days") # 2024-01-08

Compute report dates with weeks
get_report_dates(ref_date, 2, "weeks") # 2024-01-15

head.reporting_triangle 51

head.reporting_triangle
Get first rows of a reporting_triangle

Description

Get first rows of a reporting_triangle

Usage
S3 method for class 'reporting_triangle'
head(x, n = 6L, ...)
Arguments
X A reporting_triangle object.
n Integer indicating the number of rows to return. Default is 6.

Additional arguments (not currently used).

Value

First rows as a reporting_triangle.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), is_reporting_triangle(), new_reporting_triangle(),
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

Examples

Get first 3 rows
head(example_reporting_triangle, n = 3)

52 new_baselinenowcast_df

is_reporting_triangle Check if an object is a reporting_triangle

Description

Check if an object is a reporting_triangle

Usage

is_reporting_triangle(x)

Arguments

X An object to check.

Value

Logical indicating whether the object is a reporting_triangle.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(),as.matrix.reporting_triangle(), as_ChainlLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), new_reporting_triangle(),
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

new_baselinenowcast_df
Combine data from a nowcast dataframe, strata, and reference dates

Description
Combines data from a nowcast dataframe, a named list of the strata associated with the nowcast
dataframe, and a vector of reference dates corresponding to the time column in the baselinenowcast_df
Usage

new_baselinenowcast_df (baselinenowcast_df, reference_dates, output_type)

new_reporting_triangle 53

Arguments

baselinenowcast_df
Data.frame containing information for multiple draws with columns for the ref-
erence time (time), the predicted counts (pred_count), and the draw number
(draw).
reference_dates
Vector of reference dates corresponding to the reference times in the baselinenowcast_df.

output_type Character string indicating whether the output should be samples ("samples")
from the estimate with full uncertainty or whether to return the point estimate
("point™). Default is "samples”. If "point"estimates are specified, the mini-
mum number of reference times needed is the number needed for delay estima-
tion, otherwise, if "samples” are specified, at least 2 additional reference times
are required for uncertainty estimation.

Value

An object of class baselinenowcast_df

See Also

Main nowcasting interface functions assert_baselinenowcast_df (), baselinenowcast (), baselinenowcast.data.fra
baselinenowcast.reporting_triangle(), baselinenowcast_df-class

new_reporting_triangle
Class constructor for reporting_triangle objects

Description

Creates a new reporting_triangle object from a matrix.

Usage

new_reporting_triangle(reporting_triangle_matrix, reference_dates, delays_unit)

Arguments

reporting_triangle_matrix
Matrix of reporting triangle where rows are reference times, columns are delays,
and entries are incident counts.

reference_dates
Vector of Date objects indicating the reference dates corresponding to each row
of the matrix.

delays_unit Character string specifying the temporal granularity of the delays. Options are

non non non

"days", "weeks", "months”, "years". Default is "days".

54 preprocess_negative_values

Value

An object of class reporting_triangle

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

preprocess_negative_values
Preprocess negative values in the reporting triangle

Description

Takes in a reporting triangle and returns it with negative values of reporting handled by redistribut-
ing them to earlier delays (from longer delay to shorter). This is useful when dealing with reporting
corrections that can result in negative incremental counts.

When negative values are detected, they are set to zero and the negative amount is subtracted from
the count at the next earlier delay (moving from right to left in each row). This process continues
until either the negative value is fully absorbed or the first delay is reached.

This code was adapted from code written (under an MIT license) by the Karlsruhe Institute of Tech-
nology RESPINOW German Hospitalization Nowcasting Hub. Modified from https://github.
com/KITmetricslab/RESPINOW-Hub/blob/main/code/baseline/functions.R #nolint

Usage

preprocess_negative_values(reporting_triangle, validate = TRUE)

Arguments

reporting_triangle
A reporting_triangle object.

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.

https://github.com/KITmetricslab/RESPINOW-Hub/blob/main/code/baseline/functions.R
https://github.com/KITmetricslab/RESPINOW-Hub/blob/main/code/baseline/functions.R

print.reporting_triangle 55

Details
Use this function when:
* Your data contains reporting corrections that result in negative counts

* You want to preserve the total count while handling negatives

* You need a delay distribution that sums to 1 or a CDF that is weakly increasing
Do not use this function when:

* Your data naturally has negative PMF entries (e.g., from differencing)
* You want to preserve the original structure including negatives

* You are working with corrections that should be reflected as negative probabilities

Value

A reporting_triangle object with negative values handled via redistribution to earlier delays.

See Also

Delay distribution estimation functions estimate_delay()

Examples

Using example dataset with negative values from corrections

Preprocess to handle negatives

preprocessed <- preprocess_negative_values(example_downward_corr_rt)
preprocessed

print.reporting_triangle
Print a reporting_triangle object

Description

Print a reporting_triangle object

Usage

S3 method for class 'reporting_triangle'
print(x, n_rows = 10, n_cols = 10, ...)

56 reporting_triangle-class

Arguments
X A reporting_triangle object to print.
N_rows Maximum number of rows to display. If the triangle has more rows, only the
last n_rows rows are shown. Default is 10. Set to NULL to display all rows.
n_cols Maximum number of columns to display. If the triangle has more columns, only
the first n_cols columns are shown. Default is 10. Set to NULL to display all
columns.
Additional arguments passed to print methods.
Value

Invisibly returns the object.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

reporting_triangle-class
Reporting Triangle Object

Description

A reporting_triangle object contains the data and metadata needed for nowcasting.

Value
A reporting_triangle object. This is a matrix subclass containing case counts indexed by refer-
ence date (rows) and delay (columns). See the Structure section for details on the object format.
Structure
A reporting_triangle is a matrix with class c("reporting_triangle"”, "matrix"):

* Rows: Reference dates
e Columns: Delays (0, 1, 2, ...)
* Entries: Incident cases at each reference date and delay

* Row names: Reference dates as character

reporting_triangle-class 57

e Column names: Delays as character

Attributes:

non non "non

* delays_unit: Character ("days", "weeks", "months", "years")

Reference dates are stored as row names and can be extracted using get_reference_dates(). The
maximum delay can be obtained using get_max_delay(). The structure can be computed using
get_reporting_structure(). See the corresponding as_reporting_triangle.matrix() and
as_reporting_triangle.data.frame() functions for more details on the required input formats
to generate the object.

Working with reporting triangles
Reporting triangle objects provide:
Inspection and display:

* print(): Informative display with metadata

e summary(): Statistics including completion, delays, and zeros

head(), tail(): Extract first or last rows

 Standard matrix operations: rowSums (), colSums()
Subsetting and modification:

e [and [<-: Extract or assign values with automatic validation

» Subsetting preserves class and attributes when result is a matrix
Package functions:

* estimate_and_apply_delay(): Estimate delay and generate point nowcast
* estimate_delay(): Extract delay distribution from triangle

* apply_delay(): Apply delay distribution for nowcasting

e truncate_to_row(): Remove most recent rows

* preprocess_negative_values(): Handle reporting corrections

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(), print.reporting_triangle(), summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

58 sample_nb

Examples

Create a reporting triangle from data
data <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data = data)

Use with low-level functions

filled <- estimate_and_apply_delay(rep_tri)
delay_pmf <- estimate_delay(rep_tri)
nowcast <- apply_delay(rep_tri, delay_pmf)

Direct matrix operations
total_by_date <- rowSums(rep_tri, na.rm = TRUE)
total_by_delay <- colSums(rep_tri, na.rm = TRUE)

Subsetting and inspection
recent <- tail(rep_tri, n = 10)
summary (rep_tri)

sample_nb Sample from negative binomial model given a set of predictions

Description

Sample from negative binomial model given a set of predictions

Usage

sample_nb(pred, uncertainty_params)

Arguments

pred Vector of predictions.

uncertainty_params
Vector of uncertainty parameters.

Value
sampled_pred Object of the same dimensions as pred representing a single draw from the negative
binomial distribution with the specified uncertainty params.

See Also

Probabilistic nowcast generation functions combine_obs_with_pred(), sample_nowcast(), sample_nowcasts(),
sample_prediction(), sample_predictions()

sample_nowcast 59

Examples

pred <- c(3.2, 4.6)
sampled_preds <- sample_nb(pred,
uncertainty_params = c(50, 100)

)

sampled_preds

sample_nowcast Generate a single draw of a nowcast combining observed and pre-
dicted values

Description

Generate a single draw of a nowcast combining observed and predicted values

Usage

sample_nowcast(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
uncertainty_sampler = sample_nb,
ref_time_aggregator = identity,
delay_aggregator = function(x) rowSums(x, na.rm = TRUE)

Arguments

point_nowcast_matrix
Matrix of point nowcast predictions and observations, with rows representing
the reference times and columns representing the delays.

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

uncertainty_params
Vector of uncertainty parameters ordered from horizon 1 to the maximum hori-
zon. Note that these will be reversed internally to match the ordering of the
point_nowcast_matrix (where a horizon of 1 is the last entry).

uncertainty_sampler
Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

60 sample_nowcasts

ref_time_aggregator
Function that operates along the rows (reference times) of the retrospective point
nowcast matrix before it has been aggregated across columns (delays). Default
is identity which does not aggregate across reference times.
delay_aggregator
Function that operates along the columns (delays) of the retrospective point
nowcast matrix after it has been aggregated across reference times. Default is
function(x) rowSums(x, na.rm= TRUE).

Value

Vector of predicted counts at each reference date based on combining the observed counts and the
predicted counts for the unobserved elements. Returns values for all reference dates in the input
reporting_triangle (or fewer if using ref_time_aggregator).

See Also

Probabilistic nowcast generation functions combine_obs_with_pred(), sample_nb(), sample_nowcasts(),
sample_prediction(), sample_predictions()

Examples

Generate point nowcast and uncertainty params from example data
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data_as_of) |>

truncate_to_delay(max_delay = 5) |>

tail(n = 10)
point_nowcast_matrix <- estimate_and_apply_delay(rep_tri, n = 10)
reporting_triangle <- apply_reporting_structure(rep_tri)
uncertainty_params <- estimate_uncertainty_retro(

rep_tri,

n_history_delay = 8,

n_retrospective_nowcasts = 2
)
nowcast_draw <- sample_nowcast(

point_nowcast_matrix,

reporting_triangle,

uncertainty_params

)

nowcast_draw

sample_nowcasts Generate multiple draws of a nowcast combining observed and pre-
dicted values

Description

Generate multiple draws of a nowcast combining observed and predicted values

sample_nowcasts 61

Usage

sample_nowcasts(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
draws = 1000,

Arguments

point_nowcast_matrix
Matrix of point nowcast predictions and observations, with rows representing
the reference times and columns representing the delays.

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

uncertainty_params
Vector of uncertainty parameters ordered from horizon 1 to the maximum hori-
zon. Note that these will be reversed internally to match the ordering of the
point_nowcast_matrix (where a horizon of 1 is the last entry).

draws Integer indicating the number of draws of the predicted nowcast vector to gen-
erate. Default is 1000.

Additional arguments passed to sample_nowcast.

Value

Dataframe containing information for multiple draws with columns for the reference date (reference_date),
the predicted counts (pred_count), and the draw number (draw). Returns predictions for all refer-
ence dates in the input reporting_triangle (or fewer if using ref_time_aggregator).

See Also

Probabilistic nowcast generation functions combine_obs_with_pred(), sample_nb(), sample_nowcast(),
sample_prediction(), sample_predictions()

Examples

Generate point nowcast and uncertainty params from example data
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data_as_of) |>

truncate_to_delay(max_delay = 5) |>

tail(n = 10)
point_nowcast_matrix <- estimate_and_apply_delay(rep_tri, n = 10)
reporting_triangle <- apply_reporting_structure(rep_tri)
uncertainty_params <- estimate_uncertainty_retro(

rep_tri,

62 sample_prediction

n_history_delay = 8,
n_retrospective_nowcasts = 2

)

nowcast_draws <- sample_nowcasts(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
draws = 5

)

nowcast_draws

sample_prediction Get a draw of only the predicted elements of the nowcast vector

Description

Get a draw of only the predicted elements of the nowcast vector

Usage

sample_prediction(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
uncertainty_sampler = sample_nb,
ref_time_aggregator = identity,
delay_aggregator = function(x) rowSums(x, na.rm = TRUE)

Arguments

point_nowcast_matrix
Matrix of point nowcast predictions and observations, with rows representing
the reference times and columns representing the delays.
reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).
uncertainty_params
Vector of uncertainty parameters ordered from horizon 1 to the maximum hori-
zon. Note that these will be reversed internally to match the ordering of the
point_nowcast_matrix (where a horizon of 1 is the last entry).
uncertainty_sampler
Function that ingests a vector or matrix of predictions and a vector of uncer-
tainty parameters and generates draws from the observation model. Default is
sample_nb which expects arguments pred for the vector of predictions and un-
certainty parameters for the corresponding vector of uncertainty parameters, and
draws from a negative binomial for each element of the vector.

sample_prediction 63

ref_time_aggregator
Function that operates along the rows (reference times) of the retrospective point
nowcast matrix before it has been aggregated across columns (delays). Default
is identity which does not aggregate across reference times.
delay_aggregator
Function that operates along the columns (delays) of the retrospective point
nowcast matrix after it has been aggregated across reference times. Default is
function(x) rowSums(x, na.rm=TRUE).

Value

Matrix of predicted draws at each reference date, for all reference dates in the input point_nowcast_matrix
(or fewer if using ref_time_aggregator).

See Also

Probabilistic nowcast generation functions combine_obs_with_pred(), sample_nb(), sample_nowcast(),
sample_nowcasts(), sample_predictions()

Examples

Generate point nowcast and uncertainty params from example data
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
rep_tri <- as_reporting_triangle(data_as_of) |>

truncate_to_delay(max_delay = 5) |>

tail(n = 10)
point_nowcast_matrix <- estimate_and_apply_delay(rep_tri, n = 10)
reporting_triangle <- apply_reporting_structure(rep_tri)
uncertainty_params <- estimate_uncertainty_retro(

rep_tri,

n_history_delay = 8,

n_retrospective_nowcasts = 2
)
nowcast_pred_draw <- sample_prediction(

point_nowcast_matrix,

reporting_triangle,

uncertainty_params
)

nowcast_pred_draw

Get draws on the rolling sum
if (requireNamespace(”zoo"”, quietly = TRUE)) {
nowcast_pred_draw_agg <- sample_prediction(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
ref_time_aggregator = function(x) zoo::rollsum(x, k = 2, align = "right")
)
nowcast_pred_draw_agg

}

64 sample_predictions

sample_predictions Get a dataframe of multiple draws of only the predicted elements of
the nowcast vector

Description

Get a dataframe of multiple draws of only the predicted elements of the nowcast vector

Usage

sample_predictions(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,
draws = 1000,

Arguments

point_nowcast_matrix
Matrix of point nowcast predictions and observations, with rows representing
the reference times and columns representing the delays.

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

uncertainty_params
Vector of uncertainty parameters ordered from horizon 1 to the maximum hori-
zon. Note that these will be reversed internally to match the ordering of the
point_nowcast_matrix (where a horizon of 1 is the last entry).

draws Integer indicating the number of draws of the predicted nowcast vector to gen-
erate. Default is 1000.

Additional arguments passed to sample_prediction.

Value

Dataframe containing the predicted point nowcast vectors indexed by predicted count (pred_count),
reference date (reference_date), and the draw index (draw). Returns predictions for all reference
dates in the input reporting_triangle (or fewer if using ref_time_aggregator).

See Also

Probabilistic nowcast generation functions combine_obs_with_pred(), sample_nb(), sample_nowcast(),
sample_nowcasts(), sample_prediction()

summary.reporting_triangle

Examples

Generate point nowcast and uncertainty params from example data
data_as_of <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",
rep_tri <- as_reporting_triangle(data_as_of) |>

truncate_to_delay(max_delay = 5) |>

tail(n = 10)
point_nowcast_matrix <- estimate_and_apply_delay(rep_tri, n = 10)
reporting_triangle <- apply_reporting_structure(rep_tri)
uncertainty_params <- estimate_uncertainty_retro(

rep_tri,

n_history_delay = 8,

n_retrospective_nowcasts = 2
)
nowcast_pred_draws <- sample_predictions(

point_nowcast_matrix,

reporting_triangle,

uncertainty_params,

draws = 5

)

nowcast_pred_draws

Get nowcast pred draws over rolling sum
if (requireNamespace(”zoo"”, quietly = TRUE)) {
nowcast_pred_draws_rolling_df <- sample_predictions(
point_nowcast_matrix,
reporting_triangle,
uncertainty_params,

draws = 5,

ref_time_aggregator = function(x) zoo::rollsum(x, k = 2, align
)
nowcast_pred_draws_rolling_df

}

]

"right”)

65

summary.reporting_triangle
Summarize a reporting_triangle object

Description

Summarize a reporting_triangle object

Usage
S3 method for class 'reporting_triangle'
summary(object, ...)

Arguments
object A reporting_triangle object to summarize.

Additional arguments not used.

66 syn_nssp_df

Value

Invisibly returns the object.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(),print.reporting_triangle(), reporting_triangle-class, tail.reporting_triangle
truncate_to_delay(), truncate_to_quantile(), validate_reporting_triangle()

Examples

Display summary statistics
summary (example_reporting_triangle)

syn_nssp_df A synthetic dataset containing the number of incident cases indexed by
reference date and report date. While data of this form could be from
any source, this data is meant to represent the output of pre-processing
the syn_nssp_line_list dataset, which is a synthetic patient-level line
list data from the United State’s National Syndromic Surveillance Sys-
tem (NSSP).

Description

A synthetic dataset containing the number of incident cases indexed by reference date and report
date. While data of this form could be from any source, this data is meant to represent the output of
pre-processing the syn_nssp_line_list dataset, which is a synthetic patient-level line list data from
the United State’s National Syndromic Surveillance System (NSSP).

Usage

syn_nssp_df

Format
A data.frame with 3795 rows and 3 columns.
reference_date Date the primary event occurred (e.g. date of hospital admissions, specimen col-

lection date, symptom onset), formatted in ISO8601 standards as YYYY-MM-DD.

report_date Date the event was reported into the surveillance system, formatted as YYYY-MM-
DD.

count Number of incident events (e.g. cases) occurring on the specified reference date and reported
on the report date.

syn_nssp_line_list 67

Source

Created for package demonstration, made to look like the output after preprocessing the line-list
data to obtain the number of incidence cases of a specific syndromic surveillance definition, in-
dexed by the date of admission (reference date) and the date of the diagnoses being reported to the
surveillance system (report date) (e.g. a reporting triangle in long format).

See Also

Example datasets example_downward_corr_rt, example_reporting_triangle, germany_covid19_hosp,
syn_nssp_line_list

syn_nssp_line_list A synthetic dataset resembling line-list (each row is a patient) data
from the United States’ National Syndromic Surveillance System
(NSSP) accessed via the Essence platform. All entries are synthetic,
formatted to look as close to the real raw data as possible.

Description

For an example of how to produce a nowcast from this data, see vignette(”"nssp_nowcast").

Usage

syn_nssp_line_list

Format
A data.frame with 25 rows and 8 columns.

C_Processed_BioSenseID Unique identifier for each patient
CCDDParsed Character string indicating primary symptoms and corresponding diagnoses codes.

DischargeDiagnosisMDTUpdates Character string formatted as a dictionary with indices and cor-
responding time stamps formatted as YYYY-MM-DD HH:MM:SS.

DischargeDiagnosisUpdates Character string formatted as a dictionary with indices and corre-
sponding diagnoses codes pertaining to this diagnosis associated with that event.

HasBeenAdmitted Numeric indicating whether the patient was admitted (0 for no, 1 for admis-
sion).

C_Visit_Date_Time Date-time indicating the time stamp of the the patient registering in the emer-
gency department, in YYYY-MM-DD HH:MM:SS format.

c_race Character string indicating the race/ethnicity of the patient.

sex Character string indicating the sex of the patient.

Source

Created for package demonstration to provide an example of how to pre-process this dataset to
obtain a reporting triangle. This is made to look like the data that one would pull directly an API to
access patient-level line-list data.

68 tail.reporting_triangle

See Also

Example datasets example_downward_corr_rt, example_reporting_triangle, germany_covid19_hosp,
syn_nssp_df

tail.reporting_triangle
Get last rows of a reporting_triangle

Description

Get last rows of a reporting_triangle

Usage
S3 method for class 'reporting_triangle'
tail(x, n = 6L, ...)
Arguments
X A reporting_triangle object.
n Integer indicating the number of rows to return. Default is 6.

Additional arguments (not currently used).

Value

Last rows as a reporting_triangle.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(), print.reporting_triangle(), reporting_triangle-class, summary.reporting_triar
truncate_to_delay(), truncate_to_quantile(), validate_reporting_triangle()

Examples

Get last 3 rows
tail(example_reporting_triangle, n = 3)

truncate_to_delay 69

truncate_to_delay Truncate reporting triangle to a specific maximum delay

Description

Creates a new reporting_triangle with columns filtered to include only delays from O to the specified
maximum delay. This is useful when you want to limit the delay distribution used for estimation.

Usage

truncate_to_delay(x, max_delay)

Arguments
X A reporting_triangle object.
max_delay Integer specifying the maximum delay to retain. Must be between 0 and the
current maximum delay of the triangle.
Value

A new reporting_triangle object with delays 0 through max_delay.

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(),print.reporting_triangle(), reporting_triangle-class, summary.reporting_triar
tail.reporting_triangle(), truncate_to_quantile(), validate_reporting_triangle()

Examples

Truncate to delays 0-2
rt_short <- truncate_to_delay(example_downward_corr_rt, max_delay = 2)
get_max_delay(rt_short) # Returns 2

70 truncate_to_quantile

truncate_to_quantile Truncate reporting_triangle to quantile-based maximum delay

Description

Automatically determines an appropriate maximum delay based on when a specified proportion of
cases have been reported (CDF cutoff). This is useful for reducing computational burden when
most cases are reported within a shorter delay window.

Usage

truncate_to_quantile(x, p = 0.99)

Arguments
X A reporting_triangle object
p Numeric value between 0 and 1 indicating the quantile cutoff. For example, p =
0.99 truncates to the delay at which 99% of cases have been reported. Default is
0.99.
Value

A reporting_triangle object truncated to the maximum quantile delay, or the original object if no
truncation is needed

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(),print.reporting_triangle(), reporting_triangle-class, summary.reporting_triar
tail.reporting_triangle(), truncate_to_delay(), validate_reporting_triangle()

Examples

data_as_of_df <- syn_nssp_df[syn_nssp_df$report_date <= "2026-04-01",]
Create triangle, max_delay is automatically computed
rep_tri <- suppressMessages(as_reporting_triangle(data = data_as_of_df))

Check the maximum delay in the triangle
ncol(rep_tri)

Truncate to 99th percentile of reporting
rep_tri_trunc <- truncate_to_quantile(rep_tri, p = 0.99)
ncol(rep_tri_trunc)

truncate_to_row 71

More aggressive truncation
rep_tri_trunc90 <- truncate_to_quantile(rep_tri, p = 0.90)
ncol (rep_tri_trunc9o)

truncate_to_row Truncate reporting triangle by removing a specified number of the last
rows

Description

Removes the last t rows from a reporting triangle to simulate what would have been observed at an
earlier reference time.

Usage

truncate_to_row(reporting_triangle, t, validate = TRUE)

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

t Integer indicating the number of timepoints to truncate off the bottom of the
original reporting triangle.
validate Logical. If TRUE (default), validates the object. Set to FALSE only when called

from functions that already validated.

Value
trunc_rep_tri A reporting_triangle object with t fewer rows than the input. The class and
metadata are preserved with updated reference dates.
See Also
Retrospective data generation functions apply_reporting_structure(), apply_reporting_structures(),
truncate_to_rows()
Examples

Generate single truncated triangle
trunc_rep_tri <- truncate_to_row(example_reporting_triangle, t = 1)
trunc_rep_tri

72 truncate_to_rows

truncate_to_rows Truncate reporting triangle by removing bottom rows

Description

Generates a list of retrospective reporting triangles by successively removing rows from the bottom
of the original triangle. Each truncated triangle represents what would have been observed at an
earlier reference time. This function truncates row(s) of the reporting triangle, removing the most
recent observations (starting from the bottom of the reporting triangle).

Usage

truncate_to_rows(
reporting_triangle,
n = nrow(reporting_triangle) - sum(is.na(rowSums(reporting_triangle))) - 1,
validate = TRUE

Arguments

reporting_triangle
A reporting_triangle object with rows representing reference times and columns
representing delays. Can be a reporting matrix or incomplete reporting matrix.
Can also be a ragged reporting triangle, where multiple columns are reported for
the same row (e.g., weekly reporting of daily data).

n Integer indicating the number of retrospective truncated triangles to be gener-
ated, always starting from the most recent reference time. Default is to generate
truncated matrices for each row up until there are insufficient rows to generate
nowcasts from, where the minimum requirement is one more than the number
of horizon rows (rows containing NAs).

validate Logical. If TRUE (default), validates the object. Set to FALSE only when called
from functions that already validated.
Value
trunc_rep_tri_list List of n truncated reporting_triangle objects with as many rows as
available given the truncation, and the same number of columns as the input reporting_triangle.
See Also
Retrospective data generation functions apply_reporting_structure(), apply_reporting_structures(),
truncate_to_row()
Examples

Generate multiple truncated triangles
truncated_rts <- truncate_to_rows(example_reporting_triangle, n = 2)
truncated_rts[1:2]

validate_reporting_triangle 73

validate_reporting_triangle
Validate a reporting_triangle object

Description

Validate a reporting_triangle object

Usage

validate_reporting_triangle(data)

Arguments

data A reporting_triangle object to validate

Value

The validated object (invisibly) or throws error

See Also

Reporting triangle construction and validation [. reporting_triangle(), [<-.reporting_triangle(),
as.data.frame.reporting_triangle(), as.matrix.reporting_triangle(), as_ChainLadder_triangle(),
as_reporting_triangle(), as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(), assert_reporting_triangle(), get_delays_from_dates(),
get_delays_unit(), get_max_delay(), get_mean_delay(), get_quantile_delay(), get_reference_dates(),
get_report_dates(), get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(),
new_reporting_triangle(),print.reporting_triangle(), reporting_triangle-class, summary.reporting_triar
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile()

[.reporting_triangle Subset reporting_triangle objects

Description

Extract or replace parts of a reporting_triangle object while preserving its attributes.

Usage
S3 method for class 'reporting_triangle'
x[...]

Arguments
X A reporting_triangle object

Indices for subsetting

74 [<-.reporting_triangle

Value

A reporting_triangle object with the subset data

See Also

Reporting triangle construction and validation [<-.reporting_triangle(), as.data.frame.reporting_triangle(),
as.matrix.reporting_triangle(), as_ChainLadder_triangle(), as_reporting_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay(),
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(),validate_reporting_triangle()

[<-.reporting_triangle
Subset assignment for reporting_triangle objects

Description

Assignment method that allows modification of reporting_triangle values while validating the result
remains a valid reporting_triangle.

Usage

S3 replacement method for class 'reporting_triangle'
x[...] <- value

Arguments
X A reporting_triangle object.
Row and column indices for assignment.
value Values to assign.
Value

The modified reporting_triangle object.

See Also

Reporting triangle construction and validation [. reporting_triangle(), as.data.frame.reporting_triangle(),
as.matrix.reporting_triangle(), as_ChainLadder_triangle(), as_reporting_triangle(),
as_reporting_triangle.data.frame(), as_reporting_triangle.matrix(), as_reporting_triangle.triangle(),
assert_reporting_triangle(), get_delays_from_dates(), get_delays_unit(), get_max_delay()
get_mean_delay(), get_quantile_delay(), get_reference_dates(), get_report_dates(),
get_reporting_structure(), head.reporting_triangle(), is_reporting_triangle(), new_reporting_triangle(
print.reporting_triangle(), reporting_triangle-class, summary.reporting_triangle(),
tail.reporting_triangle(), truncate_to_delay(), truncate_to_quantile(), validate_reporting_triangle()

Index

x baselinenowcast_df
assert_baselinenowcast_df, 11
baselinenowcast, 20
baselinenowcast.data.frame, 21

baselinenowcast.reporting_triangle,

24
baselinenowcast_df-class, 26
new_baselinenowcast_df, 52

+ datasets
example_downward_corr_rt, 39
example_reporting_triangle, 40
germany_covid19_hosp, 43
syn_nssp_df, 66
syn_nssp_line_list, 67

x estimate_delay
estimate_delay, 34
preprocess_negative_values, 54

* estimate_observation_error
estimate_uncertainty, 35
fit_by_horizon, 41
fit_nb, 42

+x example_data
example_downward_corr_rt, 39
example_reporting_triangle, 40
germany_covid19_hosp, 43
syn_nssp_df, 66
syn_nssp_line_list, 67

* generate_point_nowcasts
apply_delay, 5

* generate_probabilistic_nowcasts
combine_obs_with_pred, 27
sample_nb, 58
sample_nowcast, 59
sample_nowcasts, 60
sample_prediction, 62
sample_predictions, 64

* generate_retrospective_data
apply_reporting_structure, 6
apply_reporting_structures, 7

75

truncate_to_row, 71
truncate_to_rows, 72

* reporting_triangle

[.reporting_triangle, 73
[<-.reporting_triangle, 74
as.data.frame.reporting_triangle,
9
as.matrix.reporting_triangle, 10
as_ChainLadder_triangle, 13
as_reporting_triangle, 14
as_reporting_triangle.data.frame,
15
as_reporting_triangle.matrix, 17
as_reporting_triangle.triangle, 18
assert_reporting_triangle, 12
get_delays_from_dates, 44
get_delays_unit, 45
get_max_delay, 45
get_mean_delay, 46
get_quantile_delay, 47
get_reference_dates, 48
get_report_dates, 50
get_reporting_structure, 49
head.reporting_triangle, 51
is_reporting_triangle, 52
new_reporting_triangle, 53
print.reporting_triangle, 55
reporting_triangle-class, 56
summary.reporting_triangle, 65
tail.reporting_triangle, 68
truncate_to_delay, 69
truncate_to_quantile, 70
validate_reporting_triangle, 73

+ workflow_wrappers

allocate_reference_times, 3
estimate_and_apply_delay, 29
estimate_and_apply_delays, 30
estimate_and_apply_uncertainty, 31
estimate_uncertainty_retro, 37

76

[.reporting_triangle, 9, 10, 12, 14-17, 19,
44-52, 54, 56, 57, 66, 68-70, 73, 73,
74

[<-.reporting_triangle, 74

allocate_reference_times, 3, 29, 31, 33,
38
allocate_reference_times(), 24
apply_delay, 5
apply_delay(), 24, 57
apply_reporting_structure, 6,8, 71, 72
apply_reporting_structure(), 49
apply_reporting_structures, 7,7, 71, 72
apply_reporting_structures(), 30, 32, 37
as.data.frame.reporting_triangle, 9, 10,
12, 14-17, 19, 44-52, 54, 56, 57, 66,
68-70, 73, 74
as.matrix.reporting_triangle, 9, 10, 12,
14-17, 19, 44-52, 54, 56, 57, 66,
68-70, 73, 74
as_ChainLadder_triangle, 9, 10, 12, 13,
15-17, 19, 44-52, 54, 56, 57, 66,
68-70,73, 74
as_ChainLadder_triangle(), 19
as_reporting_triangle, 9, 10, 12, 14, 14,
16, 17, 19, 44-52, 54, 56, 57, 66,
68-70, 73, 74
as_reporting_triangle(), 22, 41
as_reporting_triangle.data.frame, 9, 10,
12,14, 15,15, 17, 19, 44-52, 54, 56,
57,66, 68-70, 73, 74
as_reporting_triangle.data.frame(), 17,
19,57
as_reporting_triangle.matrix, 9, 10, 12,
14-16, 17, 19, 44-52, 54, 56, 57, 66,
68-70, 73, 74
as_reporting_triangle.matrix(), 15, 19
57
as_reporting_triangle.triangle, 9, 10,
12, 14-17, 18, 44-52, 54, 56, 57, 66,
68-70,73, 74
as_reporting_triangle.triangle(), I3
assert_baselinenowcast_df, 11, 21, 24, 26,
27,53
assert_reporting_triangle, 9, 10, 12,
14-17, 19, 44-52, 54, 56, 57, 66,
68-70, 73, 74

baselinenowcast, 11, 20, 24, 26, 27, 53

INDEX

baselinenowcast(), 27
baselinenowcast.data.frame, /1, 21, 21,
26, 27,53
baselinenowcast.reporting_triangle, 11,
21,24,24,27,53
baselinenowcast.reporting_triangle(),
20, 22, 39
baselinenowcast_df, 11, 20, 21, 24, 26, 53
baselinenowcast_df
(baselinenowcast_df-class), 26
baselinenowcast_df-class, 26

ChainLadder::as.triangle(), I3

ChainLadder: :BootChainLadder(), 13

ChainLadder: :MackChainLadder(), 13

combine_obs_with_pred, 27, 58, 60, 61, 63,
64

estimate_and_apply_delay, 5, 29, 31, 33,
38
estimate_and_apply_delay(), 57
estimate_and_apply_delays, 5, 29, 30, 33,
38
estimate_and_apply_delays(), 32, 37
estimate_and_apply_uncertainty, 5, 29,
31,31, 38
estimate_and_apply_uncertainty(), 24,
37
estimate_delay, 34, 55
estimate_delay(), 22, 24, 26, 57
estimate_uncertainty, 35, 41, 42
estimate_uncertainty(), 23, 26, 32, 37, 38
estimate_uncertainty_retro, 5, 29, 31, 33,
37
estimate_uncertainty_retro(), 22, 32
example_downward_corr_rt, 39, 40, 41, 43,
67, 68
example_reporting_triangle, 39, 40, 43,
67, 68

fit_by_horizon, 36, 41, 42
fit_nb, 36,41, 42

germany_covid19_hosp, 39, 41, 43, 67, 68

get_delays_from_dates, 9, 10, 12, 14-17,
19, 44,45-52, 54, 56, 57, 66, 68-70,
73, 74

get_delays_unit, 9, 10, 12, 14-17, 19, 44,
45, 46-52, 54, 56, 57, 66, 68-70, 73,
74

INDEX

get_max_delay, 9, 10, 12, 14-17, 19, 44, 45,
45, 47-52, 54, 56, 57, 66, 68-70, 73,
74
get_max_delay(), 57
get_mean_delay, 9, 10, 12, 14-17, 19, 44-46,
46, 48-52, 54, 56, 57, 66, 68-70, 73,
74
get_quantile_delay, 9, 10, 12, 14-17, 19,
44-47, 47, 48-52, 54, 56, 57, 66,
68-70,73, 74
get_reference_dates, 9, 10, 12, 14-17, 19,
44-48, 48, 49-52, 54, 56, 57, 60,
68-70, 73, 74
get_reference_dates(), 57
get_report_dates, 9, 10, 12, 14-17, 19,
44-49, 50, 51, 52, 54, 56, 57, 60,
68-70,73, 74
get_report_dates(), 44
get_reporting_structure, 9, 10, 12, 14-17,
19,4448, 49, 50-52, 54, 56, 57, 66,
68-70,73, 74
get_reporting_structure(), 57

head.reporting_triangle, 9, 10, 12, 14-17,
19, 44-50, 51, 52, 54, 56, 57, 66,
68-70,73, 74

is_reporting_triangle, 9, 10, 12, 14-17,
19,44-51, 52, 54, 56, 57, 66, 68-70,
73, 74

new_baselinenowcast_df, 11, 21, 24, 26, 27,
52

new_reporting_triangle, 9, 10, 12, 14-17.
19, 44-52, 53, 56, 57, 66, 68-70, 73,
74

preprocess_negative_values, 35, 54

preprocess_negative_values(), 23, 26, 57

print.reporting_triangle, 9, 10, 12,
14-17, 19, 44-52, 54, 55, 57, 66,
68-70,73, 74

reporting_triangle, 4, 9, 10, 12-19, 24, 25,
27-29, 32, 34, 3840, 45, 49, 51,
54-56, 59, 61, 62, 64, 65, 68, 69,
71-74

reporting_triangle
(reporting_triangle-class), 56

reporting_triangle-class, 56

77

sample_nb, 28, 58, 60, 61, 63, 64
sample_nowcast, 28, 58, 59, 61, 63, 64
sample_nowcast(), 23, 26
sample_nowcasts, 28, 58, 60, 60, 63, 64
sample_nowcasts(), 32
sample_prediction, 28, 58, 60, 61, 62, 64
sample_predictions, 28, 58, 60, 61, 63, 64
summary.reporting_triangle, 9, 10, 12,
14-17, 19, 44-52, 54, 56, 57, 65,
68-70, 73, 74
syn_nssp_df, 39, 41, 43, 66, 68
syn_nssp_line_list, 39,41, 43, 66, 67, 67

tail.reporting_triangle, 9, 10, 12, 14-17,
19, 44-52, 54, 56, 57, 66, 68, 69, 70,
73, 74

truncate_to_delay, 9, 10, 12, 14-17, 19,
44-52, 54, 56, 57, 66, 68, 69, 70, 73,
74

truncate_to_delay(), 34

truncate_to_quantile, 9, 10, 12, 14-17, 19,
44-52, 54, 56, 57, 66, 68, 69, 70, 73
74

truncate_to_row, 7, 8,71, 72

truncate_to_row(), 57

truncate_to_rows, 7, 8, 71,72

truncate_to_rows(), 32, 37

validate_reporting_triangle, 9, 10, 12,
14-17, 19, 44-52, 54, 56, 57, 66,
68-70,73, 74

	allocate_reference_times
	apply_delay
	apply_reporting_structure
	apply_reporting_structures
	as.data.frame.reporting_triangle
	as.matrix.reporting_triangle
	assert_baselinenowcast_df
	assert_reporting_triangle
	as_ChainLadder_triangle
	as_reporting_triangle
	as_reporting_triangle.data.frame
	as_reporting_triangle.matrix
	as_reporting_triangle.triangle
	baselinenowcast
	baselinenowcast.data.frame
	baselinenowcast.reporting_triangle
	baselinenowcast_df-class
	combine_obs_with_pred
	estimate_and_apply_delay
	estimate_and_apply_delays
	estimate_and_apply_uncertainty
	estimate_delay
	estimate_uncertainty
	estimate_uncertainty_retro
	example_downward_corr_rt
	example_reporting_triangle
	fit_by_horizon
	fit_nb
	germany_covid19_hosp
	get_delays_from_dates
	get_delays_unit
	get_max_delay
	get_mean_delay
	get_quantile_delay
	get_reference_dates
	get_reporting_structure
	get_report_dates
	head.reporting_triangle
	is_reporting_triangle
	new_baselinenowcast_df
	new_reporting_triangle
	preprocess_negative_values
	print.reporting_triangle
	reporting_triangle-class
	sample_nb
	sample_nowcast
	sample_nowcasts
	sample_prediction
	sample_predictions
	summary.reporting_triangle
	syn_nssp_df
	syn_nssp_line_list
	tail.reporting_triangle
	truncate_to_delay
	truncate_to_quantile
	truncate_to_row
	truncate_to_rows
	validate_reporting_triangle
	[.reporting_triangle
	[<-.reporting_triangle
	Index

