bartcs: Bayesian Additive Regression Trees for Confounder Selection

Fit Bayesian Regression Additive Trees (BART) models to select true confounders from a large set of potential confounders and to estimate average treatment effect. For more information, see Kim et al. (2023) <doi:10.1111/biom.13833>.

Version: 1.2.2
Depends: R (≥ 3.4.0)
Imports: coda (≥ 0.4.0), ggcharts, ggplot2, invgamma, MCMCpack, Rcpp, rlang, rootSolve, stats
LinkingTo: Rcpp
Suggests: knitr, microbenchmark, rmarkdown
Published: 2024-05-01
DOI: 10.32614/CRAN.package.bartcs
Author: Yeonghoon Yoo [aut, cre]
Maintainer: Yeonghoon Yoo <yooyh.stat at gmail.com>
BugReports: https://github.com/yooyh/bartcs/issues
License: GPL (≥ 3)
URL: https://github.com/yooyh/bartcs
NeedsCompilation: yes
Citation: bartcs citation info
Materials: README NEWS
In views: Bayesian
CRAN checks: bartcs results

Documentation:

Reference manual: bartcs.pdf
Vignettes: Introduction to bartcs

Downloads:

Package source: bartcs_1.2.2.tar.gz
Windows binaries: r-devel: bartcs_1.2.2.zip, r-release: bartcs_1.2.2.zip, r-oldrel: bartcs_1.2.2.zip
macOS binaries: r-release (arm64): bartcs_1.2.2.tgz, r-oldrel (arm64): bartcs_1.2.2.tgz, r-release (x86_64): bartcs_1.2.2.tgz, r-oldrel (x86_64): bartcs_1.2.2.tgz
Old sources: bartcs archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bartcs to link to this page.

mirror server hosted at Truenetwork, Russian Federation.