| Type: | Package | 
| Title: | Time Series Forecasting using SVM Model | 
| Version: | 0.1.0 | 
| Depends: | R (≥ 2.3.1), e1071,forecast | 
| Description: | Implementation and forecasting univariate time series data using the Support Vector Machine model. Support Vector Machine is one of the prominent machine learning approach for non-linear time series forecasting. For method details see Kim, K. (2003) <doi:10.1016/S0925-2312(03)00372-2>. | 
| Encoding: | UTF-8 | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| Packaged: | 2022-11-29 14:19:23 UTC; pc | 
| Author: | Mrinmoy Ray [aut, cre], Samir Barman [aut, ctb], Kanchan Sinha [aut, ctb], K. N. Singh [aut, ctb] | 
| Maintainer: | Mrinmoy Ray <mrinmoy4848@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-12-02 08:10:02 UTC | 
Auto-Regressive Support Vector Machine
Description
The ARSVM function fit Auto-Regressive Support Vector Machine for univariate time series data.
Usage
ARSVM(data,h)
Arguments
data | 
 Input univariate time series (ts) data.  | 
h | 
 The forecast horizon.  | 
Details
This package allows you to fit the Auto-Regressive Support Vector Machine for univariate time series.
Value
Optimum lag | 
 Optimum lag of the considered data  | 
Model Summary | 
 Summary of the fitted SVM  | 
Weights | 
 weights of the fitted SVM  | 
Constant | 
 Constant of the fitted SVM  | 
MAPE | 
 Mean Absolute Percentage Error (MAPE) of the SVM  | 
RMSE | 
 Root Mean Square Error (RMSE) of fitted SVM  | 
fitted | 
 Fitted values of SVM  | 
forecasted.values | 
 h step ahead forecasted values employing SVM  | 
Author(s)
Mrinmoy Ray,Samir Barman, Kanchan Sinha, K. N. Singh
References
Kim, K.(2003). Financial time series forecasting using support vector machines, 55(1-2), 307-319.
See Also
SVM
Examples
data=lynx
ARSVM(data,5)