Type: | Package |
Title: | Computation of Topp-Leone Cauchy Rayleigh (TLCAR ) distribution's properties |
Version: | 0.1.0 |
Author: | Mintodê Nicodème Atchadé [aut], Jude Mahoulé Bogninou [aut, cre] |
Maintainer: | Jude Mahoulé Bogninou <mahoulejude2001@gmail.com> |
Description: | Provides a comprehensive suite of statistical tools for analyzing, simulating, and computing properties of the Topp-Leone Cauchy Rayleigh (TLCAR) distribution, a versatile distribution amalgamating features of the Topp-Leone, Cauchy, and Rayleigh distributions, ideal for modeling intricate, heterogeneous data across scientific domains. See Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2023) <doi:10.1007/s44199-023-00066-4> and Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2024) <doi:10.1007/s44199-023-00069-1> for further insights. |
Depends: | R (≥ 3.6.0),stats,dplyr,ggplot2 |
Suggests: | knitr,rmarkdown,testthat (≥ 3.0.0) |
Language: | fr |
License: | GPL-2 |
NeedsCompilation: | no |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.3 |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
Packaged: | 2024-02-17 13:03:37 UTC; Utilisateur |
Repository: | CRAN |
Date/Publication: | 2024-02-19 17:30:02 UTC |
Dataset: ConductorFailureTimes
Description
This dataset contains failure times measured in hours from an accelerated life test with 59 conductors.
Usage
data(ConductorFailureTimes)
Format
A numeric vector of failure times.
Details
This dataset contains failure times (measured in hours) obtained from an accelerated life test involving 59 conductors. The data are presented as a numeric vector.
References
Nasiri, B., et al. (2010). "Bayesian analysis of the accelerated life model with Type-II censoring." Journal of Statistical Planning and Inference, 140(6), 1565-1572.
Schafft, H. A., et al. (1987). "Reproducibility of the accelerated test for electric cable insulation." IEEE Transactions on Electrical Insulation, 22(5), 739-746.
Dataset: Tree_diameters
Description
This dataset contains tree diameter measurements (in cm) for Teak trees in the Agrimey sector in Benin.
Usage
data(Tree_diameters)
Format
A numeric vector of tree diameter measurements (in cm).
Cumulative Distribution Function (CDF) for the TLCAR Distribution
Description
Calculate the cumulative distribution at a given value using the TLCAR distribution.
Usage
cTLCAR(x, alpha, a, b, theta, m)
Arguments
x |
Value at which to calculate the CDF. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Details
The cumulative distribution function (CDF) for the TLCAR distribution is defined as follows:
F(x)=\left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2\right]^\alpha
Value
Cumulative distribution at the given value.
Examples
cTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
Probability Density Function (PDF) for the TLCAR Distribution
Description
Calculate the probability density at a given value using the TLCAR distribution.
Usage
dTLCAR(x, alpha, a, b, theta, m)
Arguments
x |
Value at which to calculate the PDF. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Details
The probability density function (PDF) for the TLCAR distribution is defined as follows:
f(x)=\frac{2\alpha}{\pi a}\left[\frac{1+\left(\frac{x^2}{\theta^2}-1\right)e^{-\frac{x^2}{2\theta^2}}+m}{1+\left(\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2}\right]\left[\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right]\left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right)-b}{a}\right)^2\right]^{\alpha-1}
Value
Probability density at the given value.
Examples
dTLCAR(x = 1, alpha = 1, a = 1, b = 0, theta = 2, m = 0.5)
Estimate parameters for the TLCAR distribution using maximum likelihood.
Description
This function estimates the parameters of the TLCAR distribution while respecting the constraints on the parameters.
Usage
fTLCAR(data)
Arguments
data |
Numeric vector of data values. |
Value
Numeric vector of estimated parameters.
Examples
data(ConductorFailureTimes)
estimated_params <- fTLCAR(ConductorFailureTimes)
Graphical Plot of the TLCAR Distribution
Description
Generate a graphical plot of the probability density function (PDF) or cumulative distribution function (CDF) for the TLCAR distribution.
Usage
ploTLCAR(x, alpha, a, b, theta, m, type = "pdf")
Arguments
x |
The range of values to plot the distribution. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
type |
The type of plot to generate: "pdf" for PDF plot, "cdf" for CDF plot. |
Value
A graphical plot of the TLCAR distribution.
Examples
ploTLCAR(x = seq(0, 10, by = 0.1), alpha = 0.5, a = 1, b = 0, theta = 2, m = 1, type = "pdf")
Quantile function for TLCAR distribution
Description
Calculate the quantile value for a given probability using the TLCAR distribution.
Usage
qTLCAR(p, alpha, a, b, theta, m)
Arguments
p |
Probability value (between 0 and 1). |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Value
Numeric value representing the quantile.
Examples
qTLCAR(p = 0.5, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
Generate a random sample from the TLCAR distribution
Description
Generate a random sample from the TLCAR distribution using the quantile function.
Usage
rTLCAR(n, alpha, a, b, theta, m)
Arguments
n |
Number of observations in the sample. |
alpha |
Parameter representing the distribution of the Topp-Leone component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
theta |
Parameter representing the scale of the Rayleigh component. |
m |
Additional parameter. |
Value
Random sample from the TLCAR distribution.
Examples
# Generate a random sample with 100 observations using estimated parameters
sample <- rTLCAR(n = 100, alpha = 1, a = 1, b = 0, theta = 3, m = 1)
Estimate parameters with constraints and plot histogram with estimated density
Description
This function estimates the parameters of the TLCAR distribution while respecting the constraints on the parameters. It plots the histogram of the data along with the estimated density curve.
Usage
sTLCAR(data)
Arguments
data |
Numeric vector of data values. |
Value
Numeric vector of estimated parameters.
Examples
data(ConductorFailureTimes)
sTLCAR(ConductorFailureTimes)
Temporary Variable Calculation
Description
This function calculates a temporary variable used in the TLCAR distribution density function.
Usage
temp_var(x, theta, a, b, m)
Arguments
x |
Numeric vector of values at which to calculate the temporary variable. |
theta |
Parameter representing the scale of the Rayleigh component. |
a |
Parameter representing the scale (a) of the Cauchy component. |
b |
Parameter representing the position (b) of the Cauchy component. |
m |
Additional parameter. |
Value
Numeric vector of calculated temporary variable values