Type: | Package |
Title: | Functions for Applying the T^2-Test for Equivalence |
Version: | 1.1 |
Date: | 2016-08-31 |
Author: | Thomas Hoffelder |
Maintainer: | Thomas Hoffelder <thomas.hoffelder@boehringer-ingelheim.com> |
Description: | Contains functions for applying the T^2-test for equivalence. The T^2-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Mahalanobis distance. For multivariate normally distributed data the T^2-test for equivalence is exact and UMPI. The function T2EQ() implements the T^2-test for equivalence according to Wellek (2010) <doi:10.1201/ebk1439808184>. The function T2EQ.dissolution.profiles.hoffelder() implements a variant of the T^2-test for equivalence according to Hoffelder (2016) http://www.ecv.de/suse_item.php?suseId=Z|pi|8430 for the equivalence comparison of highly variable dissolution profiles. |
License: | GPL-3 |
NeedsCompilation: | no |
Packaged: | 2016-08-31 13:14:47 UTC; hoffelde |
Repository: | CRAN |
Date/Publication: | 2016-08-31 20:46:12 |
Functions for Applying the T^2
-Test for Equivalence
Description
Contains functions for applying the T^2
-test for equivalence.
The T^2
-test for equivalence is a multivariate two-sample equivalence test.
Distance measure of the test is the Mahalanobis distance.
For multivariate normally distributed data the T^2
-test for equivalence is exact and UMPI.
The function T2EQ() implements the T^2
-test for equivalence according to Wellek (2010).
The function T2EQ.dissolution.profiles.hoffelder() implements a variant of the T^2
-test for equivalence according to Hoffelder (2016) for the equivalence comparison of highly variable dissolution profiles.
Details
Index of help topics:
T2EQ Function for applying the T^2-test for equivalence T2EQ-package Functions for Applying the T^2-Test for Equivalence T2EQ.dissolution.profiles.hoffelder The T^2-test for equivalence for dissolution data ex_data_JoBS Example dataset from Hoffelder et al. (2015) ex_data_pharmind Example dataset from Hoffelder (2016)
Author(s)
Thomas Hoffelder
Maintainer: Thomas Hoffelder <thomas.hoffelder@boehringer-ingelheim.com>
References
Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC.
Hoffelder, T., Goessl, R., Wellek, S. (2015). Multivariate Equivalence Tests for Use in Pharmaceutical Development. Journal of Biopharmaceutical Statistics, 25:3, 417-437. URL: http://dx.doi.org/10.1080/10543406.2014.920344
Hoffelder, T. (2016). Highly Variable Dissolution Profiles: Comparison of T^2
-Test for Equivalence and f_2
Based Methods. pharmind, 78:4, 587-592.
URL: http://www.ecv.de/suse_item.php?suseId=Z|pi|8430
Tsong, Y., Hammerstrom, T., Sathe, P., Shah, V.P. (1996). Statistical Assessment of Mean Differences between two Dissolution Data Sets. Drug Information Journal, 30:4, 1105-1112. URL: http://dx.doi.org/10.1177/009286159603000427
EMA (2010). Guidance on the Investigation of Bioequivalence. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf
Examples
## Not run: A recalculation of the example evaluation in Hoffelder et al. (2015)
can be done with the following code:
## End(Not run)
data(ex_data_JoBS)
REF_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='REF'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
TEST_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='TEST'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
equivalence_margin_JoBS <- 0.74^2
test_T2EQ_JoBS <- T2EQ(X=REF_JoBS,Y=TEST_JoBS,eq_margin = equivalence_margin_JoBS)
## Not run: A recalculation of the results underlying Figure 1 in Hoffelder (2016)
can be done with the following code:
## End(Not run)
data(ex_data_pharmind)
REF_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='REF'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
TEST_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='TEST'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
test_T2EQ.dissolution.profiles.hoffelder_pharmind <-
T2EQ.dissolution.profiles.hoffelder(X=REF_pharmind,Y=TEST_pharmind)
Function for applying the T^2
-test for equivalence
Description
The function T2EQ()
implements the T^2
-test for equivalence (see Wellek,2010 or Hoffelder et al., 2015). The T^2
-test for equivalence is a multivariate two-sample equivalence test.
Distance measure of the test is the Mahalanobis distance.
Usage
T2EQ(X, Y, eq_margin, alpha = 0.05, print.results = TRUE)
Arguments
X |
numeric data matrix of the first sample. The rows of |
Y |
numeric data matrix of the second sample. The rows of |
eq_margin |
numeric (>0). The equivalence margin of the test. |
alpha |
numeric (0< |
print.results |
logical; if TRUE (default) summary statistics and test results are printed in the output. If NO no output is created |
Details
For multivariate normally distributed data the T^2
-test for equivalence is exact and UMPI.
Value
a data frame; three columns containing the results of the test
p.value |
numeric; the p-value of the |
testresult.num |
numeric; 0 (null hypothesis of nonequivalence not rejected) or 1 (null hypothesis of nonequivalence rejected, decision in favor of equivalence) |
testresult.text |
character; test result of the |
Author(s)
Thomas Hoffelder <thomas.hoffelder at boehringer-ingelheim.com>
References
Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC.
Hoffelder, T., Goessl, R., Wellek, S. (2015). Multivariate Equivalence Tests for Use in Pharmaceutical Development. Journal of Biopharmaceutical Statistics, 25:3, 417-437. URL: http://dx.doi.org/10.1080/10543406.2014.920344
Examples
## Not run: A recalculation of the example evaluation in Hoffelder et al. (2015)
can be done with the following code:
## End(Not run)
data(ex_data_JoBS)
REF_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='REF'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
TEST_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='TEST'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
equivalence_margin_JoBS <- 0.74^2
test_T2EQ_JoBS <- T2EQ(X=REF_JoBS,Y=TEST_JoBS,eq_margin = equivalence_margin_JoBS)
The T^2
-test for equivalence for dissolution data
Description
The function T2EQ.dissolution.profiles.hoffelder()
implements a variant of the T^2
-test for equivalence analyses of highly variable dissolution profiles (see Hoffelder,2016). It is a multivariate two-sample equivalence procedure. Distance measure of the test is the Mahalanobis distance.
Usage
T2EQ.dissolution.profiles.hoffelder(X, Y, alpha = 0.05, print.results = TRUE)
Arguments
X |
numeric data matrix of the first sample (REF). The rows of |
Y |
numeric data matrix of the second sample (TEST). The rows of |
alpha |
numeric (0< |
print.results |
logical; if TRUE (default) summary statistics and test results are printed in the output. If NO no output is created |
Details
This function implements a variant of the T^2
-test for equivalence suggested in Hoffelder (2016): The equivalence margin of the test is a compromise between the suggestions of Tsong et al. (1996) and EMA (2010) requirements. See Hoffelder (2016) for a discussion on that equivalence margin.
Value
a data frame; three columns containing the results of the test
p.value |
numeric; the p-value of the equivalence test according to Hoffelder (2016) |
testresult.num |
numeric; 0 (null hypothesis of nonequivalence not rejected) or 1 (null hypothesis of nonequivalence rejected, decision in favor of equivalence) |
testresult.text |
character; test result of the test in text mode |
Author(s)
Thomas Hoffelder <thomas.hoffelder at boehringer-ingelheim.com>
References
Hoffelder, T. (2016). Highly Variable Dissolution Profiles: Comparison of T^2
-Test for Equivalence and f_2
Based Methods. pharmind, 78:4, 587-592.
URL: http://www.ecv.de/suse_item.php?suseId=Z|pi|8430
Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC.
Tsong, Y., Hammerstrom, T., Sathe, P., Shah, V.P. (1996). Statistical Assessment of Mean Differences between two Dissolution Data Sets. Drug Information Journal, 30:4, 1105-1112. URL: http://dx.doi.org/10.1177/009286159603000427
EMA (2010). Guidance on the Investigation of Bioequivalence. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf
Examples
## Not run: A recalculation of the results underlying Figure 1 in Hoffelder (2016)
can be done with the following code:
## End(Not run)
data(ex_data_pharmind)
REF_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='REF'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
TEST_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='TEST'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
test_T2EQ.dissolution.profiles.hoffelder_pharmind <-
T2EQ.dissolution.profiles.hoffelder(X=REF_pharmind,Y=TEST_pharmind)
Example dataset from Hoffelder et al. (2015)
Description
Multivariate example dataset of dissolution profiles. Dataset consists of two three-dimensional samples. The names of the three variables are "Diss_15_min","Diss_20_min" and "Diss_25_min". Variable "Group" discriminates between first sample (Group == "REF"
) and second sample (Group == "Test"
). Sample size is 12 per group.
Usage
data("ex_data_JoBS")
Format
A data frame with 24 observations on the following 4 variables.
Group
a factor with levels
REF
TEST
Diss_15_min
a numeric vector
Diss_20_min
a numeric vector
Diss_25_min
a numeric vector
Details
Example dataset from Hoffelder et al. (2015).
Source
Hoffelder, T., Goessl, R., Wellek, S. (2015), "Multivariate Equivalence Tests for Use in Pharmaceutical Development", Journal of Biopharmaceutical Statistics, 25:3, 417-437.
References
URL: http://dx.doi.org/10.1080/10543406.2014.920344
Examples
data(ex_data_JoBS)
Example dataset from Hoffelder (2016)
Description
Multivariate example dataset of dissolution profiles. Dataset consists of two three-dimensional samples. The names of the three variables are "Diss_10_min","Diss_20_min" and "Diss_30_min". Variable "Group" discriminates between first sample (Group == "REF"
) and second sample (Group == "Test"
). Sample size is 12 per group.
Usage
data("ex_data_pharmind")
Format
A data frame with 24 observations on the following 4 variables.
Diss_10_min
a numeric vector
Diss_20_min
a numeric vector
Diss_30_min
a numeric vector
Group
a character vector
Details
Example dataset underlying Figure 1 in Hoffelder (2016).
Source
Hoffelder, T. (2016), "Highly Variable Dissolution Profiles: Comparison of T^2
-Test for Equivalence and f_2
Based Methods", pharmind, 78:4, 587-592.
References
URL: http://www.ecv.de/suse_item.php?suseId=Z|pi|8430
Examples
data(ex_data_pharmind)