Version: | 1.7.11 |
Type: | Package |
Title: | Statistical Analysis for Environmental Data |
Maintainer: | Peter Filzmoser <Peter.Filzmoser@tuwien.ac.at> |
Description: | Statistical analysis methods for environmental data are implemented. There is a particular focus on robust methods, and on methods for compositional data. In addition, larger data sets from geochemistry are provided. The statistical methods are described in Reimann, Filzmoser, Garrett, Dutter (2008, ISBN:978-0-470-98581-6). |
Depends: | R (≥ 2.10), methods, sgeostat |
Imports: | cluster, e1071, MASS, MBA, mgcv, rgl, robustbase, xtable, sp, geoR |
Suggests: | mclust |
License: | GPL (≥ 3) |
URL: | http://cstat.tuwien.ac.at/filz/ |
Packaged: | 2023-06-02 06:14:31 UTC; filz |
Author: | Peter Filzmoser [aut, cre, cph] |
Repository: | CRAN |
Date/Publication: | 2023-06-02 12:20:05 UTC |
NeedsCompilation: | no |
Au data, new
Description
Au data from Kola C-horizon, new measurement method
Usage
data(AuNEW)
Format
The format is: num [1:606] 0.001344 0.000444 0.001607 0.000713 0.000898 ...
Details
These data of Au have much higher quality than the data AuOLD.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(AuNEW)
data(AuOLD)
plot(log10(AuOLD),log10(AuNEW))
Au data, old
Description
Au data from Kola C-horizon, old measurement method
Usage
data(AuOLD)
Format
The format is: num [1:606] 0.001 0.001 0.002 0.001 0.007 0.006 0.001 0.001 0.001 0.001 ...
Details
These data of Au have much worse quality than the data AuNEW.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(AuNEW)
data(AuOLD)
plot(log10(AuOLD),log10(AuNEW))
Analytical duplicates of the C-horizon Kola data
Description
Analytical duplicates have been selected for quality control.
Usage
data(CHorANADUP)
Format
A data frame with 52 observations on the following 190 variables.
A1_.Loc
a numeric vector
A2_.Loc
a numeric vector
A1_Ag
a numeric vector
A1_Ag_INAA
a numeric vector
A1_Al
a numeric vector
A1_Al2O3
a numeric vector
A1_As
a numeric vector
A1_As_INAA
a numeric vector
A1_Au_INAA
a numeric vector
A1_B
a numeric vector
A1_Ba
a numeric vector
A1_Ba_INAA
a numeric vector
A1_Be
a numeric vector
A1_Bi
a numeric vector
A1_Br
a numeric vector
A1_Br_INAA
a numeric vector
A1_Ca
a numeric vector
A1_Ca_INAA
a numeric vector
A1_CaO
a numeric vector
A1_Cd
a numeric vector
A1_Ce_INAA
a numeric vector
A1_Cl
a numeric vector
A1_Co
a numeric vector
A1_Co_INAA
a numeric vector
A1_Cond
a numeric vector
A1_Cr
a numeric vector
A1_Cr_INAA
a numeric vector
A1_Cs_INAA
a numeric vector
A1_Cu
a numeric vector
A1_Eu_INAA
a numeric vector
A1_F
a numeric vector
A1_F_ionselect
a numeric vector
A1_Fe
a numeric vector
A1_Fe_INAA
a numeric vector
A1_Fe2O3
a numeric vector
A1_Hf_INAA
a numeric vector
A1_Hg
a numeric vector
A1_Hg_INAA
a numeric vector
A1_Ir_INAA
a numeric vector
A1_K
a numeric vector
A1_K2O
a numeric vector
A1_La
a numeric vector
A1_La_INAA
a numeric vector
A1_Li
a numeric vector
A1_LOI
a numeric vector
A1_Lu_INAA
a numeric vector
A1_Mass_INAA
a numeric vector
A1_Mg
a numeric vector
A1_MgO
a numeric vector
A1_Mn
a numeric vector
A1_MnO
a numeric vector
A1_Mo
a numeric vector
A1_Mo_INAA
a numeric vector
A1_Na
a numeric vector
A1_Na_INAA
a numeric vector
A1_Na2O
a numeric vector
A1_Nd_INAA
a numeric vector
A1_Ni
a numeric vector
A1_Ni_INAA
a numeric vector
A1_NO2
a numeric vector
A1_NO3
a numeric vector
A1_P
a numeric vector
A1_P2O5
a numeric vector
A1_Pb
a numeric vector
A1_pH
a numeric vector
A1_PO4
a numeric vector
A1_Rb
a numeric vector
A1_S
a numeric vector
A1_Sb
a numeric vector
A1_Sb_INAA
a numeric vector
A1_Sc
a numeric vector
A1_Sc_INAA
a numeric vector
A1_Se
a numeric vector
A1_Se_INAA
a numeric vector
A1_Si
a numeric vector
A1_SiO2
a numeric vector
A1_Sm_INAA
a numeric vector
A1_Sn_INAA
a numeric vector
A1_SO4
a numeric vector
A1_Sr
a numeric vector
A1_Sr_INAA
a numeric vector
A1_Sum
a numeric vector
A1_Ta_INAA
a numeric vector
A1_Tb_INAA
a numeric vector
A1_Te
a numeric vector
A1_Th
a numeric vector
A1_Th_INAA
a numeric vector
A1_Ti
a numeric vector
A1_TiO2
a numeric vector
A1_U_INAA
a numeric vector
A1_V
a numeric vector
A1_W_INAA
a numeric vector
A1_Y
a numeric vector
A1_Yb_INAA
a numeric vector
A1_Zn
a numeric vector
A1_Zn_INAA
a numeric vector
A2_Ag
a numeric vector
A2_Ag_INAA
a numeric vector
A2_Al
a numeric vector
A2_Al2O3
a numeric vector
A2_As
a numeric vector
A2_As_INAA
a numeric vector
A2_Au_INAA
a numeric vector
A2_B
a numeric vector
A2_Ba
a numeric vector
A2_Ba_INAA
a numeric vector
A2_Be
a numeric vector
A2_Bi
a numeric vector
A2_Br
a numeric vector
A2_Br_INAA
a numeric vector
A2_Ca
a numeric vector
A2_Ca_INAA
a numeric vector
A2_CaO
a numeric vector
A2_Cd
a numeric vector
A2_Ce_INAA
a numeric vector
A2_Cl
a numeric vector
A2_Co
a numeric vector
A2_Co_INAA
a numeric vector
A2_Cond
a numeric vector
A2_Cr
a numeric vector
A2_Cr_INAA
a numeric vector
A2_Cs_INAA
a numeric vector
A2_Cu
a numeric vector
A2_Eu_INAA
a numeric vector
A2_F
a numeric vector
A2_F_ionselect
a numeric vector
A2_Fe
a numeric vector
A2_Fe_INAA
a numeric vector
A2_Fe2O3
a numeric vector
A2_Hf_INAA
a numeric vector
A2_Hg
a numeric vector
A2_Hg_INAA
a numeric vector
A2_Ir_INAA
a numeric vector
A2_K
a numeric vector
A2_K2O
a numeric vector
A2_La
a numeric vector
A2_La_INAA
a numeric vector
A2_Li
a numeric vector
A2_LOI
a numeric vector
A2_Lu_INAA
a numeric vector
A2_Mass_INAA
a numeric vector
A2_Mg
a numeric vector
A2_MgO
a numeric vector
A2_Mn
a numeric vector
A2_MnO
a numeric vector
A2_Mo
a numeric vector
A2_Mo_INAA
a numeric vector
A2_Na
a numeric vector
A2_Na_INAA
a numeric vector
A2_Na2O
a numeric vector
A2_Nd_INAA
a numeric vector
A2_Ni
a numeric vector
A2_Ni_INAA
a numeric vector
A2_NO2
a numeric vector
A2_NO3
a numeric vector
A2_P
a numeric vector
A2_P2O5
a numeric vector
A2_Pb
a numeric vector
A2_pH
a numeric vector
A2_PO4
a numeric vector
A2_Rb
a numeric vector
A2_S
a numeric vector
A2_Sb
a numeric vector
A2_Sb_INAA
a numeric vector
A2_Sc
a numeric vector
A2_Sc_INAA
a numeric vector
A2_Se
a numeric vector
A2_Se_INAA
a numeric vector
A2_Si
a numeric vector
A2_SiO2
a numeric vector
A2_Sm_INAA
a numeric vector
A2_Sn_INAA
a numeric vector
A2_SO4
a numeric vector
A2_Sr
a numeric vector
A2_Sr_INAA
a numeric vector
A2_Sum
a numeric vector
A2_Ta_INAA
a numeric vector
A2_Tb_INAA
a numeric vector
A2_Te
a numeric vector
A2_Th
a numeric vector
A2_Th_INAA
a numeric vector
A2_Ti
a numeric vector
A2_TiO2
a numeric vector
A2_U_INAA
a numeric vector
A2_V
a numeric vector
A2_W_INAA
a numeric vector
A2_Y
a numeric vector
A2_Yb_INAA
a numeric vector
A2_Zn
a numeric vector
A2_Zn_INAA
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(CHorANADUP)
str(CHorANADUP)
Field duplicates of the C-horizon Kola data
Description
Field duplicates have been selected for quality control.
Usage
data(CHorFieldDUP)
Format
A data frame with 49 observations on the following 240 variables.
F1_.Loc
a numeric vector
F2_.Loc
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
F1_Ag
a numeric vector
F1_Ag_INAA
a numeric vector
F1_Al
a numeric vector
F1_Al2O3
a numeric vector
F1_As
a numeric vector
F1_As_INAA
a numeric vector
F1_Au_INAA
a numeric vector
F1_B
a numeric vector
F1_Ba
a numeric vector
F1_Ba_INAA
a numeric vector
F1_Be
a numeric vector
F1_Bi
a numeric vector
F1_Br
a numeric vector
F1_Br_INAA
a numeric vector
F1_Ca
a numeric vector
F1_Ca_INAA
a numeric vector
F1_CaO
a numeric vector
F1_Cd
a numeric vector
F1_Ce_INAA
a numeric vector
F1_Cl
a numeric vector
F1_Co
a numeric vector
F1_Co_INAA
a numeric vector
F1_Cond
a numeric vector
F1_Cr
a numeric vector
F1_Cr_INAA
a numeric vector
F1_Cs_INAA
a numeric vector
F1_Cu
a numeric vector
F1_Eu_INAA
a numeric vector
F1_F
a numeric vector
F1_F_ionselect
a numeric vector
F1_Fe
a numeric vector
F1_Fe_INAA
a numeric vector
F1_Fe2O3
a numeric vector
F1_Hf_INAA
a numeric vector
F1_Hg
a numeric vector
F1_Hg_INAA
a numeric vector
F1_Ir_INAA
a numeric vector
F1_K
a numeric vector
F1_K2O
a numeric vector
F1_La
a numeric vector
F1_La_INAA
a numeric vector
F1_Li
a numeric vector
F1_LOI
a numeric vector
F1_Lu_INAA
a numeric vector
F1_Mass_INAA
a numeric vector
F1_Mg
a numeric vector
F1_MgO
a numeric vector
F1_Mn
a numeric vector
F1_MnO
a numeric vector
F1_Mo
a numeric vector
F1_Mo_INAA
a numeric vector
F1_Na
a numeric vector
F1_Na_INAA
a numeric vector
F1_Na2O
a numeric vector
F1_Nd_INAA
a numeric vector
F1_Ni
a numeric vector
F1_Ni_INAA
a numeric vector
F1_NO2
a numeric vector
F1_NO3
a numeric vector
F1_P
a numeric vector
F1_P2O5
a numeric vector
F1_Pb
a numeric vector
F1_pH
a numeric vector
F1_PO4
a numeric vector
F1_Rb
a numeric vector
F1_S
a numeric vector
F1_Sb
a numeric vector
F1_Sb_INAA
a numeric vector
F1_Sc
a numeric vector
F1_Sc_INAA
a numeric vector
F1_Se
a numeric vector
F1_Se_INAA
a numeric vector
F1_Si
a numeric vector
F1_SiO2
a numeric vector
F1_Sm_INAA
a numeric vector
F1_Sn_INAA
a numeric vector
F1_SO4
a numeric vector
F1_Sr
a numeric vector
F1_Sr_INAA
a numeric vector
F1_Sum
a numeric vector
F1_Ta_INAA
a numeric vector
F1_Tb_INAA
a numeric vector
F1_Te
a numeric vector
F1_Th
a numeric vector
F1_Th_INAA
a numeric vector
F1_Ti
a numeric vector
F1_TiO2
a numeric vector
F1_U_INAA
a numeric vector
F1_V
a numeric vector
F1_W_INAA
a numeric vector
F1_Y
a numeric vector
F1_Yb_INAA
a numeric vector
F1_Zn
a numeric vector
F1_Zn_INAA
a numeric vector
F2_Ag
a numeric vector
F2_Ag_INAA
a numeric vector
F2_Al
a numeric vector
F2_Al2O3
a numeric vector
F2_As
a numeric vector
F2_As_INAA
a numeric vector
F2_Au_INAA
a numeric vector
F2_B
a numeric vector
F2_Ba
a numeric vector
F2_Ba_INAA
a numeric vector
F2_Be
a numeric vector
F2_Bi
a numeric vector
F2_Br
a numeric vector
F2_Br_INAA
a numeric vector
F2_Ca
a numeric vector
F2_Ca_INAA
a numeric vector
F2_CaO
a numeric vector
F2_Cd
a numeric vector
F2_Ce_INAA
a numeric vector
F2_Cl
a numeric vector
F2_Co
a numeric vector
F2_Co_INAA
a numeric vector
F2_Cond
a numeric vector
F2_Cr
a numeric vector
F2_Cr_INAA
a numeric vector
F2_Cs_INAA
a numeric vector
F2_Cu
a numeric vector
F2_Eu_INAA
a numeric vector
F2_F
a numeric vector
F2_F_ionselect
a numeric vector
F2_Fe
a numeric vector
F2_Fe_INAA
a numeric vector
F2_Fe2O3
a numeric vector
F2_Hf_INAA
a numeric vector
F2_Hg
a numeric vector
F2_Hg_INAA
a numeric vector
F2_Ir_INAA
a numeric vector
F2_K
a numeric vector
F2_K2O
a numeric vector
F2_La
a numeric vector
F2_La_INAA
a numeric vector
F2_Li
a numeric vector
F2_LOI
a numeric vector
F2_Lu_INAA
a numeric vector
F2_Mass_INAA
a numeric vector
F2_Mg
a numeric vector
F2_MgO
a numeric vector
F2_Mn
a numeric vector
F2_MnO
a numeric vector
F2_Mo
a numeric vector
F2_Mo_INAA
a numeric vector
F2_Na
a numeric vector
F2_Na_INAA
a numeric vector
F2_Na2O
a numeric vector
F2_Nd_INAA
a numeric vector
F2_Ni
a numeric vector
F2_Ni_INAA
a numeric vector
F2_NO2
a numeric vector
F2_NO3
a numeric vector
F2_P
a numeric vector
F2_P2O5
a numeric vector
F2_Pb
a numeric vector
F2_pH
a numeric vector
F2_PO4
a numeric vector
F2_Rb
a numeric vector
F2_S
a numeric vector
F2_Sb
a numeric vector
F2_Sb_INAA
a numeric vector
F2_Sc
a numeric vector
F2_Sc_INAA
a numeric vector
F2_Se
a numeric vector
F2_Se_INAA
a numeric vector
F2_Si
a numeric vector
F2_SiO2
a numeric vector
F2_Sm_INAA
a numeric vector
F2_Sn_INAA
a numeric vector
F2_SO4
a numeric vector
F2_Sr
a numeric vector
F2_Sr_INAA
a numeric vector
F2_Sum
a numeric vector
F2_Ta_INAA
a numeric vector
F2_Tb_INAA
a numeric vector
F2_Te
a numeric vector
F2_Th
a numeric vector
F2_Th_INAA
a numeric vector
F2_Ti
a numeric vector
F2_TiO2
a numeric vector
F2_U_INAA
a numeric vector
F2_V
a numeric vector
F2_W_INAA
a numeric vector
F2_Y
a numeric vector
F2_Yb_INAA
a numeric vector
F2_Zn
a numeric vector
F2_Zn_INAA
a numeric vector
DATE
a numeric vector
X.SAMP
a factor with levels
CRJHPC
CRPCTF
CRTF
GKJHOJ
GKJHTV
JARR
JHOJTV
M?VG
MLRJARP
MLRJSRR
MLRM?DR
OJGKTV
RPAV
RPMLRJA
RPVM
Semenov
Smirnov
VGM?
ELEV
a numeric vector
UTM
a numeric vector
X.COUN
a factor with levels
FIN
NOR
RUS
X.ASP
a factor with levels
E
FLAT
N
NE
NW
S
SE
SW
X.GENLAN
a factor with levels
FLAT
LOWMO
PLAIN
RIDGE
SLOPE
X.TOPO
a factor with levels
CONCLOW
CONCMED
CONVLOW
CONVMED
FLAT
FLATLOW
FLATTER
LOWBRLOW
LOWBRMED
TER
TERR
TOP
TOPFLAT
TOPTER
UPBRFLAT
UPBRLOW
UPBRMED
UPBRTER
X.FORDEN
a factor with levels
D
MD
MD
NO
S
X.TREESPE
a factor with levels
BI
BI..
BI.PBET.JUN
BI..PI
.BI.SP
BI..SP
BI.SP.
BI.S.PJUN
NO
P
P.
P.BI
P.BIJUN
P.BI.S
.PIBI.
PI.BI
PI..BI
PI.BI.
.PIBI.SP
PI..SP
PI..SPBI
P.SBI
P.S.BI
P.SBI.JUN
S.BI
S.BI.JUN
SP..BI
SP.BI.
.SPBI.PI
.SPPIBI.
TRHIGH
a numeric vector
RELAS
a numeric vector
X.BUSHDEN
a factor with levels
MD
NO
S
X.BUSHSPEC
a factor with levels
BET
BI
..BI
.BI.
BI..
.BI.JU
BI..JU
BI..PI
JUN
NO
..RO
..WI
..WIBI
..WIJU
..WIRO
..WIROJU
X.GRVEGETATIO
a factor with levels
B..CGML
B..CH
B.CO.GM
B.CRCHMO.LIN
B.CRGRMARMO.LI
B.CRMO
BJUO.MO.CR
B.JUOMO.LI
B.LINMAR
B.MO.CRMAR
.BO.ML
C..
C..BGML
C.B.GML
.C.BGMLO
C.B.GMLO
C.B.L
C.BL.GM
C.BM.HGL
C.BML.GO
C.BO.G
C.BOM.L
CH.BCRLIN
CH.BLIN
C.L.BGM
C.M.GL
C..ML
C.OL.M
C.O.MLP
CR.B.LI
CR.LINMO
H..BML
H.L.BCM
L..BMO
L.BO.CM
L.H.BM
LIN.CR.LI
M.BC.GL
M..BCL
M.B.CLO
M.BH.CGO
M.B.L
M.BL.GO
M.O.BCGL
MO.BCR
MO.BCRJUO
O.B.CHMLO
X.MOSS
a factor with levels
-9999
HSDC
HSDR
HSSC
HSSR
PS
PSDC
PSDR
PSRD
PSSC
X.TOP
a factor with levels
-9999
D10
D6
D7
M10
M4
M5
M6
M7
M8
AoMEAN
a numeric vector
X.AoRANGE
a factor with levels
0.1_1.0
0_2
0.2_2.5
0.2_4.0
0,5_2
0,5_3
0.5_4.0
0.5_5.0
1.0_3.0
1_2
1_3
1_4
1_5
1.5_3.5
1,5_5
1_6
2_
2.0_5.0
2.0_6.0
2.0_7.0
2_3
2_4
2_5
2_6
2_7
3.0_8.0
3_12
3_5
3_6
4_12
4_6
4_8
5_
5_10
.5_4
-9999
HUMNO
a numeric vector
HUMTHI
a numeric vector
X.C_PAR
a factor with levels
FLUV
FLUVG
TILL
TILLSAP
TILL&SAP
X.C_grain
a numeric vector
X.COLA
a numeric vector
X.COLE
a numeric vector
LOWDE
a numeric vector
X.COLB
a numeric vector
LOWDB
a numeric vector
X.COLC
a numeric vector
TOPC
a numeric vector
X.WEATH
a factor with levels
DRY
MIX
RAIN
TEMP
a numeric vector
CATLEV0
a numeric vector
CATLEV1
a numeric vector
CATLEV2
a numeric vector
LITO
a numeric vector
F1_Ag.1
a numeric vector
F1_Ag.2
a numeric vector
F2_Ag.1
a numeric vector
F1_Al2O3.1
a numeric vector
F1_Al2O3.2
a numeric vector
F2_Al2O3.1
a numeric vector
F1_Au_INAA.1
a numeric vector
F1_Au_INAA.2
a numeric vector
F2_Au_INAA.1
a numeric vector
F1_Ba_INAA.1
a numeric vector
F1_Ba_INAA.2
a numeric vector
F2_Ba_INAA.1
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(CHorFieldDUP)
str(CHorFieldDUP)
Standard reference material for the Kola data
Description
This is needed for quality control.
Usage
data(CHorSTANDARD)
Format
A data frame with 52 observations on the following 95 variables.
X.Loc
a numeric vector
Ag
a numeric vector
Ag_INAA
a numeric vector
Al
a numeric vector
Al2O3
a numeric vector
As
a numeric vector
As_INAA
a numeric vector
Au_INAA
a numeric vector
B
a numeric vector
Ba
a numeric vector
Ba_INAA
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Br
a numeric vector
Br_INAA
a numeric vector
Ca
a numeric vector
Ca_INAA
a numeric vector
CaO
a numeric vector
Cd
a numeric vector
Ce_INAA
a numeric vector
Cl.
a numeric vector
Co
a numeric vector
Co_INAA
a numeric vector
Cond
a numeric vector
Cr
a numeric vector
Cr_INAA
a numeric vector
Cs_INAA
a numeric vector
Cu
a numeric vector
Eu_INAA
a numeric vector
F.
a numeric vector
F_ionselect
a numeric vector
Fe
a numeric vector
Fe_INAA
a numeric vector
Fe2O3
a numeric vector
Hf_INAA
a numeric vector
Hg
a numeric vector
Hg_INAA
a numeric vector
Ir_INAA
a numeric vector
K
a numeric vector
K2O
a numeric vector
La
a numeric vector
La_INAA
a numeric vector
Li
a numeric vector
LOI
a numeric vector
Lu_INAA
a numeric vector
Mass_INAA
a numeric vector
Mg
a numeric vector
MgO
a numeric vector
Mn
a numeric vector
MnO
a numeric vector
Mo
a numeric vector
Mo_INAA
a numeric vector
Na
a numeric vector
Na_INAA
a numeric vector
Na2O
a numeric vector
Nd_INAA
a numeric vector
Ni
a numeric vector
Ni_INAA
a numeric vector
NO2.
a numeric vector
NO3.
a numeric vector
P
a numeric vector
P2O5
a numeric vector
Pb
a numeric vector
pH
a numeric vector
PO4...
a numeric vector
Rb
a numeric vector
S
a numeric vector
Sb
a numeric vector
Sb_INAA
a numeric vector
Sc
a numeric vector
Sc_INAA
a numeric vector
Se
a numeric vector
Se_INAA
a numeric vector
Si
a numeric vector
SiO2
a numeric vector
Sm_INAA
a numeric vector
Sn_INAA
a numeric vector
SO4..
a numeric vector
Sr
a numeric vector
Sr_INAA
a numeric vector
Sum
a numeric vector
Ta_INAA
a numeric vector
Tb_INAA
a numeric vector
Te
a numeric vector
Th
a numeric vector
Th_INAA
a numeric vector
Ti
a numeric vector
TiO2
a numeric vector
U_INAA
a numeric vector
V
a numeric vector
W_INAA
a numeric vector
Y
a numeric vector
Yb_INAA
a numeric vector
Zn
a numeric vector
Zn_INAA
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(CHorSTANDARD)
str(CHorSTANDARD)
Compares Correlation Matrices
Description
This function compares two correlation matrices numerically and graphically.
Usage
CorCompare(cor1, cor2, labels1, labels2, method1, method2, ndigits = 4,
lty1 = 1, lty2 = 2, col1 = 1, col2 = 2, lwd1 = 1.1, lwd2 = 1.1,
cex.label = 1.1, cex.legend = 1.2, lwd.legend = 1.2, cex.cor = 1, ...)
Arguments
cor1 , cor2 |
two correlation matrices based on different estimation methods |
labels1 , labels2 |
labels for the two estimation methods |
method1 , method2 |
description of the estimation methods |
ndigits |
number of digits to be used for plotting the numbers |
lty1 , lty2 , col1 , col2 , lwd1 , lwd2 , cex.label , cex.cor |
other graphics parameters |
cex.legend , lwd.legend |
graphical parameters for the legend |
... |
further graphical parameters for the ellipses |
Details
The ellipses are plotted with the function do.ellipses. Therefore the radius is calculated with singular value decomposition.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]
op <- par(mfrow=c(1,1),mar=c(4,4,2,0))
R=robustbase::covMcd(log10(x),cor=TRUE)$cor
P=cor(log10(x))
CorCompare(R,P,labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
method1="Robust",method2="Pearson",ndigits=2, cex.label=1.2)
par(op)
Correlation Matrix for Sub-groups
Description
The correlation matrix for sub-groups of data is computed and displayed in a graphic.
Usage
CorGroups(dat, grouping, labels1, labels2, legend, ndigits = 4,
method = "pearson", ...)
Arguments
dat |
data values (probably log10-transformed) |
grouping |
factor with levels for different groups |
labels1 , labels2 |
labels for groups |
legend |
plotting legend |
ndigits |
number of digits to be used for plotting the numbers |
method |
correlation method: "pearson", "spearman" or "kendall" |
... |
will not be used in the function |
Details
The corralation is estimated with a non robust method but it is possible to select between the method of Pearson, Spearman and Kendall. The groups must be provided by the user.
Value
Graphic with the different sub-groups.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]
#definition of the groups
lit=chorizon[,"LITO"]
litolog=rep(NA, length(lit))
litolog[lit==10] <- 1
litolog[lit==52] <- 2
litolog[lit==81 | lit==82 | lit==83] <- 3
litolog[lit==7] <- 4
litolog <- litolog[!is.na(litolog)]
litolog <- factor(litolog, labels=c("AB","PG","AR","LPS"))
op <- par(mfrow=c(1,1),mar=c(0.1,0.1,0.1,0.1))
CorGroups(log10(x), grouping=litolog, labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
legend=c("Caledonian Sediments","Basalts","Alkaline Rocks","Granites"),ndigits=2)
par(op)
Krige
Description
Plots Krige maps and Legend based on continuous or percentile scale.
Usage
KrigeLegend(X, Y, z, resol = 100, vario, type = "percentile",
whichcol = "gray", qutiles = c(0, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 1),borders=NULL,
leg.xpos.min = 780000, leg.xpos.max = 8e+05, leg.ypos.min = 7760000,
leg.ypos.max = 7870000, leg.title = "mg/kg", leg.title.cex = 0.7,
leg.numb.cex = 0.7, leg.round = 2, leg.numb.xshift = 70000, leg.perc.xshift = 40000,
leg.perc.yshift = 20000, tit.xshift = 35000)
Arguments
X |
X-coordinates |
Y |
Y-coordinates |
z |
values on the coordinates |
resol |
resolution of blocks for Kriging |
vario |
variogram model |
type |
"percentile" for percentile legend, "contin" for continous grey-scale or colour map |
whichcol |
type of colour scheme to use: "gray", "rainbow", "rainbow.trunc", "rainbow.inv", "terrain", "topo" |
qutiles |
considered quantiles if type="percentile" is used |
borders |
either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders |
leg.xpos.min |
minimum value of x-position of the legend |
leg.xpos.max |
maximum value of x-position of the legend |
leg.ypos.min |
minimum value of y-position of the legend |
leg.ypos.max |
maximum value of y-position of the legend |
leg.title |
title for legend |
leg.title.cex |
cex for legend title |
leg.numb.cex |
cex for legend number |
leg.round |
round legend to specified digits "pretty" |
leg.numb.xshift |
x-shift of numbers in legend relative to leg.xpos.max |
leg.perc.xshift |
x-shift of "Percentile" in legend relative to leg.xpos.min |
leg.perc.yshift |
y-shift of numbers in legend relative to leg.ypos.max |
tit.xshift |
x-shift of title in legend relative to leg.xpos.max |
Details
Based on a variogram model a interpolation of the spatial data is computed. The variogram has to be provided by the user and based on this model the spatial prediction is made. To distinguish between different values every predicted value is plotted in his own scale of the choosen colour.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
data(kola.background)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
#el=chorizon[,"As"]
#vario.b <- variog(coords=cbind(X,Y), data=el, lambda=0, max.dist=300000)
#data(res.eyefit.As_C_m) #need the data
#v5=variofit(vario.b,res.eyefit.As_C_m,cov.model="spherical",max.dist=300000)
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")
# to inclrease the resolution, set e.g. resol=100
#data(bordersKola) # x and y coordinates of project boundary
#KrigeLegend(X,Y,el,resol=25,vario=v5,type="percentile",whichcol="gray",
# qutiles=c(0,0.05,0.25,0.50,0.75,0.90,0.95,1),borders="bordersKola",
# leg.xpos.min=7.8e5,leg.xpos.max=8.0e5,leg.ypos.min=77.6e5,leg.ypos.max=78.7e5,
# leg.title="mg/kg", leg.title.cex=0.7, leg.numb.cex=0.7, leg.round=2,
# leg.numb.xshift=0.7e5,leg.perc.xshift=0.4e5,leg.perc.yshift=0.2e5,tit.xshift=0.35e5)
#
#plotbg(map.col=c("gray","gray","gray","gray"),map.lwd=c(1,1,1,1),add.plot=TRUE)
Northarrow
Description
Add a North Arrow to a map.
Usage
Northarrow(Xbottom, Ybottom, Xtop, Ytop, Xtext, Ytext, Alength, Aangle, Alwd,
Tcex)
Arguments
Xbottom |
x coordinate of the first point |
Ybottom |
y coordinate of the first point |
Xtop |
x coordinate of the second point |
Ytop |
y coordinate of the second point |
Xtext |
x coordinate of the label |
Ytext |
y coordinate of the label |
Alength |
length of the edges of the arrow head (in inches) |
Aangle |
angle from the shaft of the arrow to the edge of the arrow head |
Alwd |
The line width, a positive number |
Tcex |
numeric character expansion factor |
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
plot.new()
Northarrow(0.5,0,0.5,1,0.5,0.5,Alength=0.15,Aangle=15,Alwd=2,Tcex=2)
Compares the Robust Estimation with the Classical
Description
This function compares a robust covariance (correlation) estimation (MCD is used) with the classical approach. A plot with the two ellipses will be produced and the correlation coefficients are quoted.
Usage
RobCor.plot(x, y, quan = 1/2, alpha = 0.025, colC = 1, colR = 1, ltyC = 2,
ltyR = 1, ...)
Arguments
x , y |
two data vectors where the correlation should be computed |
quan |
fraction of tolerated outliers (at most 0.5) |
alpha |
quantile of chisquare distribution for outlier cutoff |
colC , colR |
colour for both ellipses |
ltyC , ltyR |
line type for both ellipses |
... |
other graphical parameters |
Details
The covariance matrix is estimated in a robust (MCD) and non robust way and then both ellipses are plotted. The radi is calculated from the singular value decomposition and a breakpoint (specified quantile) for outlier cutoff.
Value
cor.cla |
correlation of the classical estimation |
cor.rob |
correlation of the robust estimation |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
Be=chorizon[,"Be"]
Sr=chorizon[,"Sr"]
RobCor.plot(log10(Be),log10(Sr),xlab="Be in C-horizon [mg/kg]",
ylab="Sr in C-horizon [mg/kg]",cex.lab=1.2, pch=3, cex=0.7,
xaxt="n", yaxt="n",colC=1,colR=1,ltyC=2,ltyR=1)
Plots Smoothing Maps and a Legend
Description
Plots smoothing maps and legend based on continuous or percentile scale.
Usage
SmoothLegend(X, Y, z, resol = 200, type = "percentile", whichcol = "gray",
qutiles = c(0, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 1), borders=NULL, leg.xpos.min = 780000,
leg.xpos.max = 8e+05, leg.ypos.min = 7760000, leg.ypos.max = 7870000,
leg.title = "mg/kg", leg.title.cex = 0.7, leg.numb.cex = 0.7, leg.round = 2,
leg.wid = 4, leg.numb.xshift = 70000, leg.perc.xshift = 40000,
leg.perc.yshift = 20000, tit.xshift = 35000)
Arguments
X |
X-coordinates |
Y |
Y-coordinates |
z |
values on the coordinates |
resol |
resolution of smoothing |
type |
"percentile" for percentile legend; "contin" for continuous grey-scale or colour map |
whichcol |
type of color scheme to use: "grey", "rainbow", "rainbow.trunc", "rainbow.inv", "terrain" or "topo" |
qutiles |
considered quantiles if type="percentile" is used |
borders |
either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders |
leg.xpos.min |
minimum value of x-position of the legend |
leg.xpos.max |
maximum value of x-position of the legend |
leg.ypos.min |
minimum value of y-position of the legend |
leg.ypos.max |
maximum value of y-position of the legend |
leg.title |
title for legend |
leg.title.cex |
cex for legend title |
leg.numb.cex |
cex for legend numbers |
leg.round |
round legend to specified digits "pretty" |
leg.wid |
width (space in numbers) for legend |
leg.numb.xshift |
x-shift of numbers in legend relative to leg.xpos.max |
leg.perc.xshift |
x-shift of "Percentile" in legend relative to leg.xpos.min |
leg.perc.yshift |
y-shift of "Percentile" in legend relative to leg.ypos.max |
tit.xshift |
x-shift of title in legend relative to leg.xpos.max |
Details
First a interpolation is applied using different versions of algorithms from Akima and then all points a distinguished into inside an outside the polygonal region. Now the empirical quantiles for points inside the polygon are computed and then the values are plotted in different scales of the choosen colour. ATTENTION: here borders were defined for the smoothing region
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
el=log10(chorizon[,"As"])
# generate plot
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")
data(bordersKola) # list with list elements x and y for x- and y-corrdinates of map borders
SmoothLegend(X,Y,el,resol=200,type="contin",whichcol="gray",
qutiles=c(0,0.05,0.25,0.50,0.75,0.90,0.95,1), borders="bordersKola",
leg.xpos.min=7.8e5,leg.xpos.max=8.0e5,leg.ypos.min=77.6e5,leg.ypos.max=78.7e5,
leg.title="mg/kg", leg.title.cex=0.7, leg.numb.cex=0.7, leg.round=2,leg.wid=4,
leg.numb.xshift=0.7e5,leg.perc.xshift=0.4e5,leg.perc.yshift=0.2e5,tit.xshift=0.35e5)
# plot background
data(kola.background)
plotbg(map.col=c("gray","gray","gray","gray"),map.lwd=c(1,1,1,1),add.plot=TRUE)
Internal StatDA objects
Description
Internal StatDA objects.
Details
These are not to be called by the user.
Value
No return value, internal function.
Plot Legend
Description
Plots symbols and Legend on a map. There are two different methods (percentile symbols or boxplot symbols) to display the legend.
Usage
SymbLegend(X, Y, z, type = "percentile", qutiles = c(0, 0.05, 0.25, 0.75, 0.95, 1),
q = NULL, symbtype = "EDA", symbmagn = 0.8, leg.position = "topright",
leg.title = "", leg.title.cex = 0.8, leg.round = 2, leg.wid = 4, leg.just = "right",
cex.scale = 0.8, xf = 9000, logscale = TRUE, accentuate = FALSE)
Arguments
X |
X-coordinates |
Y |
Y-coordinates |
z |
values on the coordinates |
type |
"percentile" for percentile legend, "boxplot" for boxplot legend |
qutiles |
considered quantiles if type="percentile" is used |
q |
if not NULL, provide manually data points where to break |
symbtype |
type of symbols to be used; "EDA", "EDAacc", "EDAacc2", "EDAext", "GSC" or "arbit" |
symbmagn |
magnification factor for symbols |
leg.position |
position of the legend, either character like "topright" or coordinates |
leg.title |
title for legend |
leg.title.cex |
cex for legend |
leg.round |
round legend to specified digits "pretty" |
leg.wid |
width (space in numbers) for legend |
leg.just |
how to justify the legend |
cex.scale |
cex for text "log-scale" and for boxplot legend - only for type="boxplot" |
xf |
x-distance from boxplot to number for legend |
logscale |
if TRUE a log scale is used (for boxplot scale) and the log-boxplot is computed |
accentuate |
if TRUE, accentuated symbols are used (here only EDA accentuated!) |
Details
It is possible to choose between different methods for calculating the range of the values for the different symbols.
If type="percentile" the pre-determined quantiles of the data are computed and are used to plot the symbols. If type="boxplot" a boxplot is computed and the values were taken to group the values fot the plot and the legend. In the case that a log scale is used the function boxplotlog is used instead of boxplot.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
data(kola.background)
el=chorizon[,"As"]
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n")
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)
SymbLegend(X,Y,el,type="percentile",qutiles<-c(0,0.05,0.25,0.75,0.95,1),symbtype="EDA",
symbmagn=0.8,leg.position="topright",leg.title="As [mg/kg]",leg.title.cex=0.8,leg.round=2,
leg.wid=4,leg.just="right")
Adaptive reweighted estimator for multivariate location and scatter
Description
Adaptive reweighted estimator for multivariate location and scatter with hard-rejection weights. The multivariate outliers are defined according to the supremum of the difference between the empirical distribution function of the robust Mahalanobis distance and the theoretical distribution function.
Usage
arw(x, m0, c0, alpha, pcrit)
Arguments
x |
Dataset (n x p) |
m0 |
Initial location estimator (1 x p) |
c0 |
Initial scatter estimator (p x p) |
alpha |
Maximum thresholding proportion (optional scalar, default: alpha = 0.025) |
pcrit |
Critical value obtained by simulations (optional scalar, default value obtained from simulations) |
Details
At the basis of initial estimators of location and scatter, the function arw performs a reweighting step to adjust the threshold for outlier rejection. The critical value pcrit was obtained by simulations using the MCD estimator as initial robust covariance estimator. If a different estimator is used, pcrit should be changed and computed by simulations for the specific dimensions of the data x.
Value
m |
Adaptive location estimator (p x 1) |
c |
Adaptive scatter estimator (p x p) |
cn |
Adaptive threshold ("adjusted quantile") |
w |
Weight vector (n x 1) |
Author(s)
Moritz Gschwandtner <e0125439@student.tuwien.ac.at>
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
http://cstat.tuwien.ac.at/filz/
References
P. Filzmoser, R.G. Garrett, and C. Reimann (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31:579-587.
Examples
x <- cbind(rnorm(100), rnorm(100))
arw(x, apply(x,2,mean), cov(x))
B-horizon of the Kola Data
Description
The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the B-horizon.
Usage
data(bhorizon)
Format
A data frame with 609 observations on the following 77 variables.
ID
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
ELEV
a numeric vector
COUN
a factor with levels
FIN
NOR
RUS
ASP
a factor with levels
E
FLAT
N
NE
NW
NW
S
SE
SW
W
LOWDB
a numeric vector
LITO
a numeric vector
GENLAN
a factor with levels
DEEPVAL
FLA PLAIN
FLAT
HIMO
LOWMO
PLAIN
PLAT
RIDGE
SLOPE
Ag
a numeric vector
Al
a numeric vector
Al_XRF
a numeric vector
Al2O3
a numeric vector
As
a numeric vector
Au
a numeric vector
B
a numeric vector
Ba
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Br_IC
a numeric vector
Ca
a numeric vector
Ca_XRF
a numeric vector
CaO
a numeric vector
Cd
a numeric vector
Cl_IC
a numeric vector
Co
a numeric vector
Cr
a numeric vector
Cu
a numeric vector
EC
a numeric vector
F_IC
a numeric vector
Fe
a numeric vector
Fe_XRF
a numeric vector
Fe2O3
a numeric vector
Hg
a numeric vector
K
a numeric vector
K_XRF
a numeric vector
K2O
a numeric vector
La
a numeric vector
Li
a numeric vector
LOI
a numeric vector
Mg
a numeric vector
Mg_XRF
a numeric vector
MgO
a numeric vector
Mn
a numeric vector
Mn_XRF
a numeric vector
MnO
a numeric vector
Mo
a numeric vector
Na
a numeric vector
Na_XRF
a numeric vector
Na2O
a numeric vector
Ni
a numeric vector
NO3_IC
a numeric vector
P
a numeric vector
P_XRF
a numeric vector
P2O5
a numeric vector
Pb
a numeric vector
Pd
a numeric vector
pH
a numeric vector
PO4_IC
a numeric vector
Pt
a numeric vector
S
a numeric vector
Sb
a numeric vector
Sc
a numeric vector
Se
a numeric vector
Si
a numeric vector
Si_XRF
a numeric vector
SiO2
a numeric vector
SO4_IC
a numeric vector
Sr
a numeric vector
Te
a numeric vector
Th
a numeric vector
Ti
a numeric vector
Ti_XRF
a numeric vector
TiO2
a numeric vector
V
a numeric vector
Y
a numeric vector
Zn
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(bhorizon)
str(bhorizon)
Borders of the Kola Project boundary
Description
x- and y-coordinates of the Kola Project boundary.
Usage
data(bordersKola)
Format
The format is: List of 2 $ x: num [1:64] 836200 881000 752900 743100 737500 ... $ y: num [1:64] 7708867 7403003 7389239 7377769 7364006 ...
Details
The corrdinates for the Kola Project boundary are used for the surface maps, i.e. for Krige and Smoothing maps. It is a list with two list elements x and y for the x- and y-coordinates.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(bordersKola)
plot(bordersKola$x,bordersKola$y)
Boxes
Description
The function boxes computes boxes of multivariate data. If add=TRUE the boxes are plotted in the current plot otherwise nothing is plotted.
Usage
boxes(x, xA = 1, yA = 2, zA = 3, labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE, xlim = NULL, ylim = NULL, flip.labels = NULL, len = 1,
leglen = 1, axes = FALSE, frame.plot = axes, main = NULL, sub = NULL,
xlab = "", ylab = "", cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes + (ylab != ""),
1, 0)), add = FALSE, plot = TRUE, ...)
Arguments
x |
multivariate data in form of matrix or data frame |
xA |
assignment of clusters to the coordinates of the boxes |
yA |
assignment of clusters to the coordinates of the boxes |
zA |
assignment of clusters to the coordinates of the boxes |
labels |
vector of character strings for labeling the plots |
locations |
locations for the boxes on the plot (e.g. X/Y coordinates) |
nrow |
integers giving the number of rows ands columns to use when 'locations' is 'NULL'. By default, 'nrow == ncol', a square will be used. |
ncol |
integers giving the number of rows and columns to use when 'locations' is 'NULL'. By default, 'nrow == ncol', a square will be used. |
key.loc |
vector with x and y coordinates of the unit key. |
key.labels |
vector of character strings for labeling the segments of the unit key. If omitted, the second component of 'dimnames(x)' ist used, if available. |
key.xpd |
clipping switch for the unit key (drawing and labeling), see 'par("xpd")'. |
xlim |
vector with the range of x coordinates to plot |
ylim |
vector with the range of y coordinates to plot |
flip.labels |
logical indicating if the label locations should flip up and down from diagram to diagram. Defaults to a somewhat smart heuristic. |
len |
multiplicative values for the space used in the plot window |
leglen |
multiplicative values for the space of the labels on the legend |
axes |
logical flag: if 'TRUE' axes are added to the plot |
frame.plot |
logical flag: if 'TRUE', the plot region ist framed |
main |
a main title for the plot |
sub |
a sub title for the plot |
xlab |
a label for the x axis |
ylab |
a label for the y axis |
cex |
character expansion factor for the labels |
lwd |
line width used for drawing |
lty |
line type used for drawing |
xpd |
logical or NA indicationg if clipping should be done, see 'par(xpd=.)' |
mar |
argument to 'par(mar=*)', rypically choosing smaller margings than by default |
add |
logical, if 'TRUE' add boxes to current plot |
plot |
logical, if 'FALSE', nothing is plotted |
... |
further arguments, passed to the first call of 'plot()' |
Details
This type of graphical approach for multivariate data is only applicable where the data can be grouped into three clusters. This means that before the plot can be made the data undergo a hierarchical cluster to get the size of each cluster. The distance measure for the hierarchicla cluster is complete linkage. Each cluster represents one side of the boxes.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
#plots the background and the boxes for the elements
data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Co","Cu","Ni","Rb","Bi","Na","Sr")])
data(kola.background)
sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
516,535,551,556,558,564,577,584,601,612,617)
x=el[sel,]
xwid=diff(range(X))/12e4
ywid=diff(range(Y))/12e4
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n",
xlim=c(360000,max(X)))
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)
boxes(x,locations=cbind(X[sel],Y[sel]),len=20000,key.loc=c(800000,7830000),leglen=25000,
cex=0.75, add=TRUE, labels=NULL, lwd=1.1)
Boxplotlegend
Description
This function plots the legend in form of a boxplot. The symbols represent the different levels (e.g. whiskers, median, ...) of the boxplot.
Usage
boxplotlegend(X, Y, el, boxinfo, x.shift = 40000, xf = 10000, y.shift = 0.2,
y.scale = 130000, legend.title = "Legend", cex.legtit = 1, logscale = TRUE,
symb = c(1, 1, 16, 3, 3), ssize = c(1.5, 1, 0.3, 1, 1.5), accentuate = FALSE,
cex.scale = 0.8)
Arguments
X |
X-coordinates |
Y |
Y-coordinates |
el |
variable considered |
boxinfo |
from boxplot(el) or boxplotlog(el) |
x.shift |
shift in x-direction |
xf |
width in x-direction |
y.shift |
shift in y-direction (from title) |
y.scale |
scale in y-direction |
legend.title |
title for legend |
cex.legtit |
cex of title for legend |
logscale |
if TRUE plot boxplot in log-scale |
symb |
symbols to be used (length 5!) |
ssize |
symbol sizes to be used (length 5!) |
accentuate |
if FALSE no symbols for the upper values (e.g. upper "hinge", upper whisker) are assigned |
cex.scale |
cex for text "log-scale" for scale |
Details
Takes the information provided by the argument boxinfo and plots a boxplot corresponding to the values. If there are no upper or/and lower outliers the symbols for the upper or/and lower whiskers will be ignored.
Value
Plots the legend with respect to the boxplot and returns the symbols, size and the quantiles used for the legend.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#internal function, used in SymbLegend
Boxplotlog
Description
The function boxplot plots a boxplot of the data with respect to the logarithmic transformed values of the whiskers. See also details.
Usage
boxplotlog(x, ..., range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE,
outline = TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE,
add = FALSE, at = NULL)
Arguments
x |
data |
... |
further arguments for creating the list |
range |
this determines how far the plot "whiskers" extend from the box. If range is positive, the most extreme data point which is no more than range times the length of the box away from the box. A value of zero causes the whiskers to extend to the data extremes. |
width |
a vector giving the relative widths of the boxes making up the plot |
varwidth |
if varwidth is TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups. |
notch |
if notch is TRUE, a notch is drawn in each side of the boxes |
outline |
if outline is FALSE, the outliers are not drawn |
names |
define the names of the attributes |
plot |
if plot is TRUE the boxplot is plotted in the current plot |
border |
character or numeric (vector) which indicates the color of the box borders |
col |
defines the colour |
log |
character, indicating if any axis should be drawn in logarithmic scale |
pars |
some graphical parameters can be specified |
horizontal |
logical parameter indicating if the boxplots should be horizontal; FALSE means vertical boxes |
add |
if TRUE the boxplot is added to the current plot |
at |
numeric vector giving the locations of the boxplots |
Details
Sometimes a boxplot of the original data does not identify outliers because the boxplot assumes normal distribution. Therefore the data are logarithmically transformed and values for plotting the boxplot are calculated. After that the data are backtransformed and the boxplot is plotted with respect to the logarithmic results. Now the outliers are identified.
Value
stats |
a vector of length 5, containing the extreme of the lower whisker, the lower "hinge", the median, the upper "hinge" and the extreme of the upper whisker (backtransformed) |
n |
the number of non-NA observations in the sample |
conf |
the lower and upper extremes of the "notch" |
out |
the values of any data points which lie beyond the extremes of the whiskers (backtransformed) |
group |
the group |
names |
the attributes |
Returns a boxplot which is calculated with the log-transformed data.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
Ba=chorizon[,"Ba"]
boxplotlog((Ba),horizontal=TRUE,xlab="Ba [mg/kg]",cex.lab=1.4,pch=3,cex=1.5)
Boxplot based on percentiles
Description
This function plots a boxplot of the data and the boundaries are based on percentiles.
Usage
boxplotperc(x, ..., quant = c(0.02, 0.98), width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE, border = par("fg"),
col = NULL, log = "", pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)
Arguments
x |
data |
... |
further arguments for creating the list |
quant |
the underlying percentages |
width |
a vector giving the relative widths of the boxes making up the plot |
varwidth |
if varwidth is TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups. |
notch |
if notch is TRUE, a notch is drawn in each side of the boxes |
outline |
if outliers is FALSE, the outliers are not drawn |
names |
define the names of the attributes |
plot |
if plot is TRUE the boxplot is plotted in the current plot |
border |
character or numeric (vector) which indicates the color of the box borders |
col |
defines the colour |
log |
character, indicating if any axis should be drawn in logarithmic scale |
pars |
some graphical parameters can be specified |
horizontal |
logical parameter indicating if the boxplots should be horizontal; FALSE means vertical boxes |
add |
if TRUE the boxplot is added to the current plot |
at |
numeric vector giving the locations of the boxplots |
Details
The default value for quant is the 2% and 98% quantile and this argument defines the percentiles for the upper and lower whiskers.
Value
stats |
a vector of length 5, containing the extreme of the lower whisker, the lower "hinge", the median, the upper "hinge" and the extreme of the upper whisker (backtransformed) |
n |
the number of non-NA observations in the sample |
conf |
the lower and upper extremes of the "notch" |
out |
the values of any data points which lie beyond the extremes of the whiskers (backtransformed) |
group |
the group |
names |
the attributes |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(chorizon)
Ba=chorizon[,"Ba"]
boxplotperc(Ba,quant=c(0.05,0.95),horizontal=TRUE,xlab="Ba [mg/kg]",cex.lab=1.2,pch=3)
Bubbleplot due to Finnish method
Description
This function plots multivariate data with respect to the value. The size of the bubble represents the value of the datapoint.
Usage
bubbleFIN(x, y, z, radi = 10000, S = 9, s = 0.9, wa = 0, wb = 0.95, wc = 0.05,
plottitle = "BubblePlot", legendtitle = "Legend", text.cex = 1,
legtitle.cex = 1, backgr = "kola.background", leg = TRUE, ndigits = 1)
Arguments
x |
x coordinates |
y |
y coordinates |
z |
measured value at point (x,y) |
radi |
scaling for the map |
S , s |
control the size of the largest and smallest bubbles |
wa , wb , wc |
factors which defines the shape of the exponential function |
plottitle |
the titel of the plot |
legendtitle |
the titel of the legend |
text.cex |
multiplier for the size of the labels |
legtitle.cex |
multiplier for the size of the legendtitle |
backgr |
which background should be used |
leg |
if TRUE the bubbles are plotted to the legend |
ndigits |
how much digits should be plotted at the legend |
Details
The smallest bubbles represent the 10% quantile and the biggest bubbles represent the 99
Value
Plots bubbles in the existing plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(kola.background)
data(ohorizon)
el=ohorizon[,"Mg"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n") #plot bubbles with background
plotbg(map.col=c("gray","gray","gray","gray"),add.plot=TRUE)
bubbleFIN(X,Y,el,S=9,s=2,plottitle="",legendtitle="Mg [mg/kg]", text.cex=0.63,legtitle.cex=0.80)
C-horizon of the Kola Data
Description
The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the C-horizon.
Usage
data(chorizon)
Format
A data frame with 606 observations on the following 111 variables.
ID
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
ELEV
a numeric vector
COUN
a factor with levels
FIN
NOR
RUS
ASP
a factor with levels
E
FLAT
N
NE
NW
NW
S
SE
SW
W
TOPC
a numeric vector
LITO
a numeric vector
Ag
a numeric vector
Ag_INAA
a numeric vector
Al
a numeric vector
Al_XRF
a numeric vector
Al2O3
a numeric vector
As
a numeric vector
As_INAA
a numeric vector
Au
a numeric vector
Au_INAA
a numeric vector
B
a numeric vector
Ba
a numeric vector
Ba_INAA
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Br_IC
a numeric vector
Br_INAA
a numeric vector
Ca
a numeric vector
Ca_INAA
a numeric vector
Ca_XRF
a numeric vector
CaO
a numeric vector
Cd
a numeric vector
Ce_INAA
a numeric vector
Cl_IC
a numeric vector
Co
a numeric vector
Co_INAA
a numeric vector
Cr
a numeric vector
Cr_INAA
a numeric vector
Cs_INAA
a numeric vector
Cu
a numeric vector
EC
a numeric vector
Eu_INAA
a numeric vector
F_IC
a numeric vector
Fe
a numeric vector
Fe_INAA
a numeric vector
Fe_XRF
a numeric vector
Fe2O3
a numeric vector
Hf_INAA
a numeric vector
Hg
a numeric vector
Hg_INAA
a numeric vector
Ir_INAA
a numeric vector
K
a numeric vector
K_XRF
a numeric vector
K2O
a numeric vector
La
a numeric vector
La_INAA
a numeric vector
Li
a numeric vector
LOI
a numeric vector
Lu_INAA
a numeric vector
Mg
a numeric vector
Mg_XRF
a numeric vector
MgO
a numeric vector
Mn
a numeric vector
Mn_XRF
a numeric vector
MnO
a numeric vector
Mo
a numeric vector
Mo_INAA
a numeric vector
Na
a numeric vector
Na_INAA
a numeric vector
Na_XRF
a numeric vector
Na2O
a numeric vector
Nd_INAA
a numeric vector
Ni
a numeric vector
Ni_INAA
a numeric vector
NO3_IC
a numeric vector
P
a numeric vector
P_XRF
a numeric vector
P2O5
a numeric vector
Pb
a numeric vector
Pd
a numeric vector
pH
a numeric vector
PO4_IC
a numeric vector
Pt
a numeric vector
Rb
a numeric vector
S
a numeric vector
Sb
a numeric vector
Sb_INAA
a numeric vector
Sc
a numeric vector
Sc_INAA
a numeric vector
Se
a numeric vector
Se_INAA
a numeric vector
Si
a numeric vector
Si_XRF
a numeric vector
SiO2
a numeric vector
Sm_INAA
a numeric vector
Sn_INAA
a numeric vector
SO4_IC
a numeric vector
Sr
a numeric vector
Sr_INAA
a numeric vector
Ta_INAA
a numeric vector
Tb_INAA
a numeric vector
Te
a numeric vector
Th
a numeric vector
Th_INAA
a numeric vector
Ti
a numeric vector
Ti_XRF
a numeric vector
TiO2
a numeric vector
U_INAA
a numeric vector
V
a numeric vector
W_INAA
a numeric vector
Y
a numeric vector
Yb_INAA
a numeric vector
Zn
a numeric vector
Zn_INAA
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(chorizon)
str(chorizon)
Plot Concentration Area
Description
Displays a concentration-area plot (see also concareaExampleKola). This function is preferable since it can be applied to non-Kola data!
Usage
concarea(x, y, z, zname = deparse(substitute(z)),
caname = deparse(substitute(z)), borders=NULL, logx = FALSE, ifjit = FALSE,
ifrev = FALSE, ngrid = 100, ncp = 0, xlim = NULL, xcoord = "Easting",
ycoord = "Northing", ifbw = FALSE, x.logfinetick = c(2, 5, 10),
y.logfinetick = c(2, 5, 10))
Arguments
x |
name of the x-axis spatial coordinate, the eastings |
y |
name of the y-axis spatial coordinate, the northings |
z |
name of the variable to be processed and plotted |
zname |
a title for the x-axes of the qp-plot and concentration area plot. |
caname |
a title for the image of interpolated data. |
borders |
either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders |
logx |
if it is required to make a logarithmis data transformation for the interpolation |
ifrev |
if FALSE the empirical function ist plotted from highest value to lowest |
ngrid |
default value is 100 |
xlim |
the range for the x-axis |
xcoord |
a title for the x-axis, defaults to "Easting" |
ycoord |
a title for the y-axis, defaults to "Northing" |
ifbw |
if the plot is drawn in black and white |
x.logfinetick |
how fine are the tick marks on log-scale on x-axis |
y.logfinetick |
how fine are the tick marks on log-scale on y-axis |
ifjit |
default value is FALSE |
ncp |
default value is 0 |
Details
The function assumes that the area is proportional to the count of grid points. To be a reasonable model the data points should be 'evenly' spread over the plane. The interpolated grid size ist computed as (max(x) - min(x))/ngrid, with a default value of 100 for ngrid. Akima's interpolation function is used to obtain a linear interpolation between the spatial data values.
Value
The concentration area plot, in both directions, is created.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(ohorizon)
data(kola.background)
data(bordersKola)
Cu=ohorizon[,"Cu"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
op <- par(mfrow=c(1,2),mar=c(4,4,2,2))
concarea(X,Y,Cu,log=TRUE,zname="Cu in O-horizon [mg/kg]",borders="bordersKola", ifrev=FALSE,
x.logfinetick=c(2,5,10),y.logfinetick=c(10))
par(op)
Concentration Area Plot for Kola data example
Description
Displays a concentration area plot example for the Kola data. This procedure ist useful for determining if mulitple populations that are spatially dependent are present in a data set. For a more general function see concarea.
Usage
concareaExampleKola(x, y, z, zname = deparse(substitute(z)),
caname = deparse(substitute(z)), borders="bordersKola", logx = FALSE, ifjit = FALSE,
ifrev = FALSE, ngrid = 100, ncp = 0, xlim = NULL, xcoord = "Easting",
ycoord = "Northing", ifbw = FALSE, x.logfinetick = c(2, 5, 10),
y.logfinetick = c(2, 5, 10))
Arguments
x |
name of the x-axis spatial coordinate, the eastings |
y |
name of the y-axis spatial coordinate, the northings |
z |
name of the variable to be processed and plotted |
zname |
a title for the x-axes of the qp-plot and concentration area plot. |
caname |
a title for the image of interpolated data. |
borders |
either NULL or character string with the name of the list with list elements x and y for x- and y-coordinates of map borders |
logx |
if it is required to make a logarithmis data transformation for the interpolation |
ifrev |
if FALSE the empirical function ist plotted from highest value to lowest |
ngrid |
default value is 100 |
xlim |
the range for the x-axis |
xcoord |
a title for the x-axis, defaults to "Easting" |
ycoord |
a title for the y-axis, defaults to "Northing" |
ifbw |
if the plot is drawn in black and white |
x.logfinetick |
how fine are the tick marks on log-scale on x-axis |
y.logfinetick |
how fine are the tick marks on log-scale on y-axis |
ifjit |
default value is FALSE |
ncp |
default value is 0 |
Details
The function assumes that the area is proportional to the count of grid points. To be a reasonable model the data points should be 'evenly' spread over the plane. The interpolated grid size ist computed as (max(x) - min(x))/ngrid, with a default value of 100 for ngrid. Akima's interpolation function is used to obtain a linear interpolation between the spatial data values.
Value
An example concentration area plot for Kola is created.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(ohorizon)
data(kola.background)
data(bordersKola)
Cu=ohorizon[,"Cu"]
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
op <- par(mfrow=c(2,2),mar=c(1.5,1.5,1.5,1.5))
concareaExampleKola(X,Y,Cu,log=TRUE,zname="Cu in O-horizon [mg/kg]",
x.logfinetick=c(2,5,10),y.logfinetick=c(10))
par(op)
Correlation Matrix
Description
Computes correlation matrix of x with method "pearson", "kendall" or "spearman". This function also prints the matrix with the significance levels.
Usage
cor.sign(x, method = c("pearson", "kendall", "spearman"))
Arguments
x |
the data |
method |
the method used |
Details
This function estimate the association between paired samples an compute a test of the value being zero. All measures of association are in the range [-1,1] with 0 indicating no association.
Value
cor |
Correlation matrix |
p.value |
p-value of the test statistic |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(chorizon)
x=chorizon[,c("Ca","Cu","Mg","Na","P","Sr","Zn")]
cor.sign(log10(x),method="spearman")
Plot Ellipses
Description
This function plots ellipses according to a covariance matrix
Usage
do.ellipses(acov, pos, ...)
Arguments
acov |
the given covariance matrix |
pos |
the location of the ellipse |
... |
further graphical parameter for the ellipses |
Details
The correlation matrix of the given covariance is computed and the resulting ellipse is plotted. The radi is computed with the singular value decomposition and the cos/sin is calculated for 100 different degrees.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#internal function, used in CorCompare
EDA-plot for data
Description
This function plots a histogram of the data. There is also the choice to add the density, a boxplot and a scatterplot to the histogram.
Usage
edaplot(data,scatter=TRUE,box=TRUE, P.plot=TRUE, D.plot=TRUE,
P.main=paste("Histogram of",deparse(substitute(data))),
P.sub=NULL, P.xlab=deparse(substitute(data)), P.ylab=default, P.ann=par("ann"),
P.axes=TRUE, P.frame.plot=P.axes, P.log=FALSE, P.logfine=c(2,5,10), P.xlim=NULL,
P.cex.lab=1.4,B.range=1.5, B.notch=FALSE, B.outline=TRUE,
B.border=par("fg"), B.col=NULL, B.pch=par("pch"), B.cex=1, B.bg=NA,
H.breaks="Sturges", H.freq=TRUE, H.include.lowest=TRUE, H.right=TRUE,
H.density=NULL, H.angle=45, H.col=NULL, H.border=NULL, H.labels=FALSE,
S.pch=".", S.col=par("col"), S.bg=NA, S.cex=1, D.lwd=1,D.lty=1)
Arguments
data |
data set |
scatter |
if TRUE the scatter plot is added |
box |
if TRUE a boxplot or boxplotlog is added |
P.plot |
if it is plotted or just a list is computed |
D.plot |
if TRUE the density is added |
P.main , P.sub , P.xlab , P.ylab , P.ann |
graphical parameters for the density, see plot |
P.axes , P.frame.plot |
plots the y-axis with the ticker |
P.log |
if TRUE the x-axis is in log-scale |
P.logfine |
how fine the tickers are |
P.xlim , P.cex.lab |
further graphical parameters |
B.range , B.notch , B.outline , B.border , B.col , B.pch , B.cex , B.bg |
parameters for boxplot and boxplotlog function, see boxplot and boxplotlog |
H.breaks , H.freq , H.include.lowest , H.right , H.density , H.angle , H.col , H.border , H.labels |
parameters for histogram, see hist |
S.pch , S.col , S.bg , S.cex |
graphical parameters for the shape of the points, see points |
D.lwd , D.lty |
parameters for the density |
Details
First the histogram, boxplot/boxplotlog and density is calculate and then the plot is produced. The default is that histogram, boxplot, density trace and scatterplot is made.
Value
H |
results of the histogram |
B |
results of the boxplot |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
plot
,boxplot
, edaplotlog
, hist
, points
Examples
data(chorizon)
Ba=chorizon[,"Ba"]
edaplot(Ba,H.freq=FALSE,box=TRUE,H.breaks=30,S.pch=3,S.cex=0.5,D.lwd=1.5,P.log=FALSE,
P.main="",P.xlab="Ba [mg/kg]",P.ylab="Density",B.pch=3,B.cex=0.5)
Edaplot for logtransformed data
Description
This function plots a histogram of the data. There is also the choice to add the density, a boxplot and a scatterplot to the histogram.
Usage
edaplotlog(data, scatter = TRUE, box = TRUE, P.plot = TRUE, D.plot = TRUE,
P.main = paste("Histogram of", deparse(substitute(data))), P.sub = NULL,
P.xlab = deparse(substitute(data)), P.ylab = default, P.ann = par("ann"),
P.axes = TRUE, P.frame.plot = P.axes, P.log = FALSE,
P.logfine = c(2, 5, 10), P.xlim = NULL, P.cex.lab = 1.4, B.range = 1.5,
B.notch = FALSE, B.outline = TRUE, B.border = par("fg"), B.col = NULL,
B.pch = par("pch"), B.cex = 1, B.bg = NA, B.log = FALSE,
H.breaks = "Sturges", H.freq = TRUE, H.include.lowest = TRUE,
H.right = TRUE, H.density = NULL, H.angle = 45, H.col = NULL,
H.border = NULL, H.labels = FALSE, S.pch = ".", S.col = par("col"),
S.bg = NA, S.cex = 1, D.lwd = 1, D.lty = 1)
Arguments
data |
data set |
scatter |
if TRUE the scatter plot is added |
box |
if TRUE a boxplot or boxplotlog is added |
P.plot |
if it is plotted or just a list is computed |
D.plot |
if TRUE the density is added |
P.main , P.sub , P.xlab , P.ylab , P.ann |
graphical parameters for the density, see plot |
P.axes , P.frame.plot |
plots the y-axis with the ticker |
P.log |
if TRUE the x-axis is in log-scale |
P.logfine |
how fine the tickers are |
P.xlim , P.cex.lab |
further graphical parameters |
B.range , B.notch , B.outline , B.border , B.col , B.pch , B.cex , B.bg |
parameters for boxplot and boxplotlog function, see boxplot and boxplotlog |
B.log |
if TRUE the function boxplotlog is used instead of boxplot |
H.breaks , H.include.lowest , H.right , H.density , H.angle , H.col , H.border , H.labels |
parameters for histogram, see hist |
H.freq |
uses the number of data points in the range |
S.pch , S.col , S.bg , S.cex |
graphical parameters for the shape of the points, see points |
D.lwd , D.lty |
parameters for the density |
Details
First the histogram, boxplot/boxplotlog and density is calculate and then the plot is produced. The default is that histogram, boxplot, density trace and scatterplot is made.
Value
H |
results of the histogram |
B |
results of boxplotlog |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
plot
,boxplot
, boxplotlog
, hist
, points
Examples
data(chorizon)
Ba=chorizon[,"Ba"]
edaplotlog(Ba,H.freq=FALSE,box=TRUE,H.breaks=30,S.pch=3,S.cex=0.5,D.lwd=1.5,P.log=FALSE,
P.main="",P.xlab="Ba [mg/kg]",P.ylab="Density",B.pch=3,B.cex=0.5,B.log=TRUE)
Fit a Factor Analysis
Description
Internal function for pfa.
Usage
factanal.fit.principal(cmat, factors, p = ncol(cmat), start = NULL,
iter.max = 10, unique.tol = 1e-04)
Arguments
cmat |
provided correlation matrix |
factors |
number of factors |
p |
number of observations |
start |
vector of start values |
iter.max |
maximum number of iteration used to calculate the common factor |
unique.tol |
the tolerance for a deviation of the maximum (in each row, without the diag) value of the given correlation matrix to the new calculated value |
Value
loadings |
A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings. |
uniquness |
uniquness |
correlation |
correlation matrix |
criteria |
The results of the optimization: the value of the negativ log-likelihood and information of the iterations used. |
factors |
the factors |
dof |
degrees of freedom |
method |
"principal" |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
kola.background
Description
Coordinates of the Kola background. Seperate polygons for the project boundary, borders, lakes and coast are provided.
Usage
data(kola.background)
Format
The format is: List of 4 $ boundary:‘data.frame’: 50 obs. of 2 variables: ..$ V1: num [1:50] 388650 388160 386587 384035 383029 ... ..$ V2: num [1:50] 7892400 7881248 7847303 7790797 7769214 ... $ coast :‘data.frame’: 6259 obs. of 2 variables: ..$ V1: num [1:6259] 438431 439102 439102 439643 439643 ... ..$ V2: num [1:6259] 7895619 7896495 7896495 7895800 7895542 ... $ borders :‘data.frame’: 504 obs. of 2 variables: ..$ V1: num [1:504] 417575 417704 418890 420308 422731 ... ..$ V2: num [1:504] 7612984 7612984 7613293 7614530 7615972 ... $ lakes :‘data.frame’: 6003 obs. of 2 variables: ..$ V1: num [1:6003] 547972 546915 NA 547972 547172 ... ..$ V2: num [1:6003] 7815109 7815599 NA 7815109 7813873 ...
Details
Is used by plotbg()
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, Ayras M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, Jager O, Kashulina G, Lehto O, Niskavaara H, Pavlov V, Raisanen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(kola.background)
plotbg()
Plot the Loadings of a FA
Description
Makes a Reimann-plot of a loadings matrix.
Usage
loadplot(fa.object, titlepl = "Factor Analysis", crit = 0.3, length.varnames = 2)
Arguments
fa.object |
the output of factor analysis class |
titlepl |
the title of the plot |
crit |
all loadings smaller than crit will be ignored in the plot |
length.varnames |
number of letters for abbreviating the variable names in the plot |
Value
Plot of the loadings of a FA therefore a object of factor analysis class must be provided.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(moss)
var=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cr","Cu","Fe","Hg","K","Mg","Mn","Mo",
"Na","Ni","P","Pb","Rb","S","Sb","Si","Sr","Th","Tl","U","V","Zn")
x=log10(moss[,var])
x.mcd=robustbase::covMcd(x,cor=TRUE)
x.rsc=scale(x,x.mcd$cent,sqrt(diag(x.mcd$cov)))
res5=pfa(x.rsc,factors=2,covmat=x.mcd,scores="regression",rotation="varimax",
maxit=0,start=rep(0,ncol(x.rsc)))
loadplot(res5,titlepl="Robust FA (log-transformed)", crit=0.3)
Boundary of the Monchegorsk area
Description
This gives x- and y-coordinates with the boundary of the area around Monchegorsk.
Usage
data(monch)
Format
The format is: List of 2 $ x: num [1:32] 710957 734664 754666 770223 779113 ... $ y: num [1:32] 7473981 7473143 7474818 7483191 7488215 ...
Details
This object can be used to select samples from the Kola data from the region around Monchegorsk.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(monch)
data(kola.background)
plotbg()
lines(monch$x,monch$y,col="red")
Moss layer of the Kola Data
Description
The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the moss layer.
Usage
data(moss)
Format
A data frame with 594 observations on the following 58 variables.
ID
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
ELEV
a numeric vector
COUN
a factor with levels
FIN
NOR
RUS
ASP
a factor with levels
E
FLAT
N
NE
NW
NW
S
SE
SW
W
GENLAN
a factor with levels
DEEPVAL
FLA PLAIN
FLAT
HIMO
LOWMO
PLAIN
PLAT
RIDGE
SLOPE
TOPO
a factor with levels
BRUP
BRUPLOW
BRUPSTEE
CONC
CONCFLAT
CONCLOW
CONCMED
CONCRUG
CONCTERR
CONV
CONVLO
CONVLOW
CONVMED
CONVTER
FLAT
FLATLOW
FLATRUG
FLATTER
FLATTERR
LOBRRUG
LOW
LOWBR
LOWBRFLAT
LOWBRLO
LOWBRLOW
LOWBRMED
RUG
RUGLOW
TER
TERLOW
TERR
TERRLOW
TOHIFLAT
TOP
TOPFLAT
TOPHILO
TOPLOW
TOPTER
TOPUPBR
UPBR
UPBRFLAT
UPBRLOW
UPBRMED
UPBRTER
UPBRTERR
UPTER
GROUNDVEG
a factor with levels
BLUEBERRY
CARLIN_HEATHER
EMPETRUM
GRASS
LICHEN
MOSS
SHRUBS
WHITE_LICHEN
TREELAY
a factor with levels
BIPI
BIPISPR
BIRCH
BIRCHdense
BISPR
BISPRPI
MIX
PIBI
PIBISPR
PINE
PISPR
PISPRBI
SHRUBS
SPARCEBI
SPARCEPI
SPRBI
SPRBIPI
SPRPI
SPRPIBI
SPRUCE
WILLOW
VEG_ZONE
a factor with levels
BOREAL_FOREST
DWARF_SHRUB_TUNDRA
FOREST_TUNDRA
SHRUB_TUNDRA
TUNDRA
Date
a numeric vector
SAMP
a factor with levels
ALL
ATMLRMA
CRGKPCTF
CRJHOJTV
CRJHPC
CRJHTF
CROJTV
CRPCTF
CRPCTV
CRTF
DRMLRKK
DRMRLKK
GKJHOJ
GKJHTV
GKOJPCTV
GKOJTF
GKOJTV
GKPCTF
HARR
JA
JAMAMRL
JAMLRMA
JAMLRRR
JARKP
JARP
JARPMA
JARPMLR
JARR
JARRMLR
JCPCTF
JHGKTV
JHOJGK
JHOJTV
JHPCTF
JHRBTV
Katanaev
MAKKVG
MARP
MARPMLR
MARPMRL
MAVG
MLR
MLRJA
MLRJARP
MLRJARR
MLRJSRR
MLRMADR
MLRMAJA
MLRMARP
MLRMAVG
MLRM?VG
MLRRPJA
MLRRPMA
MRLMAJA
OJGKTV
OJTF
Pavlov
RPAV
RPEM
RPMA
RPMLRJA
RPMLRMA
RPVM
Semenov
Smirnov
TFOJ
VGHNMA
VGMA
VGMAHN
VGMARS
VGMASR
VGRSMA
VMRP
VMRPMA
SPECIES
a factor with levels
HSDC
HSDR
HSRC
HSSC
HSSR
PS
PSDC
PSDR
PSRC
PSRD
PSSC
PSSR
SFDR
LITO
a numeric vector
C_PAR
a factor with levels
BEDR
FLUV
FLUVG
MAR
SAP
SEA
STRAT
TILL
TILLSA
TILLSAP
TILL&SAP
TOPC
a numeric vector
WEATH
a factor with levels
DRY
DRY
MIX
MIX
RAIN
SNOW
TEMP
a numeric vector
Ag
a numeric vector
Al
a numeric vector
As
a numeric vector
Au
a numeric vector
B
a numeric vector
Ba
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Ca
a numeric vector
Cd
a numeric vector
Co
a numeric vector
Cr
a numeric vector
Cu
a numeric vector
Fe
a numeric vector
Hg
a numeric vector
K
a numeric vector
La
a numeric vector
Mg
a numeric vector
Mn
a numeric vector
Mo
a numeric vector
Na
a numeric vector
Ni
a numeric vector
P
a numeric vector
Pb
a numeric vector
Pd
a numeric vector
Pt
a numeric vector
Rb
a numeric vector
S
a numeric vector
Sb
a numeric vector
Sc
a numeric vector
Se
a numeric vector
Si
a numeric vector
Sr
a numeric vector
Th
a numeric vector
Tl
a numeric vector
U
a numeric vector
V
a numeric vector
Y
a numeric vector
Zn
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(moss)
str(moss)
Boundary of the area Nikel-Zapoljarnij
Description
This gives x- and y-coordinates with the boundary of the area around Nikel-Zapoljarnij.
Usage
data(nizap)
Format
The format is: List of 2 $ x: num [1:36] 699104 693918 681324 662062 645023 ... $ y: num [1:36] 7739416 7746115 7751139 7756163 7757000 ...
Details
This object can be used to select samples from the Kola data from the region around Nikel-Zapoljarnij.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(nizap)
data(kola.background)
plotbg()
lines(nizap$x,nizap$y,col="red")
O-horizon of the Kola Data
Description
The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the O-horizon.
Usage
data(ohorizon)
Format
A data frame with 617 observations on the following 85 variables.
ID
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
ELEV
a numeric vector
COUN
a factor with levels
FIN
NOR
RUS
X.ASP
a factor with levels
-9999
E
FLAT
N
NE
NW
NW
S
SE
SW
W
AoMEAN
a numeric vector
HUMNO
a numeric vector
HUMTHI
a numeric vector
GROUNDVEG
a factor with levels
BLUEBERRY
CARLIN_HEATHER
EMPETRUM
GRASS
LICHEN
MOSS
SHRUBS
WHITE_LICHEN
TREELAY
a factor with levels
BIPI
BIPISPR
BIRCH
BIRCHdense
BISPR
BISPRPI
MIX
PIBI
PIBISPR
PINE
PISPR
PISPRBI
SHRUBS
SPARCEBI
SPARCEPI
SPRBI
SPRBIPI
SPRPI
SPRPIBI
SPRUCE
WILLOW
VEG_ZONE
a factor with levels
BOREAL_FOREST
DWARF_SHRUB_TUNDRA
FOREST_TUNDRA
SHRUB_TUNDRA
TUNDRA
LITO
a numeric vector
Ag
a numeric vector
Al
a numeric vector
Al_AA
a numeric vector
As
a numeric vector
Au
a numeric vector
B
a numeric vector
Ba
a numeric vector
Ba_AA
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Br
a numeric vector
C
a numeric vector
Ca
a numeric vector
Ca_AA
a numeric vector
Cd
a numeric vector
Cd_AA
a numeric vector
Cl
a numeric vector
Co
a numeric vector
Co_AA
a numeric vector
Cond
a numeric vector
Cr
a numeric vector
Cr_AA
a numeric vector
Cu
a numeric vector
Cu_AA
a numeric vector
F
a numeric vector
Fe
a numeric vector
Fe_AA
a numeric vector
H
a numeric vector
Hg
a numeric vector
K
a numeric vector
K_AA
a numeric vector
La
a numeric vector
LOI
a numeric vector
Mg
a numeric vector
Mg_AA
a numeric vector
Mn
a numeric vector
Mn_AA
a numeric vector
Mo
a numeric vector
N
a numeric vector
Na
a numeric vector
Na_AA
a numeric vector
Ni
a numeric vector
Ni_AA
a numeric vector
NO3
a numeric vector
P
a numeric vector
P_AA
a numeric vector
Pb
a numeric vector
Pb_AA
a numeric vector
Pd
a numeric vector
pH
a numeric vector
PO4
a numeric vector
Pt
a numeric vector
Rb
a numeric vector
S
a numeric vector
S_AA
a numeric vector
Sb
a numeric vector
Sc
a numeric vector
Se
a numeric vector
Si
a numeric vector
Si_AA
a numeric vector
SO4
a numeric vector
Sr
a numeric vector
Sr_AA
a numeric vector
Th
a numeric vector
Ti_AA
a numeric vector
Tl
a numeric vector
U
a numeric vector
V
a numeric vector
V_AA
a numeric vector
Y
a numeric vector
Zn
a numeric vector
Zn_AA
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(ohorizon)
str(ohorizon)
Principal Factor Analysis
Description
Computes the principal factor analysis of the input data.
Usage
pfa(x, factors, data = NULL, covmat = NULL, n.obs = NA, subset, na.action,
start = NULL, scores = c("none", "regression", "Bartlett"),
rotation = "varimax", maxiter = 5, control = NULL, ...)
Arguments
x |
(robustly) scaled input data |
factors |
number of factors |
data |
default value is NULL |
covmat |
(robustly) computed covariance or correlation matrix |
n.obs |
number of observations |
subset |
if a subset is used |
start |
starting values |
scores |
which method should be used to calculate the scores |
rotation |
if a rotation should be made |
maxiter |
maximum number of iterations |
control |
default value is NULL |
na.action |
what to do with NA values |
... |
arguments for creating a list |
Value
loadings |
A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings. |
uniquness |
uniquness |
correlation |
correlation matrix |
criteria |
The results of the optimization: the value of the negativ log-likelihood and information of the iterations used. |
factors |
the factors |
dof |
degrees of freedom |
method |
"principal" |
n.obs |
number of observations if available, or NA |
call |
The matched call. |
STATISTIC , PVAL |
The significance-test statistic and p-value, if can be computed |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(moss)
var=c("Ni","Cu","Mg","Rb","Mn")
x=log10(moss[,var])
x.mcd=robustbase::covMcd(x,cor=TRUE)
x.rsc=scale(x,x.mcd$cent,sqrt(diag(x.mcd$cov)))
pfa(x.rsc,factors=2,covmat=x.mcd,scores="regression",rotation="varimax",
maxit=0,start=rep(0,ncol(x.rsc)))
Kola background Plot
Description
Plots the Kola background
Usage
plotbg(map = "kola.background", which.map = c(1, 2, 3, 4),
map.col = c(5, 1, 3, 4), map.lwd = c(2, 1, 2, 1), add.plot = FALSE, ...)
Arguments
map |
List of coordinates. For the correct format see also help(kola.background) |
which.map |
which==1 ... plot project boundary; which==2 ... plot coast line; which==3 ... plot country borders; which==4 ... plot lakes and rivers |
map.col |
Map colors to be used |
map.lwd |
Defines linestyle of the background |
add.plot |
logical. if true background is added to an existing plot |
... |
additional plot parameters, see help(par) |
Details
Plots the background map of Kola
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(kola.background)
plotbg()
Plot Elements of a Discriminant Analysis
Description
Plot the elements for the discriminant analysis. The plot is ordered in the different groups.
Usage
plotelement(da.object)
Arguments
da.object |
a object of the lda class |
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(iris3)
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp = rep(c("s","c","v"), rep(50,3)))
train <- sample(1:150, 75)
z <- MASS::lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)
plotelement(z)
Plot Ellipse
Description
Plots an ellipse with percentage tolerance and a certain location and covariance.
Usage
plotellipse(x.loc, x.cov, perc = 0.98, col = NULL, lty = NULL)
Arguments
x.loc |
the location vector |
x.cov |
the covariance |
perc |
defines the percentage and should be a (vector of) number(s) between 0 and 1 |
col , lty |
graphical parameters |
Details
First the radius of the covariance is calculated and then the ellipses for the provided percentages are plotted at the certain location.
Value
Plot with ellipse.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(moss)
Ba=log10(moss[,"Ba"])
Ca=log10(moss[,"Ca"])
plot.new()
plot.window(xlim=range(Ba),ylim=c(min(Ca)-1,max(Ca)))
x=cbind(Ba,Ca)
plotellipse(apply(x,2,mean),cov(x),perc=c(0.5,0.75,0.9,0.98))
Multivariate outlier plot
Description
This function plots multivariate outliers. One possibility is to distinguish between outlier and no outlier. The alternative is to distinguish between the different percentils (e.g. <25%, 25%<x<50%,...).
Usage
plotmvoutlier(coord, data, quan = 1/2, alpha = 0.025, symb = FALSE, bw = FALSE,
plotmap = TRUE, map = "kola.background", which.map = c(1, 2, 3, 4),
map.col = c(5, 1, 3, 4), map.lwd = c(2, 1, 2, 1), pch2 = c(3, 21),
cex2 = c(0.7, 0.2), col2 = c(1, 1), lcex.fac = 1, ...)
Arguments
coord |
the coordinates for the points |
data |
the value for the different coordinates |
quan |
Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd |
alpha |
Maximum thresholding proportion |
symb |
if FALSE, only two different symbols (outlier and no outlier) will be used |
bw |
if TRUE, symbols are in gray-scale (only if symb=TRUE) |
plotmap |
if TRUE, the map is plotted |
map |
the name of the background map |
which.map , map.col , map.lwd |
parameters for the background plot, see plotbg |
pch2 , cex2 , col2 |
graphical parameters for the points |
lcex.fac |
factor for multiplication of symbol size (only if symb=TRUE) |
... |
further parameters for the plot |
Details
The function computes a robust estimation of the covariance and then the Mahalanobis distances are calculated. With this distances the data set is divided into outliers and non outliers. If symb=FALSE only two different symbols are used otherwise different grey scales are used to distinguish the different types of outliers.
Value
o |
returns the outliers |
md |
the square root of the Mahalanobis distance |
euclidean |
the Euclidean distance of the scaled data |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(moss)
X=moss[,"XCOO"]
Y=moss[,"YCOO"]
el=c("Ag","As","Bi","Cd","Co","Cu","Ni")
x=log10(moss[,el])
data(kola.background)
plotmvoutlier(cbind(X,Y),x,symb=FALSE,map.col=c("grey","grey","grey","grey"),
map.lwd=c(1,1,1,1),
xlab="",ylab="",frame.plot=FALSE,xaxt="n",yaxt="n")
Multivariate outlier plot for each dimension
Description
A multivariate outlier plot for each dimension is produced.
Usage
plotuniout(x, symb = FALSE, quan = 1/2, alpha = 0.025, bw = FALSE,
pch2 = c(3, 1), cex2 = c(0.7, 0.4), col2 = c(1, 1), lcex.fac = 1, ...)
Arguments
x |
dataset |
symb |
if FALSE, only two different symbols (outlier and no outlier) will be used |
quan |
Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd |
alpha |
Maximum thresholding proportion, see arw |
bw |
if TRUE, symbols are in gray-scale (only if symb=TRUE) |
pch2 , cex2 , col2 |
graphical parameters for the points |
lcex.fac |
factor for multiplication of symbol size (only if symb=TRUE) |
... |
further graphical parameters for the plot |
Value
o |
returns the outliers |
md |
the square root of the Mahalanobis distance |
euclidean |
the Euclidean distance of the scaled data |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(moss)
el=c("Ag","As","Bi","Cd","Co","Cu","Ni")
dat=log10(moss[,el])
ans<-plotuniout(dat,symb=FALSE,cex2=c(0.9,0.1),pch2=c(3,21))
Coordinates of Points Inside a Polygon
Description
This function builds a rectangular grid and extracts points which are inside of an internal polygonal region.
Usage
polygrid(xgrid, ygrid, borders, vec.inout = FALSE, ...)
Arguments
xgrid |
grid values in the x-direction. |
ygrid |
grid values in the y-direction. |
borders |
a matrix with polygon coordinates defining the borders of the region. |
vec.inout |
logical. If |
... |
currently not used (kept for back compatibility). |
Details
The function works as follows:
First it creates a grid using the R function
expand.grid
and then it uses the geoR'
internal function
.geoR_inout()
which wraps usage of SpatialPoints
and over
from the package sp to extract the points
of the grid which are inside the polygon.
Value
A list with components:
xypoly |
an |
vec.inout |
logical, a vector indicating whether each point of
the rectangular grid is inside the polygon. Only returned if |
Author(s)
Paulo Justiniano Ribeiro Jr. paulojus@leg.ufpr.br,
Peter J. Diggle p.diggle@lancaster.ac.uk.
References
See the package geoR.
See Also
expand.grid
, over
,
SpatialPoints
.
Examples
poly <- matrix(c(.2, .8, .7, .1, .2, .1, .2, .7, .7, .1), ncol=2)
plot(0:1, 0:1, type="n")
lines(poly)
poly.in <- polygrid(seq(0,1,l=11), seq(0,1,l=11), poly, vec=TRUE)
points(poly.in$xy)
Connect the Values with a Polygon
Description
Connect the values for the elements with a polygon. Every "point" has his own shape and this demonstrates the characteristic of the point.
Usage
polys(x, scale = TRUE, labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE, xlim = NULL, ylim = NULL, flip.labels = NULL, factx = 1,
facty = 1, col.stars = NA, axes = FALSE, frame.plot = axes, main = NULL,
sub = NULL, xlab = "", ylab = "", cex = 0.8, lwd = 1.1, lty = par("lty"),
xpd = FALSE,
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes +
(ylab != ""), 1, 0)),
add = FALSE, plot = TRUE, ...)
Arguments
x |
a matrix or a data frame |
scale |
if TRUE, the data will be scaled |
labels |
the labels for the polygons inside the map |
locations |
the locations for the polygons inside the map |
nrow , ncol |
integers giving the number of rows and columns to use when locations=NULL. By default, 'nrow==ncol', a square layout will be used. |
key.loc |
the location for the legend |
key.labels |
the labels in the legend |
key.xpd |
A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is clipped to the device region. |
flip.labels |
logical indicating if the label locations should flip up and down from diagram to diagram. |
factx |
additive factor for the x-coordinate |
facty |
magnification for the influence of the x-coordinate on the y-coordinate |
main , sub , xlab , ylab , xlim , ylim , col.stars , cex , lwd , lty , xpd , mar |
graphical parameters and labels for the plot |
axes |
if FALSE, no axes will be drawn |
frame.plot |
if TRUE, a box will be made around the plot |
add |
if TRUE, it will be added to the plot |
plot |
nothing is plotted |
... |
further graphical parameters |
Details
Each polygon represents one row of the input x. For the variables the values are computed and then those values are connected with a polygon. The location of the polygons can be defined by the user.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Cu","Ni","Na","Sr")])
sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
516,535,551,556,558,564,577,584,601,612,617)
x=el[sel,]
plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",type="n",
xlim=c(360000,max(X)))
polys(x,ncol=8,key.loc=c(15,1),factx=0.30,facty=2.0,cex=0.75,lwd=1.1)
PP plot
Description
This function computes a PP (Probability-Probability) plot for the given dataset.
Usage
ppplot.das(x, pdist = pnorm, xlab = NULL, ylab = "Probability", line = TRUE,
lwd = 2, pch = 3, cex = 0.7, cex.lab = 1, ...)
Arguments
x |
dataset |
pdist |
the distribution function |
xlab , ylab , lwd , pch , cex , cex.lab |
graphical parameters |
line |
if a regression line should be added |
... |
further parameters for the probability function |
Details
The empirical probability is calculated and compared with the comparison distribution.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(AuNEW)
ppplot.das(AuNEW,pdist=plnorm,xlab="Probability of Au",
ylab="Probabilities of lognormal distribution", pch=3,cex=0.7)
QP plot
Description
This function produces a QP (Quantile-Probability) plot of the data.
Usage
qpplot.das(x, qdist = qnorm, probs = NULL, logx = FALSE, cex.lab = 1,
xlab = NULL, ylab = "Probability [%]", line = TRUE, lwd = 2, pch = 3,
logfinetick = c(10), logfinelab = c(10), cex = 0.7, xlim = NULL,
ylim = NULL, gridy = TRUE, add.plot = FALSE, col = 1, ...)
Arguments
x |
data |
qdist |
The probability function with which the data should be compared. |
probs |
The selected probabilities, see details |
logx |
if TRUE, then log scale on x-axis is used |
cex.lab |
The size of the label |
xlab |
title for x-axis |
ylab |
title for y-axis |
line |
if TRUE the line will be drawn |
lwd |
the width of the line |
pch , cex , col |
graphical parameter |
logfinetick |
how fine are the tick marks on log-scale on x-axis |
logfinelab |
how fine are the labels on log-scale on x-axis |
xlim |
the range for the x-axis |
ylim |
the range for the y-axis |
gridy |
if grid along y-axis should be drawn |
add.plot |
if TRUE the new plot is added to an old one |
... |
futher arguments for the probability function |
Details
First the probability of the sorted input x is computed and than the selected quantiles are calculated and after that plot is produced. If probs=NULL then the 1%, 5%, 10%, 20%,...., 90%, 95% and 99% quantile is taken.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(AuNEW)
qpplot.das(AuNEW,qdist=qlnorm,xlab="Au",
ylab="Probabilities of lognormal distribution", pch=3,cex=0.7)
QQ plot
Description
A QQ (Quantile-Quantile) plot is produced.
Usage
qqplot.das(x, distribution = "norm", ylab = deparse(substitute(x)),
xlab = paste(distribution, "quantiles"), main = "", las = par("las"),
datax = FALSE, envelope = 0.95, labels = FALSE, col = palette()[2],
lwd = 2, pch = 1, line = c("quartiles", "robust", "none"), cex = 1,
xaxt = "s", add.plot=FALSE,xlim=NULL,ylim=NULL,...)
Arguments
x |
numeric vector |
distribution |
name of the comparison distribution |
ylab |
label for the y axis (empirical quantiles) |
xlab |
label for the x axis (comparison quantiles) |
main |
title for the plot |
las |
if 0, ticks labels are drawn parallel to the axis |
datax |
if TRUE, x and y axis are exchanged |
envelope |
confidence level for point-wise confidence envelope, or FALSE for no envelope |
labels |
vector of point labels for interactive point identification, or FALSE for no labels |
col , lwd , pch , cex , xaxt |
graphical parameter, see par |
line |
"quartiles" to pass a line through the quartile-pairs, or "robust" for a robust-regression line. "none" suppresses the line |
add.plot |
if TRUE the new plot is added to an old one |
xlim |
the range for the x-axis |
ylim |
the range for the y-axis |
... |
further arguments for the probability function |
Details
The probability of the input data is computed and with this result the quantiles of the comparison distribution are calculated. If line="quartiles" a line based on quartiles is plotted and if line="robust" a robust LM model is calculated.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
data(AuNEW)
qqplot.das(AuNEW,distribution="lnorm",col=1,envelope=FALSE,datax=TRUE,ylab="Au",
xlab="Quantiles of lognormal distribution", main="",line="none",pch=3,cex=0.7)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.As_C)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.8 160.3 ..$ nugget : num 0.49 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.As_C)
str(res.eyefit.As_C)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.As_C_m)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.8 160255.8 ..$ nugget : num 0.49 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.As_C_m)
str(res.eyefit.As_C_m)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.AuNEW)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "exponential" ..$ cov.pars : num [1:2] 0.31 53418.46 ..$ nugget : num 0.44 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.AuNEW)
str(res.eyefit.AuNEW)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.Ca_C)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 3.80e-01 1.92e+05 ..$ nugget : num 0.21 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.Ca_C)
str(res.eyefit.Ca_C)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.Ca_O)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.01 5341.85 ..$ nugget : num 0.12 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 192306 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.Ca_O)
str(res.eyefit.Ca_O)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.Hg_O)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "exponential" ..$ cov.pars : num [1:2] 1.50e-02 3.21e+04 ..$ nugget : num 0.04 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.Hg_O)
str(res.eyefit.Hg_O)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.Pb_O1)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 1.90e-01 5.13e+05 ..$ nugget : num 0.11 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.Pb_O1)
str(res.eyefit.Pb_O1)
Result of the function eyefit for variogram estimation.
Description
This result could also be directly computed using the function eyefit.
Usage
data(res.eyefit.Pb_O2)
Format
The format is: List of 1 $ :List of 7 ..$ cov.model: chr "spherical" ..$ cov.pars : num [1:2] 0.03 48076.64 ..$ nugget : num 0.11 ..$ kappa : num 0.5 ..$ lambda : num 0 ..$ trend : chr "cte" ..$ max.dist : num 288460 ..- attr(*, "class")= chr "variomodel" - attr(*, "class")= chr "eyefit"
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(res.eyefit.Pb_O2)
str(res.eyefit.Pb_O2)
Plot a Boxplot
Description
Plot a single horizontal boxplot, the default is a Tukey boxplot.
Usage
rg.boxplot(xx, xlab = deparse(substitute(xx)), log = FALSE, ifbw = FALSE,
wend = 0.05, xlim = NULL, main = " ", colr = 5, ...)
Arguments
xx |
data |
xlab |
label for the x-axis |
log |
if TRUE, a log-scaled plot and a logtransformation of the data |
ifbw |
if TRUE, a IDEAS style box-and-whisker plot is produced |
wend |
defines the end of the whisker, default is 5% and 95% quantile |
xlim |
setting xlim results in outliers not being plotted as the x-axis is shortened. |
main |
main title of the plot |
colr |
the box is infilled with a yellow ochre; if no colour is required set colr=0 |
... |
further graphical parameters for the plot |
Details
As the x-axis is shortend by setting xlim, however, the statistics used to define the boxplot, or box-and-whisker plot, are still based on the total data set. To plot a truncated data set create a subset first, or use the x[x<some.value] construct in the call.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
Ba=chorizon[,"Ba"]
rg.boxplot(Ba,ifbw=TRUE,colr=0,xlab="Ba [mg/kg]",cex.lab=1.2)
Non-robust Multivariate Data Analysis
Description
Procedure to undertake non-robust multivariate data analysis. The saved list may be passed to other rotation and display functions
Usage
rg.mva(x, main = deparse(substitute(x)))
Arguments
x |
data |
main |
used for the list |
Details
Procesure to undertake non-robust multivariate data analyses; the object generated is identical to that of rg.robmva so that the savedlist may be passed to other rotation and display functions. Thus weights are set to 1, and other variables are set to appropriate defaults. The estimation of Mahalanobis distances is only undertaken if x is nonsingular, i.e. the lowest eigenvalue is > 10e-4.
Value
n |
number of rows |
p |
number of columns |
wts |
the weights for the covariance matrix |
mean |
the mean of the data |
cov |
the covariance |
sd |
the standard deviation |
r |
correlation matrix |
eigenvalues |
eigenvalues of the SVD |
econtrib |
proportion of eigenvalues in % |
eigenvectors |
eigenvectors of the SVD |
rload |
loadings matrix |
rcr |
standardised loadings matrix |
vcontrib |
scores variance |
pvcontrib |
proportion of scores variance in % |
cpvcontrib |
cummulative proportion of scores variance |
md |
Mahalanbois distance |
ppm |
probability for outliegness using F-distribution |
epm |
probability for outliegness using Chisquared-distribution |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
"Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]
rg.mva(as.matrix(x[v==1,]))
Robust Multivariate Allocation Procedure
Description
Function to allocate an individual to one of several populations.
Usage
rg.mvalloc(pcrit = 0.05, x, ...)
Arguments
pcrit |
When the probability of group membership is less than pcrit it is allocated to group 0. |
x |
contains the individuals to be allocated |
... |
arguments for creating a list of groups |
Details
m objects are the reference populations generated by md.gait, rg.robmva or rg.mva to estimate Mahalanobis distancesand predicted probabilities of group membership for individuals in matrix x. Note that the log |determinant| of the appropriate covariance matrix is added to the Mahalanobis distance on the assumption that the covariance matrices are inhomogeneous. If the data require transformation this must be undertaken before calling this function. This implies that a similar transformation must have been used for all the reference data subsets.
Value
groups |
the groups |
m |
number of groups |
n |
number of individuals to be allocated |
p |
number of columns |
pgm |
number of individuals to be allocated multiplied with the groups |
pcrit |
critical probability |
xalloc |
number of individuals as integer |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
"Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]
res.zone1=rg.mva(as.matrix(x[v==1,]))
res.zone2=rg.mva(as.matrix(x[v==2,]))
res.zone3=rg.mva(as.matrix(x[v==3,]))
res=rg.mvalloc(pcrit=0.01,x,res.zone1,res.zone2,res.zone3)
Remove NA
Description
Function to remove NAs from a vector and inform the user of how many.
Usage
rg.remove.na(xx)
Arguments
xx |
vector |
Details
The function counts the NAs in a vector and returns the number of NAs and the "new" vector.
Value
x |
vector without the NAs |
nna |
number of NAs removed |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
x<-rep(NA,10)
x[c(1,3,5,7,9)]<-10
rg.remove.na(x)
Robust Multivariate Analysis
Description
Procedure for multivariate analysis using the minimum volume ellipsoid (MVE), minimum covariance determinant (MCD) or a supplied set of 0-1 weights.
Usage
rg.robmva(x, proc = "mcd", wts = NULL, main = deparse(substitute(x)))
Arguments
x |
data |
proc |
procedure for the estimation (MVE or MCD) |
wts |
if proc=NULL, the supplied weights for the calculation |
main |
input for the list |
Details
cov.mcd is limited to a maximum of 50 variables. Both of these procedures lead to a vector of 0-1 weights and mcd is the default. A set of weights can be generated by using Graphical Adaptive Interactive Trimming (GAIT) procedure available though rg.md.gait(). Using 0-1 weights the parameters of the background distribution are estimated by cov.wt(). A robust estimation of the Mahalanobis distances is made for the total data set but is only undertaken if x is non-singular (lowest eigenvalue is >10e-4).
Value
n |
number of rows |
p |
number of columns |
wts |
the weights for the covariance matrix |
mean |
the mean of the data |
cov |
the covariance |
sd |
the standard deviation |
r |
correlation matrix |
eigenvalues |
eigenvalues of the SVD |
econtrib |
proportion of eigenvalues in % |
eigenvectors |
eigenvectors of the SVD |
rload |
loadings matrix |
rcr |
standardised loadings matrix |
vcontrib |
scores variance |
pvcontrib |
proportion of scores variance in % |
cpvcontrib |
cummulative proportion of scores variance |
md |
Mahalanbois distance |
ppm |
probability for outliegness using F-distribution |
epm |
probability for outliegness using Chisquared-distribution |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#input data
data(ohorizon)
vegzn=ohorizon[,"VEG_ZONE"]
veg=rep(NA,nrow(ohorizon))
veg[vegzn=="BOREAL_FOREST"] <- 1
veg[vegzn=="FOREST_TUNDRA"] <- 2
veg[vegzn=="SHRUB_TUNDRA"] <- 3
veg[vegzn=="DWARF_SHRUB_TUNDRA"] <- 3
veg[vegzn=="TUNDRA"] <- 3
el=c("Ag","Al","As","B","Ba","Bi","Ca","Cd","Co","Cu","Fe","K","Mg","Mn",
"Na","Ni","P","Pb","Rb","S","Sb","Sr","Th","Tl","V","Y","Zn")
x <- log10(ohorizon[!is.na(veg),el])
v <- veg[!is.na(veg)]
subvar=c("Ag","B","Bi","Mg","Mn","Na","Pb","Rb","S","Sb","Tl")
set.seed(100)
rg.robmva(as.matrix(x[v==1,subvar]))
Calculate Weighted Sums for a Matrix
Description
This function computes a weighted sum for a matrix based on computed quantiles and user defined relative importance.
Usage
rg.wtdsums(x, ri, xcentr = NULL, xdisp = NULL)
Arguments
x |
matrix |
ri |
vector for the relative importance, length(ri)=length(x[1,]) |
xcentr |
the provided center |
xdisp |
the provided variance |
Details
It is not necessary to provide the center and the variance. If those values are not supplied the center is the 50% quantile and the variance is calculated from the 25% and 75% quantile.
Value
input |
input parameter |
centr |
the center |
disp |
the variance |
ri |
relative importance |
w |
weights |
a |
normalized weights |
ws |
normalized weights times standardized x |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(chorizon)
var=c("Si_XRF","Al_XRF","K_XRF","LOI","P","Mn")
ri=c(-2.0,1.5,2.0,2.0,3.0,2.0)
x=chorizon[,var]
rg.wtdsums(x,ri)
Roundpretty
Description
Round a value in a pretty way.
Usage
roundpretty(kvec, maxdig)
Arguments
kvec |
the variable to be rounded |
maxdig |
maximum number of digits after the coma |
Value
result |
rounded value |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Examples
roundpretty(0.873463029,5)
roundpretty(0.073463029,5)
roundpretty(0.003463029,5)
roundpretty(0.000463029,5)
Subfunction for Roundpretty
Description
This function rounds the number in pretty way.
Usage
roundpretty.sub(k, maxdig)
Arguments
k |
number to be rounded pretty |
maxdig |
maximum number of digits after the coma |
Details
When maxdig is larger than 8 and the number is smaller than 0.00001, the number is rounded to 8 numbers after the coma. When the number ist smaller than 0.0001 the maximum numbers after the coma is 7, and so on.
Value
kr |
rounded value |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
See Also
Scalebar
Description
This function plots the unit at a specified location.
Usage
scalebar(Xlowerleft, Ylowerleft, Xupperright, Yupperright, shifttext, shiftkm,
sizetext)
Arguments
Xlowerleft , Ylowerleft |
x and y coordinate of the lower left corner |
Xupperright , Yupperright |
x and y coordinate of the upper corner |
shifttext |
on which margin line, starting at 0 counting outwards |
shiftkm |
how far from the last point the label should be written |
sizetext |
expansion factor for the text |
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
plot.new()
scalebar(0,0.25,1,0.5,shifttext=-0.05,shiftkm=4e4,sizetext=0.8)
3D plot of a Regression Model
Description
This function makes a 3D plot of the data and the regression function. The user has the choice between different methods to calculate the coefficients for the regression model.
Usage
scatter3dPETER(x, y, z, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), zlab = deparse(substitute(z)),
revolutions = 0, bg.col = c("white", "black"),
axis.col = if (bg.col == "white") "black" else "white",
surface.col = c("blue", "green", "orange", "magenta", "cyan", "red",
"yellow", "gray"), neg.res.col = "red",
pos.res.col = "green", point.col = "yellow", text.col = axis.col,
grid.col = if (bg.col == "white") "black" else "gray",
fogtype = c("exp2", "linear", "exp", "none"),
residuals = (length(fit) == 1), surface = TRUE, grid = TRUE,
grid.lines = 26, df.smooth = NULL, df.additive = NULL, sphere.size = 1,
threshold = 0.01, speed = 1, fov = 60, fit = "linear", groups = NULL,
parallel = TRUE, model.summary = FALSE)
Arguments
x , y , z |
the coordinates for the points |
xlab , ylab , zlab |
the labels for the axis |
revolutions |
if the plot should be viewed from different angles |
bg.col , axis.col , surface.col , point.col , text.col , grid.col |
define the colour for the background, axis,... |
pos.res.col , neg.res.col |
colour for positive and negativ residuals |
fogtype |
describes the fogtype, see rgl.bg |
residuals |
if the residuals should be plotted |
surface |
if the regression function should be plotted or just the points |
grid |
if TRUE, the grid is plotted |
grid.lines |
number of lines in the grid |
df.smooth |
if fit=smooth, the number of degrees of freedom |
df.additive |
if fit=additive, the number of degrees of freedom |
sphere.size |
a value for calibrating the size of the sphere |
threshold |
the minimum size of the sphere, if the size is smaller than the threshold a point is plotted |
speed |
if revolutions>0, how fast you make a 360 degree turn |
fov |
field-of-view angle, see rgl.viewpoint |
fit |
which method should be used for the model; "linear", "quadratic", "smooth" or "additive" |
groups |
define groups for the points |
parallel |
if groups is not NULL, a parallel shift in the model is made |
model.summary |
if the summary should be returned |
Details
The user can choose between a linear, quadratic, smoothed or additve model to calculate the coefficients.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
#required library
#require(IPSUR)
data(chorizon)
lit=1
# This example needs additional libraries:
#scatter3dPETER(x=log10(chorizon[chorizon$LITO==lit,"Cr"]),
# z=log10(chorizon[chorizon$LITO==lit,"Cr_INAA"]),
# y=log10(chorizon[chorizon$LITO==lit,"Co"]),
# xlab="",ylab="",zlab="",
# neg.res.col=gray(0.6), pos.res.col=gray(0.1), point.col=1, fov=30,
# surface.col="black",grid.col="gray",sphere.size=0.8)
Plot Suns
Description
This function makes a graphical diagram of multivariate data. Every element represents one line in the sun and the length of the line indicates the concentration of the element.
Usage
suns(x, full = TRUE, scale = TRUE, radius = TRUE, labels = dimnames(x)[[1]],
locations = NULL, nrow = NULL, ncol = NULL, len = 1, key.loc = NULL,
key.labels = dimnames(x)[[2]], key.xpd = TRUE, xlim = NULL, ylim = NULL,
flip.labels = NULL, col.stars = NA, axes = FALSE, frame.plot = axes, main = NULL,
sub = NULL, xlab = "", ylab = "", cex = 0.8, lwd = 0.25, lty = par("lty"),
xpd = FALSE,
mar = pmin(par("mar"), 1.1 + c(2 * axes + (xlab != ""), 2 * axes + (ylab != ""), 1, 0)),
add = FALSE, plot = TRUE, ...)
Arguments
x |
a matrix or a data frame |
full |
if TRUE, a whole circle will be made |
scale |
if TRUE, the data will be scaled |
radius |
should be TRUE, otherwise the lines in the sun will not be plotted |
labels |
the labels for the suns inside the map |
locations |
the locations for the suns inside the map |
nrow , ncol |
integers giving the number of rows and columns to use when locations=NULL |
len |
scaling factor for the length of the lines (according to the size of the map) |
key.loc |
the location for the legend |
key.labels |
the labels in the legend |
key.xpd |
A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is clipped to the device region. |
flip.labels |
logical indication if the label locations should flip up and down from diagram to diagram. |
axes |
if FALSE, no axes will be drawn |
frame.plot |
if TRUE, a box will be made around the plot |
main , sub , xlab , xlim , ylim , col.stars , ylab , cex , lwd , lty , xpd , mar |
graphical parameters and labels for the plot |
add |
if TRUE, it will be added to the plot |
plot |
nothing is plotted |
... |
graphical parameters for plotting the box |
Details
Each sun represents one row of the input x. Each line of the sun represents one choosen element. The distance from the center of the sun to the point shows the size of the value of the (scaled) column.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
el=log10(ohorizon[,c("Co","Cu","Ni","Rb","Bi","Na","Sr")])
sel <- c(3,8,22, 29, 32, 35, 43, 69, 73 ,93,109,129,130,134,168,181,183,205,211,
218,237,242,276,292,297,298,345,346,352,372,373,386,408,419,427,441,446,490,
516,535,551,556,558,564,577,584,601,612,617)
x=el[sel,]
suns(x,ncol=8,key.loc=c(15,0.5),lwd=1.3)
Ternary plot
Description
This plot shows the relative proportions of three variables in one diagramm. It is important that the proportion sum up to 100% and if the values of the variables are very different it is important to scale them to the same data range.
Usage
ternary(x, nam = NULL, grid = FALSE, ...)
Arguments
x |
matrix with 3 columns |
nam |
names of the variables |
grid |
if TRUE the grid should be plotted |
... |
further graphical parameters, see par |
Details
The relative proportion of each variable is computed and those points are plotted into the graphic.
Value
No return value, creates a plot.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
data(moss)
x=moss[,c("Ni","Cu","Pb")]
ternary(x,grid=TRUE,pch=3,cex=0.7,col=1)
Data for computing time trends
Description
These are time trends from the Kola Project data.
Usage
data(timetrend)
Format
A data frame with 96 observations on the following 47 variables.
DD
a numeric vector
MM
a numeric vector
YY
a numeric vector
Year
a numeric vector
Catch
a numeric vector
X.ID
a numeric vector
Ag
a numeric vector
Al
a numeric vector
As
a numeric vector
B
a numeric vector
Ba
a numeric vector
Be
a numeric vector
Bi
a numeric vector
Cd
a numeric vector
Co
a numeric vector
Cr
a numeric vector
Cu
a numeric vector
Fe
a numeric vector
K
a numeric vector
Li
a numeric vector
Mn
a numeric vector
Mo
a numeric vector
Ni
a numeric vector
Pb
a numeric vector
Rb
a numeric vector
Sb
a numeric vector
Se
a numeric vector
Sr
a numeric vector
Th
a numeric vector
Tl
a numeric vector
U
a numeric vector
V
a numeric vector
Zn
a numeric vector
Ca
a numeric vector
Mg
a numeric vector
Na
a numeric vector
P
a numeric vector
S
a numeric vector
Si
a numeric vector
PO4
a numeric vector
Br
a numeric vector
Cl
a numeric vector
F
a numeric vector
NO3
a numeric vector
SO4
a numeric vector
pH
a numeric vector
EC
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(timetrend)
str(timetrend)
topsoil layer of the Kola Data
Description
The Kola Data were collected in the Kola Project (1993-1998, Geological Surveys of Finland (GTK) and Norway (NGU) and Central Kola Expedition (CKE), Russia). More than 600 samples in five different layers were analysed, this dataset contains the C-horizon.
Usage
data(topsoil)
Format
A data frame with 607 observations on the following 45 variables.
ID
a numeric vector
XCOO
a numeric vector
YCOO
a numeric vector
ELEV
a numeric vector
COUN
a factor with levels
FIN
NOR
RUS
ASP
a factor with levels
E
FLAT
N
NE
NW
NW
S
SE
SW
W
TOPC
a numeric vector
LITO
a numeric vector
Ac_228
a numeric vector
As
a numeric vector
Au
a numeric vector
Ba
a numeric vector
Bi_214
a numeric vector
Br
a numeric vector
Ca
a numeric vector
Ce
a numeric vector
Co
a numeric vector
Cr
a numeric vector
Cs
a numeric vector
Cs_137
a numeric vector
EC
a numeric vector
Eu
a numeric vector
Fe
a numeric vector
Hf
a numeric vector
Hg
a numeric vector
K_40
a numeric vector
La
a numeric vector
LOI
a numeric vector
Lu
a numeric vector
Mo
a numeric vector
Na
a numeric vector
Nd
a numeric vector
Ni
a numeric vector
pH
a numeric vector
Rb
a numeric vector
Sb
a numeric vector
Sc
a numeric vector
Sm
a numeric vector
Sr
a numeric vector
Tb
a numeric vector
Th
a numeric vector
U
a numeric vector
W
a numeric vector
Yb
a numeric vector
Zn
a numeric vector
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
Source
Kola Project (1993-1998)
References
Reimann C, ?yr?s M, Chekushin V, Bogatyrev I, Boyd R, Caritat P de, Dutter R, Finne TE, Halleraker JH, J?ger ?, Kashulina G, Lehto O, Niskavaara H, Pavlov V, R?is?nen ML, Strand T, Volden T. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway, 1998.
Examples
data(topsoil)
str(topsoil)
Variance Components
Description
This function estimates the variance components for ANOVA.
Usage
varcomp(a1, a2, f1, f2)
Arguments
a1 , a2 |
analytical duplicates |
f1 , f2 |
field duplicates |
Value
pct.regional |
percentage of regional variability |
pct.site |
percentage at site variability |
pct.analytical |
percentage of analytical variability |
pval |
p-value |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
References
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Examples
# field duplicates:
data(CHorFieldDUP)
xfield1=CHorFieldDUP[,5:98]
xfield2=CHorFieldDUP[,99:192]
# anaytical duplicates:
data(CHorANADUP)
xanal1=CHorANADUP[,3:96]
xanal2=CHorANADUP[,97:190]
varcomp(xanal1[,1],xanal2[,1],xfield1[,1],xfield2[,1])