Package 'Seurat'

May 10, 2024

Version 5.1.0

Date 2024-05-08
Title Tools for Single Cell Genomics
Description A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/j.cell.2015.05.002, Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031, and Hao, Hao, et al (2020) doi:10.1101/2020.10.12.335331 for more tails.

URL https://satijalab.org/seurat, https://github.com/satijalab/seurat
BugReports https://github.com/satijalab/seurat/issues

Additional_repositories

https://satijalab.r-universe.dev, https://bnprks.r-universe.dev
Depends R (>= 4.0.0),
methods,
SeuratObject ($>=5.0 .2$)
Imports cluster,
cowplot,
fastDummies,
fitdistrplus,
future,
future.apply,
generics ($>=0.1 .3$),
ggplot2 (>= 3.3.0),
ggrepel,
ggridges,
graphics,
grDevices,
grid,
httr,
ica,
igraph,
irlba,
jsonlite,
KernSmooth,
leiden ($>=0.3 .1$),
lifecycle,
lmtest,
MASS,
Matrix (>=1.5-0),
matrixStats,
miniUI,
patchwork,
pbapply,
plotly (>= 4.9.0),
png,
progressr,
purrr,
RANN,
RColorBrewer,
Rcpp (>= 1.0.7),
RcppAnnoy (>=0.0.18),
RcppHNSW,
reticulate,
rlang,
ROCR,
RSpectra,
Rtsne,
scales,
scattermore ($>=1.2$),
sctransform ($>=0.4 .1$),
shiny,
spatstat.explore,
spatstat.geom,
stats,
tibble,
tools,
utils,
uwot (>= 0.1.10)
LinkingTo Rcpp (>= 0.11.0), RcppEigen, RcppProgress
License MIT + file LICENSE
LazyData true

Collate 'RcppExports.R'

'reexports.R'
'generics.R'
'clustering.R'
'visualization.R'
'convenience.R'
'data.R'
'differential_expression.R'
'dimensional_reduction.R'
'integration.R'
'zzz.R'
'integration5.R'
'mixscape.R'
'objects.R'
'preprocessing.R'
'preprocessing5.R'
'roxygen.R'
'sketching.R'
'tree.R'
'utilities.R'

RoxygenNote 7.3.1

Encoding UTF-8

Suggests ape,
arrow,
BPCells,
rsvd,
testthat,
hdf5r,
S4Vectors,
SummarizedExperiment, SingleCellExperiment,
MAST,
DESeq2,
BiocGenerics,
GenomicRanges,
GenomeInfoDb,
IRanges,
rtracklayer,
Rfast2,
monocle,
Biobase,
VGAM,
limma,
metap,
enrichR,
mixtools,
ggrastr,
data.table,
R.utils,
presto,
DelayedArray, harmony

R topics documented:

Seurat-package 8
AddAzimuthResults 10
AddModuleScore 11
AggregateExpression 12
AnchorSet-class 14
AnnotateAnchors 15
as.CellDataSet 16
as.Seurat.CellDataSet 17
as.SingleCellExperiment 18
as.sparse.H5Group 18
Assay-class 19
AugmentPlot 19
AutoPointSize 20
AverageExpression 21
BarcodeInflectionsPlot 22
BGTextColor 23
BlackAndWhite 24
BridgeCellsRepresentation 25
BridgeReferenceSet-class 26
BuildClusterTree 26
BuildNicheAssay 28
CalcPerturbSig 28
CalculateBarcodeInflections 30
CaseMatch 31
cc.genes 32
cc.genes.updated. 2019 32
CCAIntegration 33
CellCycleScoring 35
Cells.SCTModel 37
CellScatter 37
CellSelector 39
CollapseEmbeddingOutliers 40
CollapseSpeciesExpressionMatrix 41
ColorDimSplit 42
CombinePlots 44
contrast-theory 45
CreateCategoryMatrix 46
CreateSCTAssayObject 46
CustomDistance 47
DEenrichRPlot 48
DietSeurat 50
DimHeatmap 51
DimPlot 52
DimReduc-class 55
DiscretePalette 55
DoHeatmap 56
DotPlot 58
ElbowPlot 59
ExpMean 60
ExpSD 60
ExpVar 61
FastRowScale 62
FastRPCAIntegration 62
FeaturePlot 63
FeatureScatter 66
FetchResiduals 68
FilterSlideSeq 69
FindAllMarkers 70
FindBridgeIntegrationAnchors 74
FindBridgeTransferAnchors 75
FindClusters 76
FindConservedMarkers 78
FindIntegrationAnchors 79
FindMarkers 82
FindMultiModalNeighbors 88
FindNeighbors 90
FindSpatiallyVariableFeatures 93
FindSubCluster 95
FindTransferAnchors 96
FindVariableFeatures 99
FoldChange 102
GetAssay 104
GetImage.SlideSeq 105
GetIntegrationData 106
GetResidual 106
GetTissueCoordinates.SlideSeq 107
GetTransferPredictions 108
Graph-class 109
GroupCorrelation 110
GroupCorrelationPlot 111
HarmonyIntegration 111
HoverLocator 113
HTODemux 114
HTOHeatmap 116
HVFInfo.SCTAssay 117
IFeaturePlot 118
ImageDimPlot 118
ImageFeaturePlot 120
IntegrateData 123
IntegrateEmbeddings 126
IntegrateLayers 128
IntegrationAnchorSet-class 129
IntegrationData-class 129
ISpatialDimPlot 130
ISpatialFeaturePlot 130
JackStraw 131
JackStrawData-class 132
JackStrawPlot 133
JointPCAIntegration 134
L2CCA 136
L2Dim 136
LabelClusters 137
LabelPoints 138
LeverageScore 139
LinkedPlots 141
Load10X_Spatial 142
LoadAnnoyIndex 144
LoadCurioSeeker 144
LoadSTARmap 145
LoadXenium 146
LocalStruct 147
LogNormalize 148
LogVMR 149
MappingScore 149
MapQuery 151
merge.SCTAssay 153
MetaFeature 154
MinMax 155
MixingMetric 155
MixscapeHeatmap 156
MixscapeLDA 159
ModalityWeights-class 160
MULTIseqDemux 160
Neighbor-class 161
NNPlot 162
NNtoGraph 163
NormalizeData 164
PCASigGenes 165
PercentAbove 166
PercentageFeatureSet 167
PlotClusterTree 168
PlotPerturbScore 168
PolyDimPlot 169
PolyFeaturePlot 170
PredictAssay 171
PrepareBridgeReference 172
PrepLDA 174
PrepSCTFindMarkers 175
PrepSCTIntegration 176
ProjectData 178
ProjectDim 179
ProjectDimReduc 180
ProjectIntegration 181
ProjectUMAP 182
PseudobulkExpression 184
Radius.SlideSeq 186
Read10X 187
Read10X_Coordinates 188
Read10X_h5 189
Read10X_Image 189
Read10X_probe_metadata 190
Read10X_ScaleFactors 191
ReadAkoya 191
ReadMtx 193
ReadNanostring 194
ReadParseBio 196
ReadSlideSeq 197
ReadSTARsolo 197
ReadVitessce 198
ReadVizgen 199
RegroupIdents 201
RelativeCounts 202
RenameCells.SCTAssay 203
RidgePlot 203
RPCAIntegration 205
RunCCA 207
RunGraphLaplacian 209
RunICA 210
RunLDA 212
RunMarkVario 213
RunMixscape 214
RunMoransI 215
RunPCA 216
RunSLSI 218
RunSPCA 219
RunTSNE 221
RunUMAP 223
SampleUMI 228
SaveAnnoyIndex 229
ScaleData 230
ScaleFactors 232
ScoreJackStraw 233
SCTAssay-class 234
SCTransform 236
SCTResults 239
SelectIntegrationFeatures 240
SelectIntegrationFeatures5 242
SelectSCTIntegrationFeatures 242
SetIntegrationData 243
SetQuantile 244
Seurat-class 244
SeuratCommand-class 245
SeuratTheme 245
SketchData 247
SlideSeq-class 248
SpatialImage-class 248
SpatialPlot 249
SplitObject 252
STARmap-class 253
subset.AnchorSet 253
SubsetByBarcodeInflections 254
TopCells 255
TopFeatures 256
TopNeighbors 257
TransferAnchorSet-class 257
TransferData 258
TransferSketchLabels 261
UnSketchEmbeddings 262
UpdateSCTAssays 262
UpdateSymbolList 263
VariableFeaturePlot 264
VisiumV1-class 266
VisiumV2-class 266
VizDimLoadings 266
VlnPlot 267
Index 270

Seurat-package Seurat: Tools for Single Cell Genomics

Description

A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/ j.cell.2015.05.002, Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031, and Hao, Hao, et al (2020) doi:10.1101/2020.10.12.335331 for more details.

Package options

Seurat uses the following [options()] to configure behaviour:
Seurat.memsafe global option to call gc() after many operations. This can be helpful in cleaning up the memory status of the R session and prevent use of swap space. However, it does add to the computational overhead and setting to FALSE can speed things up if you're working in an environment where RAM availability is not a concern.

Seurat.warn.umap. uwot Show warning about the default backend for RunUMAP changing from Python UMAP via reticulate to UWOT
Seurat. checkdots For functions that have ... as a parameter, this controls the behavior when an item isn't used. Can be one of warn, stop, or silent.
Seurat.limma.wilcox.msg Show message about more efficient Wilcoxon Rank Sum test available via the limma package

Seurat.Rfast2.msg Show message about more efficient Moran's I function available via the Rfast2 package
Seurat.warn.vlnplot.split Show message about changes to default behavior of split/multi violin plots

Author(s)

Maintainer: Rahul Satija <seurat@nygenome. org> (ORCID)
Other contributors:

- Andrew Butler <abutler@nygenome .org> (ORCID) [contributor]
- Saket Choudhary schoudhary@nygenome.org (ORCID) [contributor]
- David Collins <dcollins@nygenome. org> (ORCID) [contributor]
- Charlotte Darby <cdarby@nygenome . org> (ORCID) [contributor]
- Jeff Farrell <jfarrell@g. harvard. edu> [contributor]
- Isabella Grabski <igrabski@nygenome. org> (ORCID) [contributor]
- Christoph Hafemeister <chafemeister@nygenome. org> (ORCID) [contributor]
- Yuhan Hao <yhao@nygenome. org> (ORCID) [contributor]
- Austin Hartman <ahartman@nygenome. org> (ORCID) [contributor]
- Paul Hoffman hoff0792@umn.edu (ORCID) [contributor]
- Jaison Jain <jjain@nygenome. org> (ORCID) [contributor]
- Longda Jiang <ljiang@nygenome. org> (ORCID) [contributor]
- Madeline Kowalski mkowalski@nygenome.org (ORCID) [contributor]
- Skylar Li <sli@nygenome. org> [contributor]
- Gesmira Molla <gmolla@nygenome. org> (ORCID) [contributor]
- Efthymia Papalexi epapalexi@nygenome.org (ORCID) [contributor]
- Patrick Roelli proelli@nygenome.org [contributor]
- Karthik Shekhar kshekhar@berkeley.edu [contributor]
- Avi Srivastava asrivastava@nygenome.org (ORCID) [contributor]
- Tim Stuart tstuart@nygenome.org (ORCID) [contributor]
- Kristof Torkenczy (ORCID) [contributor]
- Shiwei Zheng <szheng@nygenome. org> (ORCID) [contributor]
- Satija Lab and Collaborators [funder]

See Also

Useful links:

- https://satijalab.org/seurat
- https://github.com/satijalab/seurat
- Report bugs at https://github.com/satijalab/seurat/issues

Description

Add mapping and prediction scores, UMAP embeddings, and imputed assay (if available) from Azimuth to an existing or new Seurat object

Usage

AddAzimuthResults(object $=$ NULL, filename)

Arguments

object	A Seurat object
filename	Path to Azimuth mapping scores file

Value

object with Azimuth results added

Examples

```
## Not run:
object <- AddAzimuthResults(object, filename = "azimuth_results.Rds")
    ## End(Not run)
```

AddModuleScore \quad| Calculate module scores for feature expression programs in single |
| :--- |
| cells |

Description

Calculate the average expression levels of each program (cluster) on single cell level, subtracted by the aggregated expression of control feature sets. All analyzed features are binned based on averaged expression, and the control features are randomly selected from each bin.

Usage

```
    AddModuleScore(
        object,
        features,
        pool = NULL,
        nbin = 24,
        ctrl = 100,
        k = FALSE,
        assay = NULL,
        name = "Cluster",
        seed = 1,
        search = FALSE,
        slot = "data",
    )
```


Arguments

object
Seurat object
features A list of vectors of features for expression programs; each entry should be a vector of feature names
pool List of features to check expression levels against, defaults to rownames ($\mathrm{x}=$ object)
nbin \quad Number of bins of aggregate expression levels for all analyzed features
ctrl Number of control features selected from the same bin per analyzed feature
k Use feature clusters returned from DoKMeans
assay Name of assay to use
name Name for the expression programs; will append a number to the end for each entry in features (eg. if features has three programs, the results will be stored as name1, name2, name3, respectively)
seed Set a random seed. If NULL, seed is not set.
search Search for symbol synonyms for features in features that don't match features in object? Searches the HGNC's gene names database; see UpdateSymbolList for more details

slot	Slot to calculate score values off of. Defaults to data slot (i.e log-normalized counts)
\ldots	Extra parameters passed to UpdateSymbolList

Value

Returns a Seurat object with module scores added to object meta data; each module is stored as name\# for each module program present in features

References

Tirosh et al, Science (2016)

Examples

```
## Not run:
data("pbmc_small")
cd_features <- list(c(
        'CD79B',
        'CD79A',
        'CD19',
        'CD180',
        'CD200',
        'CD3D',
        'CD2',
        'CD3E',
        'CD7',
        'CD8A',
        'CD14',
        'CD1C',
        'CD68',
        'CD9',
        'CD247'
))
pbmc_small <- AddModuleScore(
    object = pbmc_small,
    features = cd_features,
    ctrl = 5,
    name = 'CD_Features'
)
head(x = pbmc_small[])
## End(Not run)
```


Description

Returns summed counts ("pseudobulk") for each identity class.

Usage

```
AggregateExpression(
        object,
        assays = NULL,
        features = NULL,
        return.seurat = FALSE,
        group.by = "ident",
        add.ident = NULL,
        normalization.method = "LogNormalize",
        scale.factor = 10000,
        margin = 1,
        verbose = TRUE,
    )
```


Arguments

object assays	Seurat object features
Which assays to use. Default is all assays return.seurat group.by	Features to analyze. Default is all features in the assay Whether to return the data as a Seurat object. Default is FALSE Category (or vector of categories) for grouping (e.g, ident, replicate, celltype); 'ident' by default To use multiple categories, specify a vector, such as c('ident', 'replicate', 'celltype')
add.ident	(Deprecated). Place an additional label on each cell prior to pseudobulking
normalization.method	
method for normalization, see NormalizeData	

Details

If return. seurat $=$ TRUE, aggregated values are placed in the 'counts' layer of the returned object. The data is then normalized by running NormalizeData on the aggregated counts. ScaleData is then run on the default assay before returning the object.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
## Not run:
data("pbmc_small")
head(AggregateExpression(object = pbmc_small)$RNA)
head(AggregateExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)
## End(Not run)
```

AnchorSet-class The AnchorSet Class

Description

The AnchorSet class is an intermediate data storage class that stores the anchors and other related information needed for performing downstream analyses - namely data integration (IntegrateData) and data transfer (TransferData).

Slots

object.list List of objects used to create anchors
reference.cells List of cell names in the reference dataset - needed when performing data transfer.
reference. objects Position of reference object/s in object.list
query.cells List of cell names in the query dataset - needed when performing data transfer
anchors The anchor matrix. This contains the cell indices of both anchor pair cells, the anchor score, and the index of the original dataset in the object.list for cell1 and cell2 of the anchor.
offsets The offsets used to enable cell look up in downstream functions
weight. reduction The weight dimensional reduction used to calculate weight matrix
anchor.features The features used when performing anchor finding.
neighbors List containing Neighbor objects for reuse later (e.g. mapping)
command Store log of parameters that were used

Description

Add info to anchor matrix

Usage

```
AnnotateAnchors(anchors, vars, slot, ...)
## Default S3 method:
AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    object.list,
    assay = NULL,
    )
    ## S3 method for class 'IntegrationAnchorSet'
    AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    object.list = NULL,
    assay = NULL,
    ...
    )
    ## S3 method for class 'TransferAnchorSet'
    AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    reference = NULL,
    query = NULL,
    assay = NULL,
    ...
    )
```


Arguments

anchors An AnchorSet object
vars Variables to pull for each object via FetchData

slot	Slot to pull feature data for
\ldots	Arguments passed to other methods
object.list	List of Seurat objects
assay	Specify the Assay per object if annotating with expression data
reference	Reference object used in FindTransferAnchors
query	Query object used in FindTransferAnchors

Value

Returns the anchor dataframe with additional columns for annotation metadata

$$
\text { as.CellDataSet } \quad \text { Convert objects to CellDataSet objects }
$$

Description

Convert objects to CellDataSet objects

Usage

as.CellDataSet (x, ...)
\#\# S3 method for class 'Seurat'
as.CellDataSet (x, assay $=$ NULL, reduction $=$ NULL, \ldots)

Arguments

x
... Arguments passed to other methods
assay
reduction \quad Name of DimReduc to set to main reducedDim in cds

Description

Convert objects to Seurat objects

Usage

```
    ## S3 method for class 'CellDataSet'
    as.Seurat(x, slot = "counts", assay = "RNA", verbose = TRUE, ...)
    ## S3 method for class 'SingleCellExperiment'
    as.Seurat(
        x,
        counts = "counts",
        data = "logcounts",
        assay = NULL,
        project = "SingleCellExperiment",
    )
```


Arguments

x	An object to convert to class Seurat
slot	Slot to store expression data as
assay	Name of assays to convert; set to NULL for all assays to be converted
verbose	Show progress updates
\ldots	Arguments passed to other methods
counts	name of the SingleCellExperiment assay to store as counts; set to NULL if only normalized data are present
data	name of the SingleCellExperiment assay to slot as data. Set to NULL if only counts are present
project	Project name for new Seurat object

Value

A Seurat object generated from x

See Also

SeuratObject::as.Seurat
as. SingleCellExperiment
Convert objects to SingleCellExperiment objects

Description

Convert objects to SingleCellExperiment objects

Usage

```
as.SingleCellExperiment(x, ...)
## S3 method for class 'Seurat'
as.SingleCellExperiment(x, assay = NULL, ...)
```


Arguments

x
...
assay

An object to convert to class SingleCellExperiment
Arguments passed to other methods
assay
Assays to convert

Description

Cast to Sparse

```
Usage
    ## S3 method for class 'H5Group'
    as.sparse(x, ...)
    ## S3 method for class 'Matrix'
    as.data.frame(
        x,
        row.names = NULL,
        optional = FALSE,
        ...,
        stringsAsFactors = getOption(x = "stringsAsFactors", default = FALSE)
    )
```


Arguments

x	An object
\ldots	Arguments passed to other methods
row. names	NULL or a character vector giving the row names for the data; missing values are not allowed
optional	logical. If TRUE, setting row names and converting column names (to syntac- tic names: see make. names) is optional. Note that all of R's base package as.data.frame() methods use optional only for column names treatment, ba- sically with the meaning of data.frame (*, check. names = !optional). See also the make. names argument of the matrix method.
stringsAsFactors	
logical: should the character vector be converted to a factor?	

Value

as.data.frame. Matrix: A data frame representation of the S4 Matrix
See Also
SeuratObject::as.sparse

```
Assay-class The Assay Class
```


Description

The Assay object is the basic unit of Seurat; for more details, please see the documentation in Seurat0bject

See Also

```
SeuratObject::Assay-class
```

AugmentPlot Augments ggplot2-based plot with a PNG image.

Description

Creates "vector-friendly" plots. Does this by saving a copy of the plot as a PNG file, then adding the PNG image with annotation_raster to a blank plot of the same dimensions as plot. Please note: original legends and axes will be lost during augmentation.

Usage

AugmentPlot(plot, width $=10$, height $=10$, dpi $=100$)

Arguments

plot	A ggplot object
width, height	Width and height of PNG version of plot
dpi	Plot resolution

Value

A ggplot object

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
AugmentPlot(plot = plot)
## End(Not run)
```

```
AutoPointSize
```

Automagically calculate a point size for ggplot2-based scatter plots

Description

It happens to look good

Usage

AutoPointSize(data, raster = NULL)

Arguments

data	A data frame being passed to ggplot2
raster	If TRUE, point size is set to 1

Value

The "optimal" point size for visualizing these data

Examples

```
df <- data.frame(x = rnorm(n = 10000), y = runif(n = 10000))
AutoPointSize(data = df)
```


Description

Returns averaged expression values for each identity class.

Usage

```
    AverageExpression(
        object,
        assays = NULL,
        features = NULL,
        return.seurat = FALSE,
        group.by = "ident",
        add.ident = NULL,
        layer = "data",
        slot = deprecated(),
        verbose = TRUE,
    ...
    )
```


Arguments

object	Seurat object
assays	Which assays to use. Default is all assays
features	Features to analyze. Default is all features in the assay
return.seurat	Whether to return the data as a Seurat object. Default is FALSE
group.by	Category (or vector of categories) for grouping (e.g, ident, replicate, celltype); 'ident' by default To use multiple categories, specify a vector, such as c('ident', 'replicate', 'celltype')
add.ident	(Deprecated). Place an additional label on each cell prior to pseudobulking
layer	Layer(s) to use; if multiple layers are given, assumed to follow the order of 'assays' (if specified) or object's assays
slot	(Deprecated). Slots(s) to use
verbose	Print messages and show progress bar
	Arguments to be passed to methods such as CreateSeuratObject

Details

If layer is set to 'data', this function assumes that the data has been \log normalized and therefore feature values are exponentiated prior to averaging so that averaging is done in non-log space. Otherwise, if layer is set to either 'counts' or 'scale.data', no exponentiation is performed prior to averaging. If return. seurat $=$ TRUE and layer is not 'scale.data', averaged values are placed
in the 'counts' layer of the returned object and ' $\log 1$ p' is run on the averaged counts and placed in the 'data' layer ScaleData is then run on the default assay before returning the object. If return. seurat = TRUE and layer is 'scale.data', the 'counts' layer contains average counts and 'scale.data' is set to the averaged values of 'scale.data'.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
data("pbmc_small")
head(AverageExpression(object = pbmc_small)$RNA)
head(AverageExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)
```

```
BarcodeInflectionsPlot
```

Plot the Barcode Distribution and Calculated Inflection Points

Description

This function plots the calculated inflection points derived from the barcode-rank distribution.

Usage

BarcodeInflectionsPlot(object)

Arguments

$$
\text { object } \quad \text { Seurat object }
$$

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns a 'ggplot2' object showing the by-group inflection points and provided (or default) rank threshold values in grey.

Author(s)

Robert A. Amezquita, robert.amezquita@fredhutch.org

See Also

CalculateBarcodeInflections SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
BarcodeInflectionsPlot(pbmc_small)
```


BGTextColor Determine text color based on background color

Description

Determine text color based on background color

Usage

BGTextColor
background,
threshold = 186, w3c = FALSE,
dark = "black",
light = "white"
)

Arguments

background A vector of background colors; supports R color names and hexadecimal codes
threshold Intensity threshold for light/dark cutoff; intensities greater than theshold yield dark, others yield light
w3c Use W3C formula for calculating background text color; ignores threshold
dark Color for dark text
light Color for light text

Value

A named vector of either dark or light, depending on background; names of vector are background

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

BGTextColor(background = c('black', 'white', '\#E76BF3'))

BlackAndWhite Create a custom color palette

Description

Creates a custom color palette based on low, middle, and high color values

Usage

```
BlackAndWhite(mid = NULL, k = 50)
BlueAndRed \((\mathrm{k}=50)\)
CustomPalette(low = "white", high = "red", mid = NULL, k = 50)
PurpleAndYellow(k = 50)
```


Arguments

mid	middle color. Optional.
k	number of steps (colors levels) to include between low and high values
low	low color
high	high color

Value

A color palette for plotting

Examples

```
df <- data.frame(x = rnorm(n = 100, mean = 20, sd=2), y = rbinom(n = 100, size = 100, prob=0.2))
plot(df, col = BlackAndWhite())
df <- data.frame(x = rnorm(n=100, mean = 20, sd=2), y=rbinom(n=100, size = 100, prob=0.2))
plot(df, col = BlueAndRed())
myPalette <- CustomPalette()
myPalette
```



```
plot(df, col = PurpleAndYellow())
```


Description

Construct a dictionary representation for each unimodal dataset

Usage

BridgeCellsRepresentation(object.list,
bridge.object, object. reduction, bridge. reduction,
laplacian.reduction = "lap",
laplacian.dims = 1:50,
bridge.assay.name = "Bridge",
return.all.assays = FALSE,
12.norm = TRUE,
verbose = TRUE
)

Arguments

object.list A list of Seurat objects
bridge. object A multi-omic bridge Seurat which is used as the basis to represent unimodal datasets
object.reduction
A list of dimensional reductions from object.list used to be reconstructed by bridge.object
bridge. reduction
A list of dimensional reductions from bridge.object used to reconstruct object.reduction
laplacian. reduction
Name of bridge graph laplacian dimensional reduction
laplacian.dims Dimensions used for bridge graph laplacian dimensional reduction bridge.assay.name

Assay name used for bridge object reconstruction value (default is 'Bridge')
return.all.assays
Whether to return all assays in the object.list. Only bridge assay is returned by default.
12. norm Whether to 12 normalize the dictionary representation
verbose Print messages and progress

Value

Returns a object list in which each object has a bridge cell derived assay

```
BridgeReferenceSet-class
```

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Description

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Slots

bridge The multi-omic object
reference The Reference object only containing bridge representation assay
params A list of parameters used in the PrepareBridgeReference
command Store log of parameters that were used

BuildClusterTree Phylogenetic Analysis of Identity Classes

Description

Constructs a phylogenetic tree relating the 'aggregate' cell from each identity class. Tree is estimated based on a distance matrix constructed in either gene expression space or PCA space.

Usage

```
BuildClusterTree(
    object,
    assay = NULL,
    features = NULL,
    dims = NULL,
    reduction = "pca",
    graph = NULL,
    slot = "data",
    reorder = FALSE,
    reorder.numeric = FALSE,
    verbose = TRUE
)
```


Arguments

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { object } \\
\text { assay } \\
\text { features }\end{array} & \begin{array}{l}\text { Seurat object } \\
\text { Assay to use for the analysis. } \\
\text { Genes to use for the analysis. Default is the set of variable genes (VariableFeatures (object }\end{array} \\
\text { dims } \\
\text { reduction } & \begin{array}{l}\text { If set, tree is calculated in dimension reduction space; overrides features }\end{array}
$$

name of dimension reduction to use. Only used if dims is not NULL.

If graph is passed, build tree based on graph connectivity between clusters; over-

rides dims and features\end{array}\right]\)| slot/layer to use. |
| :--- |
| slot |
| reorder |
| Re-order identity classes (factor ordering), according to position on the tree. |
| This groups similar classes together which can be helpful, for example, when |
| drawing violin plots. |

Details

Note that the tree is calculated for an 'aggregate' cell, so gene expression or PC scores are summed across all cells in an identity class before the tree is constructed.

Value

A Seurat object where the cluster tree can be accessed with Tool

Examples

```
## Not run:
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    Tool(object = pbmc_small, slot = 'BuildClusterTree')
}
## End(Not run)
```


Description

This function will construct a new assay where each feature is a cell label The values represents the sum of a particular cell label neighboring a given cell.

Usage

```
    BuildNicheAssay(
        object,
        fov,
        group.by,
        assay = "niche",
        cluster.name = "niches",
        neighbors.k = 20,
        niches.k = 4
    )
```


Arguments

object	A Seurat object
fov	FOV object to gather cell positions from
group.by	Cell classifications to count in spatial neighborhood
assay	Name for spatial neighborhoods assay
cluster.name	Name of output clusters
neighbors.k	Number of neighbors to consider for each cell
niches.k	Number of clusters to return based on the niche assay

Value

Seurat object containing a new assay

```
CalcPerturbSig Calculate a perturbation Signature
```


Description

Function to calculate perturbation signature for pooled CRISPR screen datasets. For each target cell (expressing one target gRNA), we identified 20 cells from the control pool (non-targeting cells) with the most similar mRNA expression profiles. The perturbation signature is calculated by subtracting the averaged mRNA expression profile of the non-targeting neighbors from the mRNA expression profile of the target cell.

Usage

```
CalcPerturbSig(
    object,
    assay = NULL,
    features = NULL,
    slot = "data",
    gd.class = "guide_ID",
    nt.cell.class = "NT",
    split.by = NULL,
    num.neighbors = NULL,
    reduction = "pca",
    ndims = 15,
    new.assay.name = "PRTB",
    verbose = TRUE
)
```


Arguments

object	An object of class Seurat.
assay	Name of Assay PRTB signature is being calculated on.
features	Features to compute PRTB signature for. Defaults to the variable features set in the assay specified.
slot	Data slot to use for PRTB signature calculation.
gd.class	Metadata column containing target gene classification.
nt.cell.class	Non-targeting gRNA cell classification identity.
split.by	Provide metadata column if multiple biological replicates exist to calculate PRTB signature for every replicate separately.
num.neighbors	Number of nearest neighbors to consider.
reduction	Reduction method used to calculate nearest neighbors.
ndims	Number of dimensions to use from dimensionality reduction method.
new.assay.name	Name for the new assay.
verbose	Display progress + messages

Value

Returns a Seurat object with a new assay added containing the perturbation signature for all cells in the data slot.

Description

This function calculates an adaptive inflection point ("knee") of the barcode distribution for each sample group. This is useful for determining a threshold for removing low-quality samples.

```
Usage
    CalculateBarcodeInflections(
        object,
        barcode.column = "nCount_RNA",
        group.column = "orig.ident",
        threshold.low = NULL,
        threshold.high = NULL
    )
```


Arguments

object	Seurat object
barcode.column	Column to use as proxy for barcodes ("nCount_RNA" by default)
group.column	Column to group by ("orig.ident" by default)
threshold.low	Ignore barcodes of rank below this threshold in inflection calculation
threshold.high	Ignore barcodes of rank above thisf threshold in inflection calculation

Details

The function operates by calculating the slope of the barcode number vs. rank distribution, and then finding the point at which the distribution changes most steeply (the "knee"). Of note, this calculation often must be restricted as to the range at which it performs, so 'threshold' parameters are provided to restrict the range of the calculation based on the rank of the barcodes. [BarcodeInflectionsPlot()] is provided as a convenience function to visualize and test different thresholds and thus provide more sensical end results.
See [BarcodeInflectionsPlot()] to visualize the calculated inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns Seurat object with a new list in the 'tools' slot, 'CalculateBarcodeInflections' with values:

* 'barcode_distribution' - contains the full barcode distribution across the entire dataset * 'inflection_points" - the calculated inflection points within the thresholds * 'threshold_values' - the provided (or default) threshold values to search within for inflections * 'cells_pass' - the cells that pass the inflection point calculation

Author(s)

Robert A. Amezquita, robert.amezquita@fredhutch.org

See Also

BarcodeInflectionsPlot SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
```

CaseMatch Match the case of character vectors

Description

Match the case of character vectors

Usage

CaseMatch(search, match)

Arguments

search A vector of search terms
match A vector of characters whose case should be matched

Value

Values from search present in match with the case of match

Examples

```
data("pbmc_small")
cd_genes <- c('Cd79b', 'Cd19', 'Cd200')
CaseMatch(search = cd_genes, match = rownames(x = pbmc_small))
```

cc.genes Cell cycle genes

Description

A list of genes used in cell-cycle regression

Usage

cc.genes

Format

A list of two vectors
s.genes Genes associated with S-phase
g2m.genes Genes associated with G2M-phase

Source

https://www.science.org/doi/abs/10.1126/science.aad0501
cc.genes. updated. 2019 Cell cycle genes: 2019 update

Description

A list of genes used in cell-cycle regression, updated with 2019 symbols

Usage

cc.genes.updated. 2019

Format

A list of two vectors
s.genes Genes associated with S-phase
g2m.genes Genes associated with G2M-phase

Updated symbols

The following symbols were updated from cc.genes
s.genes - MCM2: MCM7

- MLFIIP: CENPU
- RPA2: POLRIB
- BRIP1: MRPL36
g2m.genes • FAM64A: PIMREG
- HN1: JPT1

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

See Also

cc.genes

Examples

```
## Not run:
cc.genes.updated.2019 <- cc.genes
cc.genes.updated.2019$s.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019$s.genes)
cc.genes.updated.2019$g2m.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019$g2m.genes)
## End(Not run)
```

CCAIntegration Seurat-CCA Integration

Description

Seurat-CCA Integration

Usage

```
CCAIntegration(
    object = NULL,
    assay = NULL,
    layers = NULL,
    orig = NULL,
    new.reduction = "integrated.dr",
    reference = NULL,
    features = NULL,
    normalization.method = c("LogNormalize", "SCT"),
    dims = 1:30,
```

```
    k.filter = NA,
    scale.layer = "scale.data",
    dims.to.integrate = NULL,
    k.weight = 100,
    weight.reduction = NULL,
    sd.weight = 1,
    sample.tree = NULL,
    preserve.order = FALSE,
    verbose = TRUE,
    ...
)
```


Arguments

object	A Seurat object
assay	Name of Assay in the Seurat object
layers	Names of layers in assay
orig	A dimensional reduction to correct
new.reduction	Name of new integrated dimensional reduction
reference	A reference Seurat object
features normalization.method	A vector of features to use for integration
	Name of normalization method used: LogNormalize or SCT
dims	Dimensions of dimensional reduction to use for integration
k.filter	Number of anchors to filter
scale.layer Name of scaled layer in Assay dims.to.integrate	
	Number of dimensions to return integrated values for
k.weight	Number of neighbors to consider when weighting anchors
weight.reduction	

Dimension reduction to use when calculating anchor weights. This can be one of:

- A string, specifying the name of a dimension reduction present in all objects to be integrated
- A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
- A vector of DimReduc objects, specifying the object to use for each object in the integration
- NULL, in which case the full corrected space is used for computing anchor weights.
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
sample. tree Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from
a given row (the format of the merge matrix included in the hclust function output). For example: matrix $(\mathrm{c}(-2,1,-3,-1)$, $\mathrm{ncol}=2)$ gives:

	$[, 1]$	$[, 2]$
$[1]$,	-2	-3
$[2]$,	1	-1

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1 .
If NULL, the sample tree will be computed automatically.
preserve. order Do not reorder objects based on size for each pairwise integration.
verbose Print progress
... Arguments passed on to FindIntegrationAnchors

Examples

```
## Not run:
# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")
obj[["RNA"]] <- split(obj[["RNA"]], f = obj$Method)
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
obj <- RunPCA(obj)
# After preprocessing, we integrate layers.
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
    orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)
# Modifying parameters
# We can also specify parameters such as `k.anchor` to increase the strength of integration
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
    orig.reduction = "pca", new.reduction = "integrated.cca",
    k.anchor = 20, verbose = FALSE)
# Integrating SCTransformed data
obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
    orig.reduction = "pca", new.reduction = "integrated.cca",
    assay = "SCT", verbose = FALSE)
## End(Not run)
```


Description

Score cell cycle phases

Usage

```
CellCycleScoring(
    object,
    s.features,
    g2m.features,
    ctrl = NULL,
    set.ident = FALSE,
    ...
)
```


Arguments

object	A Seurat object
s.features	A vector of features associated with S phase
g2m.features	A vector of features associated with G2M phase
ctrl	Number of control features selected from the same bin per analyzed feature supplied to AddModuleScore. Defaults to value equivalent to minimum number of features present in 's.features' and 'g2m.features'.
set.ident	If true, sets identity to phase assignments Stashes old identities in 'old.ident'
\ldots	Arguments to be passed to AddModuleScore

Value

A Seurat object with the following columns added to object meta data: S.Score, G2M.Score, and Phase

See Also

AddModuleScore

Examples

```
## Not run:
data("pbmc_small")
# pbmc_small doesn't have any cell-cycle genes
# To run CellCycleScoring, please use a dataset with cell-cycle genes
# An example is available at http://satijalab.org/seurat/cell_cycle_vignette.html
pbmc_small <- CellCycleScoring(
    object = pbmc_small,
    g2m.features = cc.genes$g2m.genes,
    s.features = cc.genes$s.genes
)
head(x = pbmc_small@meta.data)
## End(Not run)
```

```
    Cells.SCTModel Get Cell Names
```


Description

Get Cell Names

Usage

\#\# S3 method for class 'SCTModel'
Cells(x, ...)
\#\# S3 method for class 'SlideSeq'
Cells(x, ...)
\#\# S3 method for class 'STARmap'
Cells(x, ...)
\#\# S3 method for class 'VisiumV1'
Cells(x, ...)

Arguments

x
An object
... Arguments passed to other methods

See Also

SeuratObject: :Cells

| CellScatter \quad Cell-cell scatter plot |
| :--- | :--- |

Description

Creates a plot of scatter plot of features across two single cells. Pearson correlation between the two cells is displayed above the plot.

Usage

```
CellScatter(
    object,
    cell1,
    cell2,
    features = NULL,
    highlight = NULL,
    cols = NULL,
    pt.size = 1,
    smooth = FALSE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
```


Arguments

object	Seurat object
cell1	Cell 1 name
cell2	Cell 2 name
features	Features to plot (default, all features)
highlight	Features to highlight
cols	Colors to use for identity class plotting.
pt.size	Size of the points on the plot
smooth	Smooth the graph (similar to smoothScatter)
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

A ggplot object

Examples

```
data("pbmc_small")
CellScatter(object = pbmc_small, cell1 = 'ATAGGAGAAACAGA', cell2 = 'CATCAGGATGCACA')
```

| CellSelector \quad Cell Selector |
| :--- | :--- |

Description

Select points on a scatterplot and get information about them

Usage

```
CellSelector (plot, object = NULL, ident = "SelectedCells", ...)
```

 FeatureLocator(plot, ...)

Arguments

plot	A ggplot2 plot
object	An optional Seurat object; if passes, will return an object with the identities of selected cells set to ident
ident	An optional new identity class to assign the selected cells
\ldots	Ignored

Value

If object is NULL, the names of the points selected; otherwise, a Seurat object with the selected cells identity classes set to ident

See Also

DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
# Follow instructions in the terminal to select points
cells.located <- CellSelector(plot = plot)
cells.located
# Automatically set the identity class of selected cells and return a new Seurat object
pbmc_small <- CellSelector(plot = plot, object = pbmc_small, ident = 'SelectedCells')
## End(Not run)
```

```
CollapseEmbeddingOutliers
```

Move outliers towards center on dimension reduction plot

Description

Move outliers towards center on dimension reduction plot

Usage

```
CollapseEmbeddingOutliers(
        object,
        reduction = "umap",
        dims = 1:2,
        group.by = "ident",
        outlier.sd = 2,
        reduction.key = "UMAP_"
)
```


Arguments

object	Seurat object
reduction	Name of DimReduc to adjust
dims	Dimensions to visualize
group.by	Group (color) cells in different ways (for example, orig.ident)
outlier.sd	Controls the outlier distance
reduction.key	Key for DimReduc that is returned

Value

Returns a DimReduc object with the modified embeddings

Examples

```
## Not run:
data("pbmc_small")
pbmc_small <- FindClusters(pbmc_small, resolution = 1.1)
pbmc_small <- RunUMAP(pbmc_small, dims = 1:5)
DimPlot(pbmc_small, reduction = "umap")
pbmc_small[["umap_new"]] <- CollapseEmbeddingOutliers(pbmc_small,
        reduction = "umap", reduction.key = 'umap_', outlier.sd = 0.5)
    DimPlot(pbmc_small, reduction = "umap_new")
    ## End(Not run)
```

CollapseSpeciesExpressionMatrix
Slim down a multi-species expression matrix, when only one species is primarily of interenst.

Description

Valuable for CITE-seq analyses, where we typically spike in rare populations of 'negative control' cells from a different species.

Usage

```
    CollapseSpeciesExpressionMatrix(
        object,
        prefix = "HUMAN_",
        controls = "MOUSE_",
        ncontrols = 100
    )
```


Arguments

object A UMI count matrix. Should contain rownames that start with the ensuing arguments prefix. 1 or prefix. 2
prefix The prefix denoting rownames for the species of interest. Default is "HUMAN_". These rownames will have this prefix removed in the returned matrix.
controls The prefix denoting rownames for the species of 'negative control' cells. Default is "MOUSE_".
ncontrols How many of the most highly expressed (average) negative control features (by default, 100 mouse genes), should be kept? All other rownames starting with prefix. 2 are discarded.

Value

A UMI count matrix. Rownames that started with prefix have this prefix discarded. For rownames starting with controls, only the ncontrols most highly expressed features are kept, and the prefix is kept. All other rows are retained.

Examples

```
## Not run:
cbmc.rna.collapsed <- CollapseSpeciesExpressionMatrix(cbmc.rna)
## End(Not run)
```


Description

Returns a DimPlot colored based on whether the cells fall in clusters to the left or to the right of a node split in the cluster tree.

Usage

ColorDimSplit(
object,
node,
left.color = "red",
right.color = "blue",
other.color = "grey50",
)

Arguments

object	Seurat object
node	Node in cluster tree on which to base the split
left.color	Color for the left side of the split
right.color	Color for the right side of the split
other.color	Color for all other cells
\ldots	Arguments passed on to DimPlot

dims Dimensions to plot, must be a two-length numeric vector specifying xand y-dimensions
cells Vector of cells to plot (default is all cells)
cols Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
pt.size Adjust point size for plotting
reduction Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
group by Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by A factor in object metadata to split the plot by, pass 'ident' to split by cell identity’
shape.by If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster $=$ FALSE.
order Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
shuffle Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed Sets the seed if randomly shuffling the order of points.
label Whether to label the clusters
label.size Sets size of labels
label.color Sets the color of the label text
label. box Whether to put a box around the label text (geom_text vs geom_label)
alpha Alpha value for plotting (default is 1)
repel Repel labels
cells.highlight A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight and other cells black (white if dark.theme $=$ TRUE); will also resize to the size(s) passed to sizes.highlight
cols.highlight A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight
sizes.highlight Size of highlighted cells; will repeat to the length groups in cells.highlight. If sizes.highlight = TRUE size of all points will be this value.
na.value Color value for NA points when using custom scale
ncol Number of columns for display when combining plots
combine Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
raster Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $\mathrm{c}(512,512)$.

Value

Returns a DimPlot

See Also

```
DimPlot
```


Examples

```
## Not run:
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small <- BuildClusterTree(object = pbmc_small, verbose = FALSE)
    PlotClusterTree(pbmc_small)
    ColorDimSplit(pbmc_small, node = 5)
```

\}
\#\# End(Not run)
CombinePlots Combine ggplot2-based plots into a single plot

Description

Combine ggplot2-based plots into a single plot

Usage

CombinePlots(plots, ncol = NULL, legend = NULL, ...)

Arguments

plots	A list of gg objects
ncol	Number of columns
legend	Combine legends into a single legend choose from 'right' or 'bottom'; pass 'none' to remove legends, or NULL to leave legends as they are
\ldots	Extra parameters passed to plot_grid

Value

A combined plot

Examples

```
data("pbmc_small")
pbmc_small[['group']] <- sample(
        x = c('g1', 'g2'),
        size = ncol(x = pbmc_small),
        replace = TRUE
)
plot1 <- FeaturePlot(
    object = pbmc_small,
    features = 'MS4A1',
    split.by = 'group'
)
plot2 <- FeaturePlot(
    object = pbmc_small,
    features = 'FCN1',
    split.by = 'group'
)
CombinePlots(
    plots = list(plot1, plot2),
```

```
    legend = 'none',
    nrow = length(x = unique(x = pbmc_small[['group', drop = TRUE]]))
```

)
contrast-theory Get the intensity and/or luminance of a color

Description

Get the intensity and/or luminance of a color

Usage

Intensity(color)
Luminance(color)

Arguments

color
A vector of colors

Value

A vector of intensities/luminances for each color

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

```
Intensity(color = c('black', 'white', '#E76BF3'))
Luminance(color = c('black', 'white', '#E76BF3'))
```

```
CreateCategoryMatrix Create one hot matrix for a given label
```


Description

Create one hot matrix for a given label

Usage

```
    CreateCategoryMatrix(
        labels,
        method = c("aggregate", "average"),
        cells.name = NULL
    )
```


Arguments

labels	A vector of labels
method	Method to aggregate cells with the same label. Either 'aggregate' or 'average'
cells.name	A vector of cell names

Description

Create a SCT object from a feature (e.g. gene) expression matrix and a list of SCTModels. The expected format of the input matrix is features x cells.

Usage

CreateSCTAssayObject (counts, data, scale.data = NULL, umi.assay = "RNA", min.cells = 0, min.features $=0$, SCTModel.list $=$ NULL
)

Arguments

counts Unnormalized data such as raw counts or TPMs
data Prenormalized data; if provided, do not pass counts
scale.data a residual matrix
umi .assay The UMI assay name. Default is RNA
min.cells Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff
min.features Include cells where at least this many features are detected
SCTModel.list list of SCTModels

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.
CustomDistance Run a custom distance function on an input data matrix

Description

Run a custom distance function on an input data matrix

Usage

CustomDistance(my.mat, my.function, ...)

Arguments

my.mat A matrix to calculate distance on
my.function A function to calculate distance
... Extra parameters to my.function

Value

A distance matrix

Author(s)

Jean Fan

Examples

```
data("pbmc_small")
# Define custom distance matrix
manhattan.distance <- function(x, y) return(sum(abs(x-y)))
input.data <- GetAssayData(pbmc_small, assay.type = "RNA", slot = "scale.data")
cell.manhattan.dist <- CustomDistance(input.data, manhattan.distance)
```

DEenrichRPlot DE and EnrichR pathway visualization barplot

Description

DE and EnrichR pathway visualization barplot

Usage

```
DEenrichRPlot(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    balanced = TRUE,
    logfc.threshold = 0.25,
    assay = NULL,
    max.genes,
    test.use = "wilcox",
    p.val.cutoff = 0.05,
    cols = NULL,
    enrich.database = NULL,
    num.pathway = 10,
        return.gene.list = FALSE,
)
```


Arguments

object Name of object class Seurat.
ident. $1 \quad$ Cell class identity 1.
ident. $2 \quad$ Cell class identity 2.
balanced Option to display pathway enrichments for both negative and positive DE genes.If false, only positive DE gene will be displayed.
logfc.threshold
Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 . Increasing logfc.threshold speeds up the function, but can miss weaker signals.

assay	Assay to use in differential expression testing
max.genes	Maximum number of genes to use as input to enrichR.
test.use	Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
- "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- " t " : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L

```
p.val.cutoff Cutoff to select DE genes.
cols A list of colors to use for barplots.
enrich.database
```

Database to use from enrichR.
num. pathway Number of pathways to display in barplot.
return.gene.list
Return list of DE genes
... Arguments passed to other methods and to specific DE methods

Value

Returns one (only enriched) or two (both enriched and depleted) barplots with the top enriched/depleted GO terms from EnrichR.

```
DietSeurat Slim down a Seurat object
```


Description

Keep only certain aspects of the Seurat object. Can be useful in functions that utilize merge as it reduces the amount of data in the merge

Usage

DietSeurat
object,
layers = NULL,
features = NULL,
assays = NULL,
dimreducs = NULL,
graphs = NULL,
misc $=$ TRUE,
counts = deprecated(),
data = deprecated(),
scale.data = deprecated(),
)

Arguments

object	A Seurat object
layers	A vector or named list of layers to keep
features	Only keep a subset of features, defaults to all features
assays	Only keep a subset of assays specified here
dimreducs	Only keep a subset of DimReducs specified here (if NULL, remove all DimRe- ducs)
graphs	Only keep a subset of Graphs specified here (if NULL, remove all Graphs)
misc	Preserve the misc slot; default is TRUE
counts	Preserve the count matrices for the assays specified

data	Preserve the data matrices for the assays specified
scale.data	Preserve the scale data matrices for the assays specified
\ldots.	Ignored

Value

object with only the sub-object specified retained
DimHeatmap Dimensional reduction heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset.

Usage

```
DimHeatmap(
    object,
    dims = 1,
    nfeatures = 30,
    cells = NULL,
    reduction = "pca",
    disp.min = -2.5,
    disp.max = NULL,
    balanced = TRUE,
    projected = FALSE,
    ncol = NULL,
    fast = TRUE,
    raster = TRUE,
    slot = "scale.data",
    assays = NULL,
    combine = TRUE
)
PCHeatmap(object, ...)
```


Arguments

object	Seurat object
dims	Dimensions to plot
nfeatures	Number of genes to plot
cells	A list of cells to plot. If numeric, just plots the top cells.
reduction	Which dimensional reduction to use

disp.min	Minimum display value (all values below are clipped)		
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise		
balanced	Plot an equal number of genes with both + and - scores. projected ncol		
fast	Use the full projected dimensional reduction		
ramber of columns to plot		\quad	If true, use image to generate plots; faster than using ggplot2, but not customiz-
:---			
able	\quad	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry	
:---			
on some viewing applications such as Preview due to how the raster is interpo-			
lated. Set this to FALSE if you are encountering that issue (note that plots may			
take longer to produce/render).			

Value

No return value by default. If using fast $=$ FALSE, will return a patchworked ggplot object if combine $=$ TRUE, otherwise returns a list of ggplot objects

See Also

image geom_raster

Examples

```
data("pbmc_small")
```

DimHeatmap(object = pbmc_small)
DimPlot Dimensional reduction plot

Description

Graphs the output of a dimensional reduction technique on a 2 D scatter plot where each point is a cell and it's positioned based on the cell embeddings determined by the reduction technique. By default, cells are colored by their identity class (can be changed with the group.by parameter).

Usage

```
DimPlot(
    object,
    dims = c(1, 2),
    cells = NULL,
    cols = NULL,
    pt.size \(=\) NULL,
    reduction = NULL,
    group. by = NULL,
    split.by = NULL,
    shape.by \(=\) NULL,
    order = NULL,
    shuffle = FALSE,
    seed = 1,
    label = FALSE,
    label.size = 4,
    label.color = "black",
    label.box = FALSE,
    repel = FALSE,
    alpha = 1,
    cells.highlight \(=\) NULL,
    cols.highlight = "\#DE2D26",
    sizes.highlight = 1,
    na.value = "grey50",
    ncol = NULL,
    combine = TRUE,
    raster = NULL,
    raster.dpi \(=c(512,512)\)
)
PCAPlot(object, ...)
TSNEPlot(object, ...)
UMAPPlot (object, ...)
```


Arguments

object	Seurat object
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
cells	Vector of cells to plot (default is all cells) cols
Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer. pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.	
pt.size	Adjust point size for plotting

reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class A factor in object metadata to split the plot by, pass 'ident' to split by cell iden- tity'
split.by	If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.
shape.by	

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note
For the old do. hover and do. identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

FeaturePlot HoverLocator CellSelector FetchData

Examples

```
data("pbmc_small")
DimPlot(object = pbmc_small)
DimPlot(object = pbmc_small, split.by = 'letter.idents')
```

```
DimReduc-class The DimReduc Class
```


Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; for more details, please see the documentation in SeuratObject

See Also

SeuratObject::DimReduc-class

DiscretePalette Discrete colour palettes from pals

Description

These are included here because pals depends on a number of compiled packages, and this can lead to increases in run time for Travis, and generally should be avoided when possible.

Usage

DiscretePalette(n, palette = NULL, shuffle = FALSE)

Arguments

n	Number of colours to be generated.
palette	Options are "alphabet", "alphabet2", "glasbey", "polychrome", "stepped", and "parade". Can be omitted and the function will use the one based on the re- quested n.
shuffle	Shuffle the colors in the selected palette.

Details

These palettes are a much better default for data with many classes than the default ggplot2 palette.
Many thanks to Kevin Wright for writing the pals package.
Taken from the pals package (Licence: GPL-3). https://cran.r-project.org/package=pals Credit: Kevin Wright

Value

A vector of colors

Description

Draws a heatmap of single cell feature expression.

Usage

```
DoHeatmap(
    object,
    features = NULL,
    cells = NULL,
    group.by = "ident",
    group.bar = TRUE,
    group.colors = NULL,
    disp.min = -2.5,
    disp.max = NULL,
    slot = "scale.data",
    assay = NULL,
    label = TRUE,
    size = 5.5,
    hjust = 0,
    vjust = 0,
    angle = 45,
    raster = TRUE,
    draw.lines = TRUE,
    lines.width = NULL,
    group.bar.height = 0.02,
    combine = TRUE
)
```


Arguments

object	Seurat object
features	A vector of features to plot, defaults to VariableFeatures (object = object)
cells	A vector of cells to plot
group.by	A vector of variables to group cells by; pass 'ident' to group by cell identity classes
group.bar	Add a color bar showing group status for cells
group.colors	Colors to use for the color bar
disp.min	Minimum display value (all values below are clipped)
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise
slot	Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
assay	Assay to pull from
label	Label the cell identies above the color bar
size	Size of text above color bar
hjust	Horizontal justification of text above color bar
vjust	Vertical justification of text above color bar
angle	Angle of text above color bar
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
draw.lines	Include white lines to separate the groups
lines.width	Integer number to adjust the width of the separating white lines. Corresponds to the number of "cells" between each group.
group.bar.height	
	Scale the height of the color bar
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects

Value
A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
DoHeatmap(object = pbmc_small)
```

DotPlot Dot plot visualization

Description

Intuitive way of visualizing how feature expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level across all cells within a class (blue is high).

Usage

```
    DotPlot(
        object,
        features,
        assay = NULL,
        cols = c("lightgrey", "blue"),
        col.min = -2.5,
        col.max = 2.5,
        dot.min = 0,
        dot.scale = 6,
        idents = NULL,
        group.by = NULL,
        split.by = NULL,
        cluster.idents = FALSE,
        scale = TRUE,
        scale.by = "radius",
        scale.min = NA,
        scale.max = NA
    )
```


Arguments

object	Seurat object
features	Input vector of features, or named list of feature vectors if feature-grouped pan- els are desired (replicates the functionality of the old SplitDotPlotGG)
assay	Name of assay to use, defaults to the active assay
cols	Colors to plot: the name of a palette from RColorBrewer: : brewer.pal.info, a pair of colors defining a gradient, or 3+ colors defining multiple gradients (if split.by is set)
col.min	Minimum scaled average expression threshold (everything smaller will be set to this)
col.max	Maximum scaled average expression threshold (everything larger will be set to this)
dot.min	The fraction of cells at which to draw the smallest dot (default is 0). All cell groups with less than this expressing the given gene will have no dot drawn.

dot.scale	Scale the size of the points, similar to cex
idents	Identity classes to include in plot (default is all)
group.by	Factor to group the cells by split.by
A factor in object metadata to split the plot by, pass 'ident' to split by cell iden- tity' see FetchData for more details	
cluster.idents	Whether to order identities by hierarchical clusters based on given features, de- fault is FALSE
scale	Determine whether the data is scaled, TRUE for default
scale.by	Scale the size of the points by 'size' or by 'radius'
scale.min	Set lower limit for scaling, use NA for default
scale.max	Set upper limit for scaling, use NA for default

Value

A ggplot object

See Also

RColorBrewer::brewer.pal.info

Examples

```
data("pbmc_small")
cd_genes <- c("CD247", "CD3E", "CD9")
DotPlot(object = pbmc_small, features = cd_genes)
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
DotPlot(object = pbmc_small, features = cd_genes, split.by = 'groups')
```


Description

Plots the standard deviations (or approximate singular values if running PCAFast) of the principle components for easy identification of an elbow in the graph. This elbow often corresponds well with the significant dims and is much faster to run than Jackstraw

Usage

ElbowPlot(object, ndims $=20$, reduction = "pca")

Arguments

object Seurat object
ndims Number of dimensions to plot standard deviation for
reduction Reduction technique to plot standard deviation for

Value
A ggplot object

Examples

data("pbmc_small")
ElbowPlot(object = pbmc_small)

ExpMean \quad Calculate the mean of logged values

Description

Calculate mean of logged values in non-log space (return answer in log-space)

Usage

ExpMean (x, ...)

Arguments

x
A vector of values
$\ldots \quad$ Other arguments (not used)

Value

Returns the mean in log-space

Examples

ExpMean $(x=c(1,2,3))$

ExpSD Calculate the standard deviation of logged values

Description

Calculate SD of logged values in non-log space (return answer in log-space)

Usage

$\operatorname{ExpSD}(x)$

Arguments

x A vector of values

Value

Returns the standard deviation in log-space

Examples

$\operatorname{ExpSD}(x=c(1,2,3))$

ExpVar \quad Calculate the variance of logged values

Description

Calculate variance of logged values in non-log space (return answer in log-space)

Usage

ExpVar(x)

Arguments

X
A vector of values

Value

Returns the variance in log-space

Examples

$\operatorname{Exp} \operatorname{Var}(x=c(1,2,3))$

Description

Performs row scaling and/or centering. Equivalent to using $t(\operatorname{scale}(t(m a t)))$ in R except in the case of NA values.

Usage

FastRowScale(mat, center = TRUE, scale = TRUE, scale_max = 10)

Arguments

mat	A matrix
center	a logical value indicating whether to center the rows
scale	a logical value indicating whether to scale the rows
scale_max	clip all values greater than scale_max to scale_max. Don't clip if Inf.

Value

Returns the center/scaled matrix

Description

This is a convenience wrapper function around the following three functions that are often run together when perform integration. \#' FindIntegrationAnchors, RunPCA, IntegrateEmbeddings.

```
Usage
    FastRPCAIntegration(
        object.list,
        reference = NULL,
        anchor.features = 2000,
        k.anchor = 20,
        dims = 1:30,
        scale = TRUE,
        normalization.method = c("LogNormalize", "SCT"),
        new.reduction.name = "integrated_dr",
        npcs = 50,
        findintegrationanchors.args = list(),
        verbose = TRUE
    )
```


Arguments

object.list A list of Seurat objects between which to find anchors for downstream integration.
reference A vector specifying the object/s to be used as a reference during integration. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object. list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.
anchor.features
Can be either:

- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process
k. anchor How many neighbors (k) to use when picking anchors
dims Which dimensions to use from the CCA to specify the neighbor search space
scale Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list
normalization.method
Name of normalization method used: LogNormalize or SCT
new. reduction. name
Name of integrated dimensional reduction
npcs Total Number of PCs to compute and store (50 by default)
findintegrationanchors.args
A named list of additional arguments to FindIntegrationAnchors
verbose Print messages and progress

Value

Returns a Seurat object with integrated dimensional reduction
FeaturePlot Visualize 'features' on a dimensional reduction plot

Description

Colors single cells on a dimensional reduction plot according to a 'feature' (i.e. gene expression, PC scores, number of genes detected, etc.)

Usage

```
FeaturePlot(
        object,
        features,
        dims = c(1, 2),
        cells = NULL,
        cols = if (blend) {
        c("lightgrey", "#ff0000", "#00ff00")
    } else {
        c("lightgrey", "blue")
    },
    pt.size = NULL,
    alpha = 1,
    order = FALSE,
    min.cutoff = NA,
    max.cutoff = NA,
    reduction = NULL,
    split.by = NULL,
    keep.scale = "feature",
    shape.by = NULL,
    slot = "data",
    blend = FALSE,
    blend.threshold = 0.5,
    label = FALSE,
    label.size = 4,
    label.color = "black",
    repel = FALSE,
    ncol = NULL,
    coord.fixed = FALSE,
    by.col = TRUE,
    sort.cell = deprecated(),
    interactive = FALSE,
    combine = TRUE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
```


Arguments

object Seurat object
features Vector of features to plot. Features can come from:

- An Assay feature (e.g. a gene name - "MS4A1")
- A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
- A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")

dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
cells	Vector of cells to plot (default is all cells)
cols	The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors: 1 color: Treated as color for double-negatives, will use default colors 2 and 3
for per-feature expression	

label.color	Sets the color of the label text
repel	Repel labels
ncol	Number of columns to combine multiple feature plots to, ignored if split.by is not NULL
coord.fixed	Plot cartesian coordinates with fixed aspect ratio
by.col	If splitting by a factor, plot the splits per column with the features as rows; ignored if blend = TRUE
sort.cell	Redundant with order. This argument is being deprecated. Please use order instead.
interactive	Launch an interactive FeaturePlot
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
raster	Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $c(512,512)$.

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note

For the old do. hover and do.identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

DimPlot HoverLocator CellSelector

Examples

```
data("pbmc_small")
FeaturePlot(object = pbmc_small, features = 'PC_1')
```

FeatureScatter Scatter plot of single cell data

Description

Creates a scatter plot of two features (typically feature expression), across a set of single cells. Cells are colored by their identity class. Pearson correlation between the two features is displayed above the plot.

Usage

```
    FeatureScatter(
        object,
        feature1,
        feature2,
        cells = NULL,
        shuffle = FALSE,
        seed = 1,
        group.by = NULL,
        split.by = NULL,
        cols = NULL,
        pt.size = 1,
        shape.by = NULL,
        span = NULL,
        smooth = FALSE,
        combine = TRUE,
        slot = "data",
        plot.cor = TRUE,
        ncol = NULL,
        raster = NULL,
        raster.dpi = c(512, 512),
        jitter = FALSE,
        log = FALSE
    )
```

Arguments

object feature1	Seurat object scores, etc. - anything that can be retreived with FetchData
feature2	Second feature to plot.
cells	Cells to include on the scatter plot.
shuffle	Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed	Sets the seed if randomly shuffling the order of points.
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	A factor in object metadata to split the feature plot by, pass 'ident' to split by cell identity'
cols	Colors to use for identity class plotting.
pt.size	Size of the points on the plot
shape.by	Ignored for now span
Spline span in loess function call, if NULL, no spline added	

combine	Combine plots into a single patchworked
slot	Slot to pull data from, should be one of 'counts', 'data', or 'scale.data'
plot.cor	Display correlation in plot title
ncol	Number of columns if plotting multiple plots
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).
jitter	Jitter for easier visualization of crowded points (default is FALSE) log
	Plot features on the log scale (default is FALSE)

Value

A ggplot object

Examples

```
data("pbmc_small")
FeatureScatter(object = pbmc_small, feature1 = 'CD9', feature2 = 'CD3E')
```


Description

This function calls sctransform::get_residuals.

```
Usage
FetchResiduals(
    object,
    features,
    assay = NULL,
    umi.assay = "RNA",
    layer = "counts",
    clip.range = NULL,
    reference.SCT.model = NULL,
    replace.value = FALSE,
    na.rm = TRUE,
    verbose = TRUE
)
```


Arguments

object	A seurat object
features	Name of features to add into the scale.data
assay	Name of the assay of the seurat object generated by SCTransform
umi.assay	Name of the assay of the seurat object containing UMI matrix and the default is RNA
layer	Name (prefix) of the layer to pull counts from
clip.range	Numeric of length two specifying the min and max values the Pearson residual will be clipped to
reference.SCT.model	
	reference.SCT.model If a reference SCT model should be used for calculating the residuals. When set to not NULL, ignores the 'SCTModel' paramater.
replace.value	Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.
na.rm	For features where there is no feature model stored, return NA for residual value in scale.data when na.rm = FALSE. When na.rm is TRUE, only return residuals for features with a model stored for all cells.
verbose	Whether to print messages and progress bars

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

```
get_residuals
```

FilterSlideSeq Filter stray beads from Slide-seq puck

Description

This function is useful for removing stray beads that fall outside the main Slide-seq puck area. Essentially, it's a circular filter where you set a center and radius defining a circle of beads to keep. If the center is not set, it will be estimated from the bead coordinates (removing the 1st and 99th quantile to avoid skewing the center by the stray beads). By default, this function will display a SpatialDimPlot showing which cells were removed for easy adjustment of the center and/or radius.

Usage

```
    FilterSlideSeq(
        object,
        image = "image",
        center = NULL,
        radius = NULL,
        do.plot = TRUE
    )
```


Arguments

object Seurat object with slide-seq data
image \quad Name of the image where the coordinates are stored
center Vector specifying the x and y coordinates for the center of the inclusion circle
radius \quad Radius of the circle of inclusion
do.plot Display a SpatialDimPlot with the cells being removed labeled.

Value

Returns a Seurat object with only the subset of cells that pass the circular filter

Examples

```
## Not run:
# This example uses the ssHippo dataset which you can download
# using the SeuratData package.
library(SeuratData)
data('ssHippo')
# perform filtering of beads
ssHippo.filtered <- FilterSlideSeq(ssHippo, radius = 2300)
# This radius looks to small so increase and repeat until satisfied
## End(Not run)
```


Description

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

Usage

```
FindAllMarkers(
        object,
        assay = NULL,
    features = NULL,
    logfc.threshold = 0.1,
    test.use = "wilcox",
    slot = "data",
    min.pct = 0.01,
    min.diff.pct = -Inf,
    node = NULL,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
    return.thresh = 0.01,
    densify = FALSE,
)
```


Arguments

object	An object
assay	Assay to use in differential expression testing
features	Genes to test. Default is to use all genes
logfc. threshold	

Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.1 Increasing logfc.threshold speeds up the function, but can miss weaker signals. If the slot parameter is "scale.data" no filtering is performed.
test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
- "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to
classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L
slot Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
min.pct only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.01
min.diff.pct only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
node A node to find markers for and all its children; requires BuildClusterTree to have been run previously; replaces FindAllMarkersNode
verbose Print a progress bar once expression testing begins
only.pos Only return positive markers (FALSE by default)
max.cells.per.ident
Down sample each identity class to a max number. Default is no downsampling. Not activated by default (set to Inf)
random.seed Random seed for downsampling
latent.vars Variables to test, used only when test. use is one of 'LR', 'negbinom', 'poisson', or 'MAST'

```
min.cells.feature
Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.group
Minimum number of cells in one of the groups
mean.fxn Function to use for fold change or average difference calculation. The default depends on the the value of fc.slot:
- "counts" : difference in the log of the mean counts, with pseudocount.
- "data" : difference in the log of the average exponentiated data, with pseudocount. This adjusts for differences in sequencing depth between cells, and assumes that "data" has been log-normalized.
- "scale.data" : difference in the means of scale.data.
fc.name Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base The base with respect to which logarithms are computed.
return. thresh Only return markers that have a p-value < return.thresh, or a power > return.thresh (if the test is ROC)
densify Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
... Arguments passed to other methods and to specific DE methods
```


Value

Matrix containing a ranked list of putative markers, and associated statistics (p -values, ROC score, etc.)

Examples

```
data("pbmc_small")
# Find markers for all clusters
all.markers <- FindAllMarkers(object = pbmc_small)
head(x = all.markers)
## Not run:
# Pass a value to node as a replacement for FindAllMarkersNode
pbmc_small <- BuildClusterTree(object = pbmc_small)
all.markers <- FindAllMarkers(object = pbmc_small, node = 4)
head(x = all.markers)
## End(Not run)
```

FindBridgeIntegrationAnchors
Find integration bridge anchors between query and extended bridgereference

Description

Find a set of anchors between unimodal query and the other unimodal reference using a precomputed BridgeReferenceSet. These integration anchors can later be used to integrate query and reference using the IntegrateEmbeddings object.

Usage

FindBridgeIntegrationAnchors(extended.reference, query, query.assay = NULL, dims = 1:30, scale = FALSE, reduction = c("lsiproject", "pcaproject"), integration.reduction = c("direct", "cca"), verbose = TRUE
)

Arguments

extended.reference
BridgeReferenceSet object generated from PrepareBridgeReference
query A query Seurat object
query.assay Assay name for query-bridge integration
dims Number of dimensions for query-bridge integration
scale Determine if scale the query data for projection
reduction Dimensional reduction to perform when finding anchors. Options are:

- pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq
- lsiproject: Project the LSI from the bridge onto the query. We recommend using LSI when bridge and query datasets are from scATAC-seq or scCUT\&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (eg, peaks or genome bins) are present in both the bridge and query.
integration.reduction
Dimensional reduction to perform when finding anchors between query and reference. Options are:
- direct: find anchors directly on the bridge representation space
- cca: perform cca on the on the bridge representation space and then find anchors
verbose Print messages and progress

Value

Returns an AnchorSet object that can be used as input to IntegrateEmbeddings.

FindBridgeTransferAnchors

Find bridge anchors between query and extended bridge-reference

Description

Find a set of anchors between unimodal query and the other unimodal reference using a precomputed BridgeReferenceSet. This function performs three steps: 1. Harmonize the bridge and query cells in the bridge query reduction space 2 . Construct the bridge dictionary representations for query cells 3 . Find a set of anchors between query and reference in the bridge graph laplacian eigenspace These anchors can later be used to integrate embeddings or transfer data from the reference to query object using the MapQuery object.

Usage

FindBridgeTransferAnchors(extended.reference, query, query.assay = NULL, dims = 1:30, scale = FALSE, reduction = c("lsiproject", "pcaproject"), bridge. reduction = c("direct", "cca"), verbose $=$ TRUE
)

Arguments

extended.reference BridgeReferenceSet object generated from PrepareBridgeReference
query A query Seurat object
query.assay Assay name for query-bridge integration
dims Number of dimensions for query-bridge integration
scale Determine if scale the query data for projection
reduction Dimensional reduction to perform when finding anchors. Options are:

- pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq
- lsiproject: Project the LSI from the bridge onto the query. We recommend using LSI when bridge and query datasets are from scATAC-seq or scCUT\&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (eg, peaks or genome bins) are present in both the bridge and query.

```
bridge.reduction
```

Dimensional reduction to perform when finding anchors. Can be one of:

- cca: Canonical correlation analysis
- direct: Use assay data as a dimensional reduction
verbose Print messages and progress

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery.
FindClusters Cluster Determination

Description

Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. Thanks to Nigel Delaney (evolvedmicrobe@github) for the rewrite of the Java modularity optimizer code in Rcpp!

Usage

```
FindClusters(object, ...)
    ## Default S3 method:
    FindClusters(
        object,
        modularity.fxn = 1,
        initial.membership = NULL,
        node.sizes = NULL,
        resolution = 0.8,
        method = "matrix",
        algorithm = 1,
        n.start = 10,
        n.iter = 10,
        random.seed = 0,
        group.singletons = TRUE,
        temp.file.location = NULL,
        edge.file.name = NULL,
```

```
    verbose = TRUE,
)
## S3 method for class 'Seurat'
FindClusters(
    object,
    graph.name = NULL,
    cluster.name = NULL,
    modularity.fxn = 1,
    initial.membership = NULL,
    node.sizes = NULL,
    resolution = 0.8,
    method = "matrix",
    algorithm = 1,
    n.start = 10,
    n.iter = 10,
    random.seed = 0,
    group.singletons = TRUE,
    temp.file.location = NULL,
    edge.file.name = NULL,
    verbose = TRUE,
)
```


Arguments

object	An object
	Arguments passed to other methods
modularity.fxn	Modularity function ($1=$ standard; $2=$ alternative).
initial.membership, node.sizes	
	Parameters to pass to the Python leidenalg function.
resolution	Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.
method	Method for running leiden (defaults to matrix which is fast for small datasets). Enable method = "igraph" to avoid casting large data to a dense matrix.
algorithm	Algorithm for modularity optimization (1 = original Louvain algorithm; $2=$ Louvain algorithm with multilevel refinement; $3=$ SLM algorithm; $4=$ Leiden algorithm). Leiden requires the leidenalg python.
n. start	Number of random starts.
n.iter	Maximal number of iterations per random start.
random.seed	Seed of the random number generator.
group.singletons	
	Group singletons into nearest cluster. If FALSE, assign all singletons to a "singleton" group

temp.file.location
Directory where intermediate files will be written. Specify the ABSOLUTE path.
edge.file. name Edge file to use as input for modularity optimizer jar.
verbose Print output
graph. name Name of graph to use for the clustering algorithm
cluster. name Name of output clusters

Details

To run Leiden algorithm, you must first install the leidenalg python package (e.g. via pip install leidenalg), see Traag et al (2018).

Value

Returns a Seurat object where the idents have been updated with new cluster info; latest clustering results will be stored in object metadata under 'seurat_clusters'. Note that 'seurat_clusters' will be overwritten everytime FindClusters is run

Description

Finds markers that are conserved between the groups

Usage

FindConservedMarkers(object, ident.1, ident. 2 = NULL, grouping.var, assay = "RNA", slot = "data", min.cells.group $=3$, meta.method = metap: :minimump, verbose = TRUE,
)

Arguments

object	An object
ident. 1	Identity class to define markers for
ident. 2	A second identity class for comparison. If NULL (default) - use all other cells for comparison.
grouping.var	grouping variable
assay	of assay to fetch data for (default is RNA)
slot	Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
min.cells.group	
	Minimum number of cells in one of the groups
meta.method	method for combining p-values. Should be a function from the metap package (NOTE: pass the function, not a string)
verbose	Print a progress bar once expression testing begins
	parameters to pass to FindMarkers

Value

data.frame containing a ranked list of putative conserved markers, and associated statistics (p-values within each group and a combined p-value (such as Fishers combined p-value or others from the metap package), percentage of cells expressing the marker, average differences). Name of group is appended to each associated output column (e.g. CTRL_p_val). If only one group is tested in the grouping.var, max and combined p-values are not returned.

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
# Create a simulated grouping variable
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
FindConservedMarkers(pbmc_small, ident.1 = 0, ident.2 = 1, grouping.var = "groups")
## End(Not run)
```

FindIntegrationAnchors
Find integration anchors

Description

Find a set of anchors between a list of Seurat objects. These anchors can later be used to integrate the objects using the IntegrateData function.

Usage

```
FindIntegrationAnchors(
    object.list = NULL,
    assay = NULL,
    reference = NULL,
    anchor.features = 2000,
    scale = TRUE,
    normalization.method = c("LogNormalize", "SCT"),
    sct.clip.range \(=\) NULL,
    reduction = c("cca", "rpca", "jpca", "rlsi"),
    12. norm = TRUE,
    dims = 1:30,
    k.anchor \(=5\),
    k.filter \(=200\),
    k.score \(=30\),
    max. features \(=200\),
    nn.method = "annoy",
    n.trees \(=50\),
    eps = 0,
    verbose \(=\) TRUE
)
```


Arguments

object.list A list of Seurat objects between which to find anchors for downstream integration.
assay A vector of assay names specifying which assay to use when constructing anchors. If NULL, the current default assay for each object is used.
reference A vector specifying the object/s to be used as a reference during integration. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object. list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.
anchor.features
Can be either:

- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process
scale Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list
normalization.method
Name of normalization method used: LogNormalize or SCT
sct.clip.range Numeric of length two specifying the min and max values the Pearson residual will be clipped to
reduction Dimensional reduction to perform when finding anchors. Can be one of:

	- cca: Canonical correlation analysis - rpca: Reciprocal PCA - jpca: Joint PCA - rlsi: Reciprocal LSI
12.norm	Perform L2 normalization on the CCA cell embeddings after dimensional reduction
dims	Which dimensions to use from the CCA to specify the neighbor search space
k.anchor	How many neighbors (k) to use when picking anchors
k.filter	How many neighbors (k) to use when filtering anchors
k.score	How many neighbors (k) to use when scoring anchors
max.features	The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
eps	Error bound on the neighbor finding algorithm (from RANN/Annoy)
verbose	Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019: doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147

First, determine anchor.features if not explicitly specified using SelectIntegrationFeatures. Then for all pairwise combinations of reference and query datasets:

- Perform dimensional reduction on the dataset pair as specified via the reduction parameter. If 12 . norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors - pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn't found within the first k. filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to IntegrateData.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
    pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
    pancreas.list[[i]] <- FindVariableFeatures(
        pancreas.list[[i]], selection.method = "vst",
        nfeatures = 2000, verbose = FALSE
    )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)
# integrate data
integrated <- IntegrateData(anchorset = anchors)
## End(Not run)
```

FindMarkers Gene expression markers of identity classes

Description

Finds markers (differentially expressed genes) for identity classes

Usage

```
    FindMarkers(object, ...)
    ## Default S3 method:
    FindMarkers(
        object,
        slot = "data",
        cells.1 = NULL,
```

```
    cells.2 = NULL,
    features = NULL,
    logfc.threshold = 0.1,
    test.use = "wilcox",
    min.pct = 0.01,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    fc.results = NULL,
    densify = FALSE,
)
## S3 method for class 'Assay'
FindMarkers(
    object,
    slot = "data",
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    test.use = "wilcox",
    fc.slot = "data",
    pseudocount.use = 1,
    norm.method = NULL,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
)
## S3 method for class 'SCTAssay'
FindMarkers(
    object,
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    test.use = "wilcox",
    pseudocount.use = 1,
    slot = "data",
    fc.slot = "data",
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
```

```
    recorrect_umi = TRUE,
)
## S3 method for class 'DimReduc'
FindMarkers(
        object,
        cells.1 = NULL,
        cells.2 = NULL,
        features = NULL,
        logfc.threshold = 0.1,
        test.use = "wilcox",
        min.pct = 0.01,
        min.diff.pct = -Inf,
        verbose = TRUE,
        only.pos = FALSE,
        max.cells.per.ident = Inf,
        random.seed = 1,
        latent.vars = NULL,
        min.cells.feature = 3,
        min.cells.group = 3,
        densify = FALSE,
        mean.fxn = rowMeans,
        fc.name = NULL,
)
## S3 method for class 'Seurat'
FindMarkers(
        object,
        ident.1 = NULL,
        ident.2 = NULL,
        latent.vars = NULL,
        group.by = NULL,
        subset.ident = NULL,
        assay = NULL,
        reduction = NULL,
)
```


Arguments

object An object
... Arguments passed to other methods and to specific DE methods
slot Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
cells. $1 \quad$ Vector of cell names belonging to group 1
cells. $2 \quad$ Vector of cell names belonging to group 2
features Genes to test. Default is to use all genes
logfc.threshold
Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.1 Increasing logfc.threshold speeds up the function, but can miss weaker signals. If the slot parameter is "scale.data" no filtering is performed.
test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
- "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/I

min.pct	only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.01
min.diff.pct	only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
verbose	Print a progress bar once expression testing begins
only.pos	Only return positive markers (FALSE by default)
max.cells.per.ident	
	Down sample each identity class to a max number. Default is no downsampling. Not activated by default (set to Inf)
random. seed	Random seed for downsampling
latent.vars	Variables to test, used only when test. use is one of 'LR', 'negbinom', 'poisson', or 'MAST'
min.cells.feature	
	Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.group	
	Minimum number of cells in one of the groups
fc.results	data.frame from FoldChange
densify	Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
fc.slot	Slot used to calculate fold-change - will also affect the default for mean. fxn, see below for more details.
pseudocount.use	
	Pseudocount to add to averaged expression values when calculating logFC. 1 by default.
norm.method	Normalization method for fold change calculation when slot is "data"
mean.fxn	Function to use for fold change or average difference calculation. The default depends on the the value of fc.slot: - "counts" : difference in the log of the mean counts, with pseudocount. - "data" : difference in the log of the average exponentiated data, with pseudocount. This adjusts for differences in sequencing depth between cells, and assumes that "data" has been log-normalized. - "scale.data" : difference in the means of scale.data.
fc. name	Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base	The base with respect to which logarithms are computed.
recorrect_umi	Recalculate corrected UMI counts using minimum of the median UMIs when performing DE using multiple SCT objects; default is TRUE
ident. 1	Identity class to define markers for; pass an object of class phylo or 'clustertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run

ident. 2 A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident. 1 , must pass a node to find markers for
group.by \quad Regroup cells into a different identity class prior to performing differential expression (see example)
subset.ident Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example)
assay Assay to use in differential expression testing
reduction \quad Reduction to use in differential expression testing - will test for DE on cell embeddings

Details

p-value adjustment is performed using bonferroni correction based on the total number of genes in the dataset. Other correction methods are not recommended, as Seurat pre-filters genes using the arguments above, reducing the number of tests performed. Lastly, as Aaron Lun has pointed out, p-values should be interpreted cautiously, as the genes used for clustering are the same genes tested for differential expression.

Value

data.frame with a ranked list of putative markers as rows, and associated statistics as columns (pvalues, ROC score, etc., depending on the test used (test. use)). The following columns are always present:

- avg_logFC: log fold-chage of the average expression between the two groups. Positive values indicate that the gene is more highly expressed in the first group
- pct. 1: The percentage of cells where the gene is detected in the first group
- pct.2: The percentage of cells where the gene is detected in the second group
- p_val_adj: Adjusted p-value, based on bonferroni correction using all genes in the dataset

References

McDavid A, Finak G, Chattopadyay PK, et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 2013;29(4):461-467. doi:10.1093/bioinformatics/bts7
Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology volume 32, pages 381-386 (2014)
Andrew McDavid, Greg Finak and Masanao Yajima (2017). MAST: Model-based Analysis of Single Cell Transcriptomics. R package version 1.2.1. https://github.com/RGLab/MAST/

Love MI, Huber W and Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." Genome Biology. https://bioconductor.org/packages/release/bioc/html/DESeq2.html

See Also

FoldChange

Examples

```
## Not run:
data("pbmc_small")
# Find markers for cluster 2
markers <- FindMarkers(object = pbmc_small, ident.1 = 2)
head(x = markers)
# Take all cells in cluster 2, and find markers that separate cells in the 'g1' group (metadata
# variable 'group')
markers <- FindMarkers(pbmc_small, ident.1 = "g1", group.by = 'groups', subset.ident = "2")
head(x = markers)
# Pass 'clustertree' or an object of class phylo to ident. }1\mathrm{ and
# a node to ident.2 as a replacement for FindMarkersNode
if (requireNamespace("ape", quietly = TRUE)) {
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    markers <- FindMarkers(object = pbmc_small, ident.1 = 'clustertree', ident.2 = 5)
    head(x = markers)
}
## End(Not run)
```


FindMultiModalNeighbors

Construct weighted nearest neighbor graph

Description

This function will construct a weighted nearest neighbor (WNN) graph. For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. Takes as input two dimensional reductions, one computed for each modality. Other parameters are listed for debugging, but can be left as default values.

Usage

FindMultiModalNeighbors(
object,
reduction.list,
dims.list,
k.nn = 20,
l2.norm = TRUE,
knn.graph.name = "wknn",
snn.graph.name = "wsnn",
weighted.nn.name = "weighted.nn",
modality. weight. name = NULL,
knn.range $=200$,
prune. SNN = 1/15,

```
    sd.scale = 1,
    cross.contant.list = NULL,
    smooth = FALSE,
    return.intermediate = FALSE,
    modality.weight = NULL,
    verbose = TRUE
)
```


Arguments

object	A Seurat object
reduction.list	A list of two dimensional reductions, one for each of the modalities to be integrated
dims.list	A list containing the dimensions for each reduction to use
k.nn	the number of multimodal neighbors to compute. 20 by default
12.norm	Perform L2 normalization on the cell embeddings after dimensional reduction. TRUE by default.
knn.graph. name	Multimodal knn graph name
snn.graph.name	Multimodal snn graph name
weighted.nn.name	
	Multimodal neighbor object name
modality.weight. name	
	Variable name to store modality weight in object meta data
knn.range	The number of approximate neighbors to compute
prune.SNN	Cutoff not to discard edge in SNN graph
sd.scale	The scaling factor for kernel width. 1 by default
cross.contant.list	
	Constant used to avoid divide-by-zero errors. 1e-4 by default
smooth	Smoothing modality score across each individual modality neighbors. FALSE by default
return.intermediate	
	Store intermediate results in misc
modality.weight	
	A ModalityWeights object generated by FindModalityWeights
verbose	Print progress bars and output

Value

Seurat object containing a nearest-neighbor object, KNN graph, and SNN graph - each based on a weighted combination of modalities.

Description

Computes the k. param nearest neighbors for a given dataset. Can also optionally (via compute. SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k . param nearest neighbors.

Usage

FindNeighbors(object, ...)
\#\# Default S3 method:
FindNeighbors(
object,
query = NULL,
distance.matrix = FALSE,
k.param = 20,
return.neighbor = FALSE,
compute. SNN = !return.neighbor,
prune. SNN = 1/15,
nn.method = "annoy",
n.trees $=50$,
annoy.metric = "euclidean",
nn.eps $=0$,
verbose $=$ TRUE,
12. norm = FALSE,
cache. index = FALSE,
index $=$ NULL,
)
\#\# S3 method for class 'Assay'
FindNeighbors(
object,
features $=$ NULL,
k. param $=20$,
return.neighbor = FALSE,
compute. SNN = !return. neighbor, prune. SNN = 1/15,
nn.method = "annoy",
n.trees $=50$,
annoy.metric = "euclidean",
nn.eps = 0,
verbose = TRUE,
12. norm = FALSE,

```
    cache.index = FALSE,
)
## S3 method for class 'dist'
FindNeighbors(
    object,
    k.param = 20,
    return.neighbor = FALSE,
    compute.SNN = !return.neighbor,
    prune.SNN = 1/15,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    12.norm = FALSE,
    cache.index = FALSE,
    ...
)
## S3 method for class 'Seurat'
FindNeighbors(
    object,
    reduction = "pca",
    dims = 1:10,
    assay = NULL,
    features = NULL,
    k.param = 20,
    return.neighbor = FALSE,
    compute.SNN = !return.neighbor,
    prune.SNN = 1/15,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    do.plot = FALSE,
    graph.name = NULL,
    l2.norm = FALSE,
    cache.index = FALSE,
)
```


Arguments

object
...

An object
Arguments passed to other methods

query distance.matrix	Matrix of data to query ag
	Boolean value of whether the provided matrix is a distance matrix; note, for objects of class dist, this parameter will be set automatically
k. param	Defines k for the k-nearest neighbor algorithm
return.neighbor	
compute. SNN	Return result as Neighbor object. Not used with distance matrix input. also compute the shared nearest neighbor graph
prune. SNN	Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the stringency of pruning ($0-$ no pruning, $1-$ prune everything $)$.
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
annoy.metric	Distance metric for annoy. Options include: euclidean, cosine, manhattan, and hamming
nn.eps	Error bound when performing nearest neighbor seach using RANN; default of 0.0 implies exact nearest neighbor search
verbose	Whether or not to print output to the console
12. norm	Take L2Norm of the data
cache.index	Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE)
index	Precomputed index. Useful if querying new data against existing index to avoid recomputing.
features	Features to use as input for building the (S)NN; used only when dims is NULL
reduction	Reduction to use as input for building the (S)NN
dims	Dimensions of reduction to use as input
assay	Assay to use in construction of (S)NN; used only when dims is NULL
do.plot	Plot SNN graph on tSNE coordinates
graph. name	Optional naming parameter for stored (S)NN graph (or Neighbor object, if return.neighbor $=$ TRUE). Default is assay.name_(s)nn. To store both the neighbor graph and the shared nearest neighbor (SNN) graph, you must supply a vector containing two names to the graph. name parameter. The first element in the vector will be used to store the nearest neighbor (NN) graph, and the second element used to store the SNN graph. If only one name is supplied, only the NN graph is stored.

Value

This function can either return a Neighbor object with the KNN information or a list of Graph objects with the KNN and SNN depending on the settings of return. neighbor and compute. SNN. When running on a Seurat object, this returns the Seurat object with the Graphs or Neighbor objects stored in their respective slots. Names of the Graph or Neighbor object can be found with Graphs or Neighbors.

Examples

```
data("pbmc_small")
pbmc_small
# Compute an SNN on the gene expression level
pbmc_small <- FindNeighbors(pbmc_small, features = VariableFeatures(object = pbmc_small))
# More commonly, we build the SNN on a dimensionally reduced form of the data
# such as the first 10 principle components.
pbmc_small <- FindNeighbors(pbmc_small, reduction = "pca", dims = 1:10)
```


FindSpatiallyVariableFeatures

Find spatially variable features

Description

Identify features whose variability in expression can be explained to some degree by spatial location.

Usage

```
FindSpatiallyVariableFeatures(object, ...)
## Default S3 method:
FindSpatiallyVariableFeatures(
    object,
    spatial.location,
    selection.method = c("markvariogram", "moransi"),
    r.metric = 5,
    x.cuts = NULL,
    y.cuts = NULL,
    verbose = TRUE,
)
## S3 method for class 'Assay'
FindSpatiallyVariableFeatures(
    object,
    slot = "scale.data",
    spatial.location,
    selection.method = c("markvariogram", "moransi"),
    features = NULL,
    r.metric = 5,
    x.cuts = NULL,
    y.cuts = NULL,
    nfeatures = nfeatures,
```

```
    verbose = TRUE,
)
## S3 method for class 'Seurat'
FindSpatiallyVariableFeatures(
    object,
    assay = NULL,
    slot = "scale.data",
    features = NULL,
    image = NULL,
    selection.method = c("markvariogram", "moransi"),
    r.metric = 5,
    x.cuts = NULL,
    y.cuts = NULL,
    nfeatures = 2000,
    verbose = TRUE,
    )
    ## S3 method for class 'StdAssay'
    FindSpatiallyVariableFeatures(
        object,
        layer = "scale.data",
        spatial.location,
        selection.method = c("markvariogram", "moransi"),
        features = NULL,
        r.metric = 5,
        x.cuts = NULL,
        y.cuts = NULL,
        nfeatures = nfeatures,
        verbose = TRUE,
    ..
)
```


Arguments

$$
\begin{aligned}
& \text { object A Seurat object, assay, or expression matrix } \\
& \text {... Arguments passed to other methods }
\end{aligned}
$$

y.cuts	Number of divisions to make in the y direction, helps define the grid over which binning is performed
verbose	Print messages and progress slot
features	Slot in the Assay to pull data from If provided, only compute on given features. Otherwise, compute for all fea- tures.
nfeatures	Number of features to mark as the top spatially variable.
assay	Assay to pull the features (marks) from
image	Name of image to pull the coordinates from
layer	Layer in the Assay5 to pull data from

FindSubCluster Find subclusters under one cluster

Description

Find subclusters under one cluster

Usage

```
FindSubCluster(
        object,
        cluster,
        graph.name,
        subcluster.name = "sub.cluster",
        resolution = 0.5,
        algorithm = 1
    )
```


Arguments

\(\left.$$
\begin{array}{ll}\begin{array}{ll}\text { object } \\
\text { cluster } \\
\text { graph. name } \\
\text { subcluster.name }\end{array} & \begin{array}{l}\text { An object } \\
\text { the cluster to be sub-clustered }\end{array}
$$

Name of graph to use for the clustering algorithm\end{array}\right]\)| the name of sub cluster added in the meta.data |
| :--- |
| resolution |
| Value of the resolution parameter, use a value above (below) 1.0 if you want to |
| obtain a larger (smaller) number of communities. |

Value

return a object with sub cluster labels in the sub-cluster.name variable

Description

Find a set of anchors between a reference and query object. These anchors can later be used to transfer data from the reference to query object using the TransferData object.

Usage

FindTransferAnchors(reference, query,
normalization.method = "LogNormalize",
recompute.residuals = TRUE,
reference.assay = NULL,
reference.neighbors = NULL,
query.assay = NULL,
reduction = "pcaproject",
reference.reduction = NULL,
project.query = FALSE,
features = NULL,
scale = TRUE,
npcs = 30,
12. norm = TRUE,
dims = 1:30,
k.anchor $=5$,
k.filter $=\mathrm{NA}$,
k.score $=30$,
max. features $=200$,
nn.method = "annoy",
n. trees $=50$,
eps $=0$,
approx.pca = TRUE,
mapping.score.k $=$ NULL,
verbose = TRUE
)

Arguments

reference Seurat object to use as the reference
query Seurat object to use as the query
normalization.method
Name of normalization method used: LogNormalize or SCT.
recompute. residuals
If using SCT as a normalization method, compute query Pearson residuals using the reference SCT model parameters.
reference.assay
Name of the Assay to use from reference
reference.neighbors
Name of the Neighbor to use from the reference. Optionally enables reuse of
precomputed neighbors.
Name of the Assay to use from query
mapping.score.k
Compute and store nearest k query neighbors in the AnchorSet object that is returned. You can optionally set this if you plan on computing the mapping score and want to enable reuse of some downstream neighbor calculations to make the mapping score function more efficient.
verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147

- Perform dimensional reduction. Exactly what is done here depends on the values set for the reduction and project.query parameters. If reduction = "pcaproject", a PCA is performed on either the reference (if project.query = FALSE) or the query (if project.query $=$ TRUE), using the features specified. The data from the other dataset is then projected onto this learned PCA structure. If reduction = "cca", then CCA is performed on the reference and query for this dimensional reduction step. If reduction = "lsiproject", the stored LSI dimension reduction in the reference object is used to project the query dataset onto the reference. If 12 . norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors between the reference and query - pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max. features to define this space. If the reference cell isn't found within the first k.filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between $0-1$.

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery. The dimension reduction used for finding anchors is stored in the AnchorSet object and can be used for computing anchor weights in downstream functions. Note that only the requested dimensions are stored in the dimension reduction object in the AnchorSet. This means that if dims=2:20 is used, for example, the dimension of the stored reduction is $1: 19$.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031;

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")
# for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]
# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)
pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)
# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)
# transfer labels
predictions <- TransferData(
    anchorset = anchors,
    refdata = pbmc.reference$seurat_annotations
)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)
## End(Not run)
```

FindVariableFeatures Find variable features

Description

Identifies features that are outliers on a 'mean variability plot'.

Usage

```
FindVariableFeatures(object, ...)
## S3 method for class 'V3Matrix'
FindVariableFeatures(
    object,
    selection.method = "vst",
    loess.span = 0.3,
    clip.max = "auto",
```

```
    mean.function = FastExpMean,
    dispersion.function = FastLogVMR,
    num.bin = 20,
    binning.method = "equal_width",
    verbose = TRUE,
)
## S3 method for class 'Assay'
FindVariableFeatures(
    object,
    selection.method = "vst",
    loess.span = 0.3,
    clip.max = "auto",
    mean.function = FastExpMean,
    dispersion.function = FastLogVMR,
    num.bin = 20,
    binning.method = "equal_width",
    nfeatures = 2000,
    mean.cutoff = c(0.1, 8),
    dispersion.cutoff = c(1, Inf),
    verbose = TRUE,
)
## S3 method for class 'SCTAssay'
FindVariableFeatures(object, nfeatures = 2000, ...)
## S3 method for class 'Seurat'
FindVariableFeatures(
    object,
    assay = NULL,
    selection.method = "vst",
    loess.span = 0.3,
    clip.max = "auto",
    mean.function = FastExpMean,
    dispersion.function = FastLogVMR,
    num.bin = 20,
    binning.method = "equal_width",
    nfeatures = 2000,
    mean.cutoff = c(0.1, 8),
    dispersion.cutoff = c(1, Inf),
    verbose = TRUE,
)
```


Arguments

object An object

	Arguments passed to other methods
selection.method	
How to choose top variable features. Choose one of :	
	- "vst": First, fits a line to the relationship of \log (variance) and $\log ($ mean $)$ using local polynomial regression (loess). Then standardizes the feature values using the observed mean and expected variance (given by the fitted line). Feature variance is then calculated on the standardized values after clipping to a maximum (see clip.max parameter).
	- "mean.var.plot" (mvp): First, uses a function to calculate average expression (mean.function) and dispersion (dispersion.function) for each feature. Next, divides features into num. bin (deafult 20) bins based on their average expression, and calculates z-scores for dispersion within each bin. The purpose of this is to identify variable features while controlling for the strong relationship between variability and average expression
	- "dispersion" (disp): selects the genes with the highest dispersion values
loess.span	(vst method) Loess span parameter used when fitting the variance-mean relationship
clip.max	(vst method) After standardization values larger than clip.max will be set to clip.max; default is 'auto' which sets this value to the square root of the number of cells
mean. function	Function to compute x-axis value (average expression). Default is to take the mean of the detected (i.e. non-zero) values
dispersion.function	
	Function to compute y-axis value (dispersion). Default is to take the standard deviation of all values
num. bin	Total number of bins to use in the scaled analysis (default is 20)
binning.method	Specifies how the bins should be computed. Available methods are:
	- "equal_width": each bin is of equal width along the x-axis (default)
	- "equal_frequency": each bin contains an equal number of features (can increase statistical power to detect overdispersed eatures at high expression values, at the cost of reduced resolution along the x -axis)
verbose	show progress bar for calculations
nfeatures	Number of features to select as top variable features; only used when selection.method is set to 'dispersion' or 'vst'
mean.cutoff	A two-length numeric vector with low- and high-cutoffs for feature means
dispersion.cutoff	
	A two-length numeric vector with low- and high-cutoffs for feature dispersions
assay	Assay to use

Details

For the mean.var.plot method: Exact parameter settings may vary empirically from dataset to dataset, and based on visual inspection of the plot. Setting the y.cutoff parameter to 2 identifies features that are more than two standard deviations away from the average dispersion within a bin.

The default X-axis function is the mean expression level, and for Y-axis it is the \log (Variance/mean). All mean/variance calculations are not performed in log-space, but the results are reported in logspace - see relevant functions for exact details.

FoldChange Fold Change

Description

Calculate \log fold change and percentage of cells expressing each feature for different identity classes.

```
Usage
FoldChange(object, ...)
## Default S3 method:
FoldChange(object, cells.1, cells.2, mean.fxn, fc.name, features = NULL, ...)
## S3 method for class 'Assay'
FoldChange(
    object,
    cells.1,
    cells.2,
    features = NULL,
    slot = "data",
    pseudocount.use = 1,
    fc.name = NULL,
    mean.fxn = NULL,
    base = 2,
    norm.method = NULL,
)
## S3 method for class 'SCTAssay'
FoldChange(
    object,
    cells.1,
    cells.2,
    features = NULL,
    slot = "data",
    pseudocount.use = 1,
    fc.name = NULL,
    mean.fxn = NULL,
    base = 2,
)
```

```
## S3 method for class 'DimReduc'
FoldChange(
    object,
    cells.1,
    cells.2,
    features = NULL,
    slot = NULL,
    pseudocount.use = 1,
    fc.name = NULL,
    mean.fxn = NULL,
)
## S3 method for class 'Seurat'
FoldChange(
    object,
    ident.1 = NULL,
    ident. }2=\mathrm{ NULL,
    group.by = NULL,
    subset.ident = NULL,
    assay = NULL,
    slot = "data",
    reduction = NULL,
    features = NULL,
    pseudocount.use = 1,
    mean.fxn = NULL,
    base = 2,
    fc.name = NULL,
    ...
)
```


Arguments

object	A Seurat object
\ldots	Arguments passed to other methods
cells.1	Vector of cell names belonging to group 1
cells. 2	Vector of cell names belonging to group 2
mean.fxn	Function to use for fold change or average difference calculation
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame
features	Features to calculate fold change for. If NULL, use all features
slot	Slot to pull data from
pseudocount. use	

norm.method	Normalization method for mean function selection when slot is "data"' ident. 1
Identity class to calculate fold change for; pass an object of class phylo or 'clus- tertree' to calculate fold change for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run	
ident. 2	A second identity class for comparison; if NULL, use all other cells for compari- son; if an object of class phylo or 'clustertree' is passed to ident. 1, must pass a node to calculate fold change for
group.by	Regroup cells into a different identity class prior to calculating fold change (see example in FindMarkers)
subset.ident	Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example in FindMarkers)
assay	Assay to use in fold change calculation
reduction	Reduction to use - will calculate average difference on cell embeddings

Details

If the slot is scale.data or a reduction is specified, average difference is returned instead of log fold change and the column is named "avg_diff". Otherwise, $\log 2$ fold change is returned with column named "avg_log2_FC".

Value

Returns a data.frame

See Also

FindMarkers

Examples

```
## Not run:
data("pbmc_small")
FoldChange(pbmc_small, ident.1 = 1)
## End(Not run)
```


Description

Get an Assay object from a given Seurat object.

Usage

```
GetAssay(object, ...)
## S3 method for class 'Seurat'
GetAssay(object, assay = NULL, ...)
```


Arguments

object	An object
\ldots	Arguments passed to other methods
assay	Assay to get

Value

Returns an Assay object

Examples

```
data("pbmc_small")
GetAssay(object = pbmc_small, assay = "RNA")
```

GetImage. SlideSeq Get Image Data

Description

Get Image Data

Usage

```
\#\# S3 method for class 'SlideSeq'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
\#\# S3 method for class 'STARmap'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
\#\# S3 method for class 'VisiumV1'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
```


Arguments

object
mode
An object
How to return the image; should accept one of "grob", "raster", "plotly", or "raw"
... Arguments passed to other methods

See Also

SeuratObject::GetImage

GetIntegrationData Get integration data

Description

Get integration data

Usage

GetIntegrationData(object, integration.name, slot)

Arguments

object Seurat object
integration.name
Name of integration object
slot Which slot in integration object to get

Value

Returns data from the requested slot within the integrated object
GetResidual Calculate pearson residuals of features not in the scale.data

Description

This function calls sctransform::get_residuals.

Usage

```
GetResidual(
    object,
    features,
    assay = NULL,
    umi.assay = "RNA",
    clip.range = NULL,
    replace.value = FALSE,
    na.rm = TRUE,
    verbose = TRUE
)
```


Arguments

object features	A seurat object assay		
Name of features to add into the scale.data			
clip. rassay	Name of the assay of the seurat object generated by SCTransform NNA		
replace.value the assay of the seurat object containing UMI matrix and the default is		\quad	Numeric of length two specifying the min and max values the Pearson residual
:---			
will be clipped to			
Recalculate residuals for all features, even if they are already present. Useful if			
you want to change the clip.range.			

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also
 ```get_residuals```

Examples

```
## Not run:
data("pbmc_small")
pbmc_small <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small <- GetResidual(object = pbmc_small, features = c('MS4A1', 'TCL1A'))
## End(Not run)
```

GetTissueCoordinates.SlideSeq
Get Tissue Coordinates

Description

Get Tissue Coordinates

```
Usage
    ## S3 method for class 'SlideSeq'
    GetTissueCoordinates(object, ...)
    ## S3 method for class 'STARmap'
    GetTissueCoordinates(object, qhulls = FALSE, ...)
    ## S3 method for class 'VisiumV1'
    GetTissueCoordinates(
        object,
        scale = "lowres",
        cols = c("imagerow", "imagecol"),
        ...
    )
    ## S3 method for class 'VisiumV2'
    GetTissueCoordinates(object, scale = NULL, ...)
```


Arguments

object	An object
\ldots	Arguments passed to other methods
qhulls	return qhulls instead of centroids
scale	A factor to scale the coordinates by; choose from: 'tissue', 'fiducial', 'hires', 'lowres', or NULL for no scaling
cols	Columns of tissue coordinates data.frame to pull

See Also

```
SeuratObject::GetTissueCoordinates
```


Description

Utility function to easily pull out the name of the class with the maximum prediction. This is useful if you've set prediction. assay = TRUE in TransferData and want to have a vector with the predicted class.

```
Usage
    GetTransferPredictions(
        object,
        assay = "predictions",
        slot = "data",
        score.filter = 0.75
)
```


Arguments

object	Seurat object
assay	Name of the assay holding the predictions
slot	Slot of the assay in which the prediction scores are stored
score.filter	Return "Unassigned" for any cell with a score less than this value

Value

Returns a vector of predicted class names

Examples

```
## Not run:
    prediction.assay <- TransferData(anchorset = anchors, refdata = reference$class)
    query[["predictions"]] <- prediction.assay
    query$predicted.id <- GetTransferPredictions(query)
## End(Not run)
```

 Graph-class
 The Graph Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Graph-class

Description

Compute the correlation of features broken down by groups with another covariate

Usage

```
    GroupCorrelation(
        object,
        assay = NULL,
        slot = "scale.data",
        var = NULL,
        group.assay = NULL,
        min.cells = 5,
        ngroups = 6,
        do.plot = TRUE
    )
```


Arguments

object	Seurat object
assay	Assay to pull the data from
slot	Slot in the assay to pull feature expression data from (counts, data, or scale.data)
var	Variable with which to correlate the features
group.assay	Compute the gene groups based off the data in this assay.
min.cells	Only compute for genes in at least this many cells
ngroups	Number of groups to split into
do.plot	Display the group correlation boxplot (via GroupCorrelationPlot)

Value

A Seurat object with the correlation stored in metafeatures

```
GroupCorrelationPlot Boxplot of correlation of a variable (e.g. number of UMIs) with ex-
                    pression data
```


Description

Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

```
Usage
    GroupCorrelationPlot(
        object,
        assay = NULL,
        feature.group = "feature.grp",
        cor = "nCount_RNA_cor"
    )
```


Arguments

object	Seurat object
assay	Assay where the feature grouping info and correlations are stored
feature.group	Name of the column in meta.features where the feature grouping info is stored
cor	Name of the column in meta.features where correlation info is stored

Value

Returns a ggplot boxplot of correlations split by group

```
HarmonyIntegration Harmony Integration
```


Description

Harmony Integration

Usage

HarmonyIntegration(object, orig, features = NULL, scale.layer = "scale.data", new.reduction = "harmony", layers = NULL, npcs $=50 \mathrm{~L}$,

```
    key = "harmony_",
    theta = NULL,
    lambda = NULL,
    sigma = 0.1,
    nclust = NULL,
    tau = 0,
    block.size = 0.05,
    max.iter.harmony = 10L,
    max.iter.cluster = 20L,
    epsilon.cluster = 1e-05,
    epsilon.harmony = 1e-04,
    verbose = TRUE,
)
```


Arguments

object	An Assay 5 object
orig	A dimensional reduction to correct
features	Ignored
scale.layer	Ignored
new.reduction	Name of new integrated dimensional reduction
layers	Ignored
npcs	If doing PCA on input matrix, number of PCs to compute
key	Key for Harmony dimensional reduction
theta	Diversity clustering penalty parameter
lambda	Ridge regression penalty parameter
sigma	Width of soft kmeans clusters
nclust	Number of clusters in model
tau	Protection against overclustering small datasets with large ones
block.size	What proportion of cells to update during clustering
max.iter.harmony	
	Maximum number of rounds to run Harmony
max.iter.cluster	
	Maximum number of rounds to run clustering at each round of Harmony
epsilon.cluster	
	Convergence tolerance for clustering round of Harmony
epsilon.harmony	
	Convergence tolerance for Harmony
verbose	Whether to print progress messages. TRUE to print, FALSE to suppress
\cdots	Ignored

Value

Note

This function requires the harmony package to be installed

See Also

harmony::HarmonyMatrix()

Examples

\#\# Not run:
\# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")
obj[["RNA"]] <- split(obj[["RNA"]], f = obj\$Method)
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
obj <- RunPCA(obj)
\# After preprocessing, we integrate layers with added parameters specific to Harmony:
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca", new.reduction = 'harmony', verbose $=$ FALSE)
\# Modifying Parameters
\# We can also add arguments specific to Harmony such as theta, to give more diverse clusters
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca", new.reduction $=$ 'harmony', verbose $=$ FALSE, theta $=3$)
\# Integrating SCTransformed data
obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca", new.reduction = 'harmony', assay $=$ "SCT", verbose $=$ FALSE)
\#\# End(Not run)

Description

Get quick information from a scatterplot by hovering over points

Usage

HoverLocator (plot, information $=$ NULL, axes $=$ TRUE, dark. theme $=$ FALSE, \ldots)

Arguments

plot	A ggplot2 plot
information	An optional dataframe or matrix of extra information to be displayed on hover
axes	Display or hide x- and y-axes
dark. theme	Plot using a dark theme?
\ldots	Extra parameters to be passed to layout

See Also

layout ggplot_build DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
HoverLocator(plot = plot, information = FetchData(object = pbmc_small, vars = 'percent.mito'))
## End(Not run)
```


Description

Assign sample-of-origin for each cell, annotate doublets.

Usage

```
HTODemux(
        object,
        assay = "HTO",
        positive.quantile = 0.99,
        init = NULL,
        nstarts = 100,
        kfunc = "clara",
        nsamples = 100,
        seed = 42,
        verbose = TRUE
    )
```


Arguments

object Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized.
assay \quad Name of the Hashtag assay (HTO by default)
positive.quantile
The quantile of inferred 'negative' distribution for each hashtag - over which the cell is considered 'positive'. Default is 0.99
init Initial number of clusters for hashtags. Default is the \# of hashtag oligo names +1 (to account for negatives)
nstarts nstarts value for k-means clustering (for kfunc = "kmeans"). 100 by default
kfunc Clustering function for initial hashtag grouping. Default is "clara" for fast kmedoids clustering on large applications, also support "kmeans" for kmeans clustering
nsamples Number of samples to be drawn from the dataset used for clustering, for kfunc = "clara"
seed Sets the random seed. If NULL, seed is not set
verbose Prints the output

Value

The Seurat object with the following demultiplexed information stored in the meta data:
hash.maxID Name of hashtag with the highest signal
hash.secondID Name of hashtag with the second highest signal
hash.margin The difference between signals for hash.maxID and hash.secondID
classification Classification result, with doublets/multiplets named by the top two highest hashtags
classification.global Global classification result (singlet, doublet or negative)
hash.ID Classification result where doublet IDs are collapsed

See Also

HTOHeatmap

Examples

```
## Not run:
object <- HTODemux(object)
## End(Not run)
```


HTOHeatmap Hashtag oligo heatmap

Description

Draws a heatmap of hashtag oligo signals across singlets/doublets/negative cells. Allows for the visualization of HTO demultiplexing results.

Usage

```
    HTOHeatmap(
        object,
        assay = "HTO",
        classification = paste0(assay, "_classification"),
        global.classification = paste0(assay, "_classification.global"),
        ncells = 5000,
        singlet.names = NULL,
        raster = TRUE
    )
```


Arguments

object Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized, and demultiplexing has been run with HTODemux().
assay Hashtag assay name.
classification The naming for metadata column with classification result from HTODemux().
global.classification
The slot for metadata column specifying a cell as singlet/doublet/negative.
ncells Number of cells to plot. Default is to choose 5000 cells by random subsampling, to avoid having to draw exceptionally large heatmaps.
singlet. names Namings for the singlets. Default is to use the same names as HTOs.
raster If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).

Value

Returns a ggplot2 plot object.

See Also

HTODemux

Examples

```
## Not run:
object <- HTODemux(object)
HTOHeatmap(object)
## End(Not run)
```

HVFInfo. SCTAssay
Get Variable Feature Information

Description

Get variable feature information from SCTAssay objects

Usage

\#\# S3 method for class 'SCTAssay'
HVFInfo(object, method, status = FALSE, ...)

Arguments

object	An object
method	method to determine variable features
status	Add variable status to the resulting data frame
\ldots	Arguments passed to other methods

See Also

HVFInfo

Examples

```
## Not run:
# Get the HVF info directly from an SCTAssay object
pbmc_small <- SCTransform(pbmc_small)
HVFInfo(pbmc_small[["SCT"]], method = 'sct')[1:5, ]
## End(Not run)
```

IFeaturePlot Visualize features in dimensional reduction space interactively

Description

Visualize features in dimensional reduction space interactively

Usage

IFeaturePlot(object, feature, dims $=c(1,2)$, reduction $=$ NULL, slot $=" d a t a ")$

Arguments

object	Seurat object
feature	Feature to plot
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
slot	Which slot to pull expression data from?

Value

Returns the final plot as a ggplot object

```
    ImageDimPlot Spatial Cluster Plots
```


Description

Visualize clusters or other categorical groupings in a spatial context

Usage

```
ImageDimPlot(
    object,
    fov = NULL,
    boundaries = NULL,
    group.by = NULL,
    split.by = NULL,
    cols = NULL,
    shuffle.cols = FALSE,
    size = 0.5,
    molecules = NULL,
```

```
    mols.size = 0.1,
    mols.cols = NULL,
    mols.alpha = 1,
    nmols = 1000,
    alpha = 1,
    border.color = "white",
    border.size = NULL,
    na.value = "grey50",
    dark.background = TRUE,
    crop = FALSE,
    cells = NULL,
    overlap = FALSE,
    axes = FALSE,
    combine = TRUE,
    coord.fixed = TRUE,
    flip_xy = TRUE
)
```


Arguments

object	A Seurat object
fov	Name of FOV to plot
boundaries	A vector of segmentation boundaries per image to plot; can be a character vector, a named character vector, or a named list. Names should be the names of FOVs and values should be the names of segmentation boundaries
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity'
cols	Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
shuffle.cols	Randomly shuffle colors when a palette or vector of colors is provided to cols
size	Point size for cells when plotting centroids
molecules	A vector of molecules to plot
mols.size	Point size for molecules
mols.cols	A vector of color for molecules. The "Set1" palette from RColorBrewer is used by default.
mols.alpha	Alpha value for molecules, should be between 0 and 1
nmols	Max number of each molecule specified in 'molecules' to plot
alpha	Alpha value for plotting (default is 1)
border.color	Color of cell segmentation border; pass NA to suppress borders for segmentationbased plots

border.size	Thickness of cell segmentation borders; pass NA to suppress borders for centroid- based plots
na.value Color value for NA points when using custom scale dark.background	
crop	Set plot background to black Crop the plots to area with cells only
cells	Vector of cells to plot (default is all cells)
overlap	Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they're given (first is lowest)
axes	Keep axes and panel background combine
Combine plots into a single patchwork ggplot object.If FALSE, return a list of ggplot objects	
coord.fixed	Plot cartesian coordinates with fixed aspect ratio
flip_xy	Flag to flip X and Y axes. Default is FALSE.

Value

If combine = TRUE, a patchwork ggplot object; otherwise, a list of ggplot objects

```
ImageFeaturePlot Spatial Feature Plots
```


Description

Visualize expression in a spatial context

Usage

ImageFeaturePlot(
object,
features,
fov = NULL,
boundaries = NULL,
cols = if (isTRUE(x = blend)) \{ c("lightgrey", "\#ff0000", "\#00ff00")
\} else \{
c("lightgrey", "firebrick1")
\},
size = 0.5,
min.cutoff = NA, max.cutoff = NA, split.by = NULL, molecules = NULL,

```
    mols.size = 0.1,
    mols.cols = NULL,
    nmols = 1000,
    alpha = 1,
    border.color = "white",
    border.size = NULL,
    dark.background = TRUE,
    blend = FALSE,
    blend.threshold = 0.5,
    crop = FALSE,
    cells = NULL,
    scale = c("feature", "all", "none"),
    overlap = FALSE,
    axes = FALSE,
    combine = TRUE,
    coord.fixed = TRUE
)
```


Arguments

object	Seurat object
features	Vector of features to plot. Features can come from:

- An Assay feature (e.g. a gene name - "MS4A1")
- A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
- A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
fov Name of FOV to plot
boundaries A vector of segmentation boundaries per image to plot; can be a character vector, a named character vector, or a named list. Names should be the names of FOVs and values should be the names of segmentation boundaries
cols The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors:
1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression
2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives
3+ colors: First color used for double-negatives, colors 2 and 3 used for perfeature expression, all others ignored
size Point size for cells when plotting centroids
min.cutoff, max.cutoff
Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q \# \#$ ' where ' $\# \#$ ' is the quantile (eg, ' q 1 ', ' $q 10$ ')

split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity'
molecules	A vector of molecules to plot
mols.size	Point size for molecules
mols.cols	A vector of color for molecules. The "Set1" palette from RColorBrewer is used by default.
nmols	Max number of each molecule specified in 'molecules' to plot
alpha	Alpha value for plotting (default is 1)
border.color	Color of cell segmentation border; pass NA to suppress borders for segmentationbased plots
border.size	Thickness of cell segmentation borders; pass NA to suppress borders for centroidbased plots
dark.background	
	Set plot background to black
blend	Scale and blend expression values to visualize coexpression of two features
blend.threshold	
	The color cutoff from weak signal to strong signal; ranges from 0 to 1.
crop	Crop the plots to area with cells only
cells	Vector of cells to plot (default is all cells)
scale	Set color scaling across multiple plots; choose from:
	- "feature": Plots per-feature are scaled across splits - "all": Plots per-feature are scaled across all features - "none": Plots are not scaled; note: setting scale to "none" will result in color scales that are not comparable between plots
	Ignored if blend $=$ TRUE
overlap	Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they're given (first is lowest)
axes	Keep axes and panel background
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
coord.fixed	Plot cartesian coordinates with fixed aspect ratio

Value

If combine $=$ TRUE, a patchwork ggplot object; otherwise, a list of ggplot objects

IntegrateData Integrate data

Description

Perform dataset integration using a pre-computed AnchorSet.

Usage

IntegrateData(
anchorset, new.assay.name = "integrated",
normalization.method = c("LogNormalize", "SCT"),
features = NULL,
features.to.integrate $=$ NULL,
dims = 1:30,
k.weight $=100$,
weight. reduction $=$ NULL,
sd.weight = 1,
sample.tree $=$ NULL,
preserve.order = FALSE,
eps $=0$,
verbose = TRUE
)

Arguments

anchorset An AnchorSet object generated by FindIntegrationAnchors
new. assay. name Name for the new assay containing the integrated data normalization.method

Name of normalization method used: LogNormalize or SCT
features Vector of features to use when computing the PCA to determine the weights. Only set if you want a different set from those used in the anchor finding process
features.to.integrate
Vector of features to integrate. By default, will use the features used in anchor finding.
dims Number of dimensions to use in the anchor weighting procedure
k.weight Number of neighbors to consider when weighting anchors
weight. reduction
Dimension reduction to use when calculating anchor weights. This can be one of:

- A string, specifying the name of a dimension reduction present in all objects to be integrated
- A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
- A vector of DimReduc objects, specifying the object to use for each object in the integration
- NULL, in which case a new PCA will be calculated and used to calculate anchor weights
Note that, if specified, the requested dimension reduction will only be used for calculating anchor weights in the first merge between reference and query, as the merged object will subsequently contain more cells than was in query, and weights will need to be calculated for all cells in the object.
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
sample.tree Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix (c $(-2,1,-3,-1)$, ncol $=2$) gives:

$$
\begin{array}{lrc}
& {[, 1]} & {[, 2]} \\
{[1,]} & -2 & -3 \\
{[2,]} & 1 & -1
\end{array}
$$

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1 .
If NULL, the sample tree will be computed automatically.
preserve.order Do not reorder objects based on size for each pairwise integration.
eps Error bound on the neighbor finding algorithm (from RANN)
verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147
For pairwise integration:

- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as $1-$ the distance between the query cell and the anchor divided by the distance of the query cell to the k. weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd. weight and normalize across all k . weight anchors.
- Compute the anchor integration matrix as the difference between the two expression matrices for every pair of anchor cells
- Compute the transformation matrix as the product of the integration matrix and the weights matrix.
- Subtract the transformation matrix from the original expression matrix.

For multiple dataset integration, we perform iterative pairwise integration. To determine the order of integration (if not specified via sample. tree), we

- Define a distance between datasets as the total number of cells in the smaller dataset divided by the total number of anchors between the two datasets.
- Compute all pairwise distances between datasets
- Cluster this distance matrix to determine a guide tree

Value

Returns a Seurat object with a new integrated Assay. If normalization.method = "LogNormalize", the integrated data is returned to the data slot and can be treated as log-normalized, corrected data. If normalization.method = "SCT", the integrated data is returned to the scale.data slot and can be treated as centered, corrected Pearson residuals.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
    pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
    pancreas.list[[i]] <- FindVariableFeatures(
        pancreas.list[[i]], selection.method = "vst",
        nfeatures = 2000, verbose = FALSE
    )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)
# integrate data
integrated <- IntegrateData(anchorset = anchors)
## End(Not run)
```


Description

Perform dataset integration using a pre-computed Anchorset of specified low dimensional representations.

Usage

IntegrateEmbeddings(anchorset, ...)
\#\# S3 method for class 'IntegrationAnchorSet'
IntegrateEmbeddings(
anchorset,
new.reduction.name = "integrated_dr",
reductions = NULL,
dims.to.integrate $=$ NULL,
k.weight $=100$,
weight. reduction $=$ NULL,
sd.weight = 1 ,
sample.tree $=$ NULL,
preserve.order = FALSE,
verbose $=$ TRUE,
)
\#\# S3 method for class 'TransferAnchorSet'
IntegrateEmbeddings(
anchorset,
reference,
query,
query.assay = NULL,
new.reduction.name = "integrated_dr",
reductions = "pcaproject",
dims.to.integrate $=$ NULL,
k.weight = 100,
weight.reduction = NULL,
reuse. weights.matrix = TRUE,
sd.weight = 1,
preserve.order = FALSE,
verbose = TRUE,
)

Arguments

anchorset An AnchorSet object

Details

The main steps of this procedure are identical to IntegrateData with one key distinction. When computing the weights matrix, the distance calculations are performed in the full space of integrated embeddings when integrating more than two datasets, as opposed to a reduced PCA space which is the default behavior in IntegrateData.

Value

When called on a TransferAnchorSet (from FindTransferAnchors), this will return the query object with the integrated embeddings stored in a new reduction. When called on an IntegrationAnchorSet (from IntegrateData), this will return a merged object with the integrated reduction stored.

```
IntegrateLayers Integrate Layers
```


Description

Integrate Layers

Usage

IntegrateLayers(object,
method,
orig.reduction = "pca",
assay = NULL,
features = NULL,
layers = NULL,
scale.layer = "scale.data",
)

Arguments

object	A Seurat object
method	Integration method function
orig.reduction	Name of dimensional reduction for correction
assay	Name of assay for integration
features	A vector of features to use for integration
layers	Names of normalized layers in assay
scale.layer	Name(s) of scaled layer(s) in assay
\ldots	Arguments passed on to method

Value

object with integration data added to it

Integration Method Functions

The following integration method functions are available:

See Also

Writing integration method functions

```
IntegrationAnchorSet-class
```

The IntegrationAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

IntegrationData-class The IntegrationData Class

Description

The IntegrationData object is an intermediate storage container used internally throughout the integration procedure to hold bits of data that are useful downstream.

Slots

neighbors List of neighborhood information for cells (outputs of RANN: :nn2)
weights Anchor weight matrix
integration.matrix Integration matrix
anchors Anchor matrix
offsets The offsets used to enable cell look up in downstream functions
objects.ncell Number of cells in each object in the object.list
sample. tree Sample tree used for ordering multi-dataset integration

Description

Visualize clusters spatially and interactively

Usage

```
ISpatialDimPlot(
        object,
        image = NULL,
        image.scale = "lowres",
        group.by = NULL,
        alpha = c(0.3, 1)
    )
```


Arguments

object	A Seurat object
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to matchthe plot with the specified 'image' - defaults to "lowres"
group.by	Name of meta.data column to group the data by
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

Value

Returns final plot as a ggplot object

Description

Visualize features spatially and interactively

Usage

```
ISpatialFeaturePlot(
    object,
    feature,
    image = NULL,
    image.scale = "lowres",
    slot = "data",
    alpha = c(0.1, 1)
)
```


Arguments

object	A Seurat object
feature	Feature to visualize
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to matchthe plot with the specified 'image' - defaults to "lowres"
slot	If plotting a feature, which data slot to pull from (counts, data, or scale.data) alpha
Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.	

Value

Returns final plot as a ggplot object

Description

Randomly permutes a subset of data, and calculates projected PCA scores for these 'random' genes. Then compares the PCA scores for the 'random' genes with the observed PCA scores to determine statistical signifance. End result is a p-value for each gene's association with each principal component.

Usage

```
JackStraw(
    object,
    reduction = "pca",
    assay = NULL,
    dims = 20,
    num.replicate = 100,
    prop.freq = 0.01,
```

```
    verbose = TRUE,
    maxit = 1000
)
```


Arguments

object	Seurat object
reduction	DimReduc to use. ONLY PCA CURRENTLY SUPPORTED.
assay	Assay used to calculate reduction.
dims	Number of PCs to compute significance for
num.replicate	Number of replicate samplings to perform
prop.freq	Proportion of the data to randomly permute for each replicate
verbose	Print progress bar showing the number of replicates that have been processed.
maxit	maximum number of iterations to be performed by the irlba function of RunPCA

Value

Returns a Seurat object where JS(object = object[['pca']], slot = 'empirical') represents p-values for each gene in the PCA analysis. If ProjectPCA is subsequently run, JS(object = object[['pca']], slot $=$ 'full') then represents p-values for all genes.

References

Inspired by Chung et al, Bioinformatics (2014)

Examples

```
## Not run:
data("pbmc_small")
pbmc_small = suppressWarnings(JackStraw(pbmc_small))
head(JS(object = pbmc_small[['pca']], slot = 'empirical'))
## End(Not run)
```

JackStrawData-class The JackStrawData Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::JackStrawData-class

```
JackStrawPlot JackStraw Plot
```


Description

Plots the results of the JackStraw analysis for PCA significance. For each PC, plots a QQ-plot comparing the distribution of p-values for all genes across each PC, compared with a uniform distribution. Also determines a p-value for the overall significance of each PC (see Details).

Usage

JackStrawPlot(

 object,
 dims \(=1: 5\),
 cols \(=\) NULL,
 reduction = "pca",
 \(x \max =0.1\),
 \(y \max =0.3\)
)

Arguments

object	Seurat object
dims	Dims to plot
cols	Vector of colors, each color corresponds to an individual PC. This may also be a single character or numeric value corresponding to a palette as specified by brewer. pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
reduction	reduction to pull jackstraw info from
xmax	X-axis maximum on each QQ plot.
$y m a x$	Y-axis maximum on each QQ plot.

Details

Significant PCs should show a p-value distribution (black curve) that is strongly skewed to the left compared to the null distribution (dashed line) The p-value for each PC is based on a proportion test comparing the number of genes with a p-value below a particular threshold (score.thresh), compared with the proportion of genes expected under a uniform distribution of p-values.

Value

A ggplot object

Author(s)

Omri Wurtzel

See Also

ScoreJackStraw

Examples

```
data("pbmc_small")
JackStrawPlot(object = pbmc_small)
```


Description

Seurat-Joint PCA Integration

Usage

```
    JointPCAIntegration(
        object = NULL,
        assay = NULL,
        layers = NULL,
        orig = NULL,
        new.reduction = "integrated.dr",
        reference = NULL,
        features = NULL,
        normalization.method = c("LogNormalize", "SCT"),
        dims = 1:30,
        k.anchor = 20,
        scale.layer = "scale.data",
        dims.to.integrate = NULL,
        k.weight = 100,
        weight.reduction = NULL,
        sd.weight = 1,
        sample.tree = NULL,
        preserve.order = FALSE,
        verbose = TRUE,
    )
```


Arguments

object	A Seurat object
assay	Name of Assay in the Seurat object
layers	Names of layers in assay
orig	A dimensional reduction to correct

```
new.reduction Name of new integrated dimensional reduction
reference A reference Seurat object
features A vector of features to use for integration
normalization.method
                                    Name of normalization method used: LogNormalize or SCT
dims Dimensions of dimensional reduction to use for integration
k.anchor How many neighbors (k) to use when picking anchors
scale.layer Name of scaled layer in Assay
dims.to.integrate
                    Number of dimensions to return integrated values for
k.weight Number of neighbors to consider when weighting anchors
weight.reduction
Dimension reduction to use when calculating anchor weights. This can be one
of:
```

- A string, specifying the name of a dimension reduction present in all objects to be integrated
- A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
- A vector of DimReduc objects, specifying the object to use for each object in the integration
- NULL, in which case the full corrected space is used for computing anchor weights.
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
sample.tree Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix (c $(-2,1,-3,-1)$, ncol $=2$) gives:

	$[, 1]$	$[, 2]$
$[1]$,	-2	-3
$[2]$,	1	-1

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1 .
If NULL, the sample tree will be computed automatically.
preserve.order Do not reorder objects based on size for each pairwise integration.
verbose Print progress
... Arguments passed on to FindIntegrationAnchors

L2CCA \quad L2-Normalize $C C A$

Description

Perform 12 normalization on CCs

Usage

L2CCA(object, ...)

Arguments

object	Seurat object
\ldots	Additional parameters to L2Dim.

L2Dim L2-normalization

Description

Perform 12 normalization on given dimensional reduction

Usage

L2Dim(object, reduction, new.dr = NULL, new.key = NULL)

Arguments

object	Seurat object
reduction	Dimensional reduction to normalize
new.dr	name of new dimensional reduction to store (default is olddr.12)
new. key	name of key for new dimensional reduction

Value

Returns a Seurat object

Description

Label clusters on a ggplot2-based scatter plot

Usage

LabelClusters(plot, id, clusters = NULL, labels = NULL, split.by = NULL, repel = TRUE, box = FALSE, geom = "GeomPoint", position = "median",
...
)

Arguments

plot	A ggplot2-based scatter plot
id	Name of variable used for coloring scatter plot
clusters	Vector of cluster ids to label
labels	Custom labels for the clusters
split.by	Split labels by some grouping label, useful when using facet_wrap or facet_grid
repel	Use geom_text_repel to create nicely-repelled labels
box	Use geom_label/geom_label_repel (includes a box around the text labels) geom
Name of geom to get X/Y aesthetic names for	
position	How to place the label if repel = FALSE. If "median", place the label at the median position. If "nearest" place the label at the position of the nearest data point to the median.
	Extra parameters to geom_text_repel, such as size
.	

Value

A ggplot2-based scatter plot with cluster labels

See Also

```
geom_text_repel geom_text
```


Examples

```
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
LabelClusters(plot = plot, id = 'ident')
```

LabelPoints Add text labels to a ggplot2 plot

Description

Add text labels to a ggplot2 plot

Usage

```
LabelPoints(
        plot,
        points,
        labels = NULL,
        repel = FALSE,
        xnudge = 0.3,
        ynudge = 0.05,
    )
```


Arguments

plot	A ggplot2 plot with a GeomPoint layer
points	A vector of points to label; if NULL, will use all points in the plot
labels	A vector of labels for the points; if NULL, will use rownames of the data provided to the plot at the points selected
repel	Use geom_text_repel to create a nicely-repelled labels; this is slow when a lot of points are being plotted. If using repel, set xnudge and ynudge to 0
xnudge, ynudge	Amount to nudge X and Y coordinates of labels by
\ldots	Extra parameters passed to geom_text

Value

A ggplot object

See Also

Examples

```
data("pbmc_small")
ff <- TopFeatures(object = pbmc_small[['pca']])
cc <- TopCells(object = pbmc_small[['pca']])
plot <- FeatureScatter(object = pbmc_small, feature1 = ff[1], feature2 = ff[2])
LabelPoints(plot = plot, points = cc)
```

LeverageScore Leverage Score Calculation

Description

This function computes the leverage scores for a given object It uses the concept of sketching and random projections. The function provides an approximation to the leverage scores using a scalable method suitable for large matrices.

Usage

```
LeverageScore(object, ...)
## Default S3 method:
LeverageScore(
        object,
        nsketch = 5000L,
        ndims = NULL,
        method = CountSketch,
        eps = 0.5,
        seed = 123L,
        verbose = TRUE,
    )
    ## S3 method for class 'StdAssay'
    LeverageScore(
        object,
        nsketch = 5000L,
        ndims = NULL,
        method = CountSketch,
        vf.method = NULL,
        layer = "data",
        eps = 0.5,
        seed = 123L,
        verbose = TRUE,
    )
```

```
## S3 method for class 'Assay'
LeverageScore(
    object,
    nsketch = 5000L,
    ndims = NULL,
    method = CountSketch,
    vf.method = NULL,
    layer = "data",
    eps = 0.5,
    seed = 123L,
    verbose = TRUE,
)
## S3 method for class 'Seurat'
LeverageScore(
    object,
    assay = NULL,
    nsketch = 5000L,
    ndims = NULL,
    var.name = "leverage.score",
    over.write = FALSE,
    method = CountSketch,
    vf.method = NULL,
    layer = "data",
    eps = 0.5,
    seed = 123L,
    verbose = TRUE,
)
```


Arguments

object	A matrix-like object
\ldots	Arguments passed to other methods
nsketch	A positive integer. The number of sketches to be used in the approximation. Default is 5000.
ndims	A positive integer or NULL. The number of dimensions to use. If NULL, the number of dimensions will default to the number of columns in the object.
method	The sketching method to use, defaults to CountSketch.
eps	A numeric. The error tolerance for the approximation in Johnson-Lindenstrauss embeddings, defaults to 0.5.
seed	A positive integer. The seed for the random number generator, defaults to 123.
verbose	Print progress and diagnostic messages vf.method
VariableFeatures method	
layer	layer to use

assay	assay to use
var.name	name of slot to store leverage scores
over.write	whether to overwrite slot that currently stores leverage scores. Defaults to FALSE, in which case the 'var.name' is modified if it already exists in the object

References

Clarkson, K. L. \& Woodruff, D. P. Low-rank approximation and regression in input sparsity time.
JACM 63, 1-45 (2017). https://dl.acm.org/doi/10.1145/3019134;

LinkedPlots	Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Description

Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Usage

```
LinkedDimPlot(
        object,
        dims = 1:2,
        reduction = NULL,
        image = NULL,
        image.scale = "lowres",
        group.by = NULL,
        alpha = c(0.1, 1),
        combine = TRUE
    )
    LinkedFeaturePlot(
        object,
        feature,
        dims = 1:2,
        reduction = NULL,
        image = NULL,
        image.scale = "lowres",
        slot = "data",
        alpha = c(0.1, 1),
        combine = TRUE
    )
```


Arguments

object	A Seurat object
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to matchthe plot with the specified 'image' - defaults to "lowres"
group.by	Name of meta.data column to group the data by
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.
combine	Combine plots into a single gg object; note that if TRUE; themeing will not work when plotting multiple features/groupings
feature	Feature to visualize
slot	If plotting a feature, which data slot to pull from (counts, data, or scale.data)

Value

Returns final plots. If combine, plots are stiched together using CombinePlots; otherwise, returns a list of ggplot objects

Examples

\#\# Not run:
LinkedDimPlot(seurat.object)
LinkedFeaturePlot(seurat.object, feature = 'Hpca')
\#\# End(Not run)

Description

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

Usage

```
Load10X_Spatial(
    data.dir,
    filename = "filtered_feature_bc_matrix.h5",
    assay = "Spatial",
    slice = "slice1",
    bin.size = NULL,
    filter.matrix = TRUE,
    to.upper = FALSE,
    image = NULL,
)
```


Arguments

data.dir	Directory containing the H5 file specified by filename and the image data in a subdirectory called spatial
filename	Name of H5 file containing the feature barcode matrix
assay	Name of the initial assay
slice	Name for the stored image of the tissue slice
bin.size	Specifies the bin sizes to read in - defaults to c(16, 8)
filter.matrix	Only keep spots that have been determined to be over tissue
to. upper	Converts all feature names to upper case. Can be useful when analyses require comparisons between human and mouse gene names for example.
image	VisiumV1/VisiumV2 instance(s) - if a vector is passed in it should be co-indexed with `bin.size`
\ldots	Arguments passed to Read10X_h5

Value

A Seurat object

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show filtered_feature_bc_matrix.h5
Load10X_Spatial(data.dir = data_dir)
## End(Not run)
```


Description

Load the Annoy index file

Usage

LoadAnnoyIndex(object, file)

Arguments

object	Neighbor object
file	Path to file with annoy index

Value

Returns the Neighbor object with the index stored
LoadCurioSeeker Load Curio Seeker data

Description

Load Curio Seeker data

Usage

LoadCurioSeeker(data.dir, assay = "Spatial")

Arguments

data.dir location of data directory that contains the counts matrix, gene names, barcodes/beads, and barcodes/bead location files.
assay \quad Name of assay to associate spatial data to

Value

A Seurat object

Description

Load STARmap data

Usage

```
LoadSTARmap(
        data.dir,
        counts.file = "cell_barcode_count.csv",
        gene.file = "genes.csv",
        qhull.file = "qhulls.tsv",
        centroid.file = "centroids.tsv",
        assay = "Spatial",
        image = "image"
    )
```


Arguments

data.dir	location of data directory that contains the counts matrix, gene name, qhull, and centroid files.
counts.file	name of file containing the counts matrix (csv)
gene.file	name of file containing the gene names (csv)
qhull.file	name of file containing the hull coordinates (tsv)
centroid.file	name of file containing the centroid positions (tsv)
assay	Name of assay to associate spatial data to
image	Name of "image" object storing spatial coordinates

Value

A Seurat object

See Also

STARmap

Description

Read and Load 10x Genomics Xenium in-situ data

Usage

```
LoadXenium(data.dir, fov = "fov", assay = "Xenium")
    ReadXenium(
        data.dir,
        outs = c("matrix", "microns"),
        type = "centroids",
        mols.qv.threshold = 20
    )
```


Arguments

data.dir	Directory containing all Xenium output files with default filenames
fov	FOV name
assay	Assay name
outs	Types of molecular outputs to read; choose one or more of: - "matrix": the counts matrix
type	emicrons": molecule coordinates

Remove transcript molecules with a QV less than this threshold. $\mathrm{QV}>=20$ is the standard threshold used to construct the cell x gene count matrix.

Value

LoadXenium: A Seurat object
ReadXenium: A list with some combination of the following values:

- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", " y ", and "cell"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"

Description

Calculates a metric that describes how well the local structure of each group prior to integration is preserved after integration. This procedure works as follows: For each group, compute a PCA, compute the top num.neighbors in pca space, compute the top num.neighbors in corrected pca space, compute the size of the intersection of those two sets of neighbors. Return the average over all groups.

Usage

```
LocalStruct(
        object,
        grouping.var,
        idents = NULL,
        neighbors = 100,
        reduction = "pca",
        reduced.dims = 1:10,
        orig.dims = 1:10,
        verbose = TRUE
    )
```


Arguments

object	Seurat object
grouping.var	Grouping variable
idents	Optionally specify a set of idents to compute metric for
neighbors	Number of neighbors to compute in pca/corrected pca space
reduction	Dimensional reduction to use for corrected space
reduced.dims	Number of reduced dimensions to use
orig.dims	Number of PCs to use in original space
verbose	Display progress bar

Value

Returns the average preservation metric

Description

Normalize Raw Data

Usage

```
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
\#\# S3 method for class 'data.frame'
LogNormalize(data, scale.factor \(=10000\), margin \(=2 L\), verbose \(=\) TRUE, ...)
\#\# S3 method for class 'V3Matrix'
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
\#\# Default S3 method:
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
```


Arguments

data	Matrix with the raw count data
scale.factor	Scale the data; default is 1e4
margin	Margin to normalize over
verbose	Print progress
\ldots	Arguments passed to other methods

Value

A matrix with the normalized and log-transformed data

Examples

```
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- LogNormalize(data = mat)
mat_norm
```


Description

Calculate the variance to mean ratio (VMR) in non-logspace (return answer in log-space)

Usage

$\operatorname{LogVMR}(x, \ldots)$

Arguments

x
... Other arguments (not used)

Value

Returns the VMR in log-space

Examples

$\operatorname{LogVMR}(x=c(1,2,3))$

MappingScore Metric for evaluating mapping success

Description

This metric was designed to help identify query cells that aren't well represented in the reference dataset. The intuition for the score is that we are going to project the query cells into a referencedefined space and then project them back onto the query. By comparing the neighborhoods before and after projection, we identify cells who's local neighborhoods are the most affected by this transformation. This could be because there is a population of query cells that aren't present in the reference or the state of the cells in the query is significantly different from the equivalent cell type in the reference.

Usage

```
MappingScore(anchors, ...)
## Default S3 method:
MappingScore(
    anchors,
    combined.object,
    query.neighbors,
    ref.embeddings,
    query.embeddings,
    kanchors = 50,
    ndim = 50,
    ksmooth = 100,
    ksnn = 20,
    snn.prune = 0,
    subtract.first.nn = TRUE,
    nn.method = "annoy",
    n.trees = 50,
    query.weights = NULL,
    verbose = TRUE,
    ...
)
## S3 method for class 'AnchorSet'
MappingScore(
    anchors,
    kanchors = 50,
    ndim = 50,
    ksmooth = 100,
    ksnn = 20,
    snn.prune = 0,
    subtract.first.nn = TRUE,
    nn.method = "annoy",
    n.trees = 50,
    query.weights = NULL,
    verbose = TRUE,
)
```


Arguments

anchors AnchorSet object or just anchor matrix from the Anchorset object returned from FindTransferAnchors
... Reserved for internal use
combined.object
Combined object (ref + query) from the Anchorset object returned
query.neighbors
Neighbors object computed on query cells

```
    ref.embeddings Reference embeddings matrix
    query.embeddings
        Query embeddings matrix
    kanchors Number of anchors to use in projection steps when computing weights
    ndim Number of dimensions to use when working with low dimensional projections
        of the data
    ksmooth Number of cells to average over when computing transition probabilities
    ksnn Number of cells to average over when determining the kernel bandwidth from
        the SNN graph
    snn.prune Amount of pruning to apply to edges in SNN graph
    subtract.first.nn
        Option to the scoring function when computing distances to subtract the distance
        to the first nearest neighbor
    nn.method Nearest neighbor method to use (annoy or RANN)
    n.trees More trees gives higher precision when using annoy approximate nearest neigh-
        bor search
    query.weights Query weights matrix for reuse
    verbose Display messages/progress
```


Value

Returns a vector of cell scores
MapQuery Map query cells to a reference

Description

This is a convenience wrapper function around the following three functions that are often run together when mapping query data to a reference: TransferData, IntegrateEmbeddings, ProjectUMAP. Note that by default, the weight. reduction parameter for all functions will be set to the dimension reduction method used in the FindTransferAnchors function call used to construct the anchor object, and the dims parameter will be the same dimensions used to find anchors.

Usage

MapQuery (
anchorset,
query,
reference,
refdata = NULL,
new.reduction.name = NULL,
reference.reduction = NULL,
reference.dims = NULL,

```
    query.dims = NULL,
    store.weights = FALSE,
    reduction.model = NULL,
    transferdata.args = list(),
    integrateembeddings.args = list(),
    projectumap.args = list(),
    verbose = TRUE
)
```


Arguments

anchorset	An AnchorSet object
query	Query object used in anchorset construction
reference	Reference object used in anchorset construction
refdata	Data to transfer. This can be specified in one of two ways:

- The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
- The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with GetAssayData and provide that matrix here.
new. reduction. name
Name for new integrated dimensional reduction.
reference. reduction
Name of reduction to use from the reference for neighbor finding
reference.dims Dimensions (columns) to use from reference
query. dims Dimensions (columns) to use from query
store.weights Determine if the weight and anchor matrices are stored.
reduction.model
DimReduc object that contains the umap model
transferdata.args
A named list of additional arguments to TransferData
integrateembeddings.args
A named list of additional arguments to IntegrateEmbeddings
projectumap.args
A named list of additional arguments to ProjectUMAP
verbose Print progress bars and output

Value

Returns a modified query Seurat object containing:\#'

- New Assays corresponding to the features transferred and/or their corresponding prediction scores from TransferData
- An integrated reduction from IntegrateEmbeddings
- A projected UMAP reduction of the query cells projected into the reference UMAP using ProjectUMAP

Description

Merge SCTAssay objects

```
Usage
    ## S3 method for class 'SCTAssay'
    merge(
        x = NULL,
    y = NULL,
    add.cell.ids = NULL,
    merge.data = TRUE,
    na.rm = TRUE,
)
```


Arguments

x
$y \quad$ A single Seurat object or a list of Seurat objects
add. cell.ids A character vector of length $(x=c(x, y))$; appends the corresponding values to the start of each objects' cell names
merge.data Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
na.rm If na.rm = TRUE, this will only preserve residuals that are present in all SCTAssays being merged. Otherwise, missing residuals will be populated with NAs.

Arguments passed to other methods

```
MetaFeature Aggregate expression of multiple features into a single feature
```


Description

Calculates relative contribution of each feature to each cell for given set of features.

Usage

```
MetaFeature(
        object,
        features,
        meta.name = "metafeature",
        cells = NULL,
        assay = NULL,
        slot = "data"
    )
```


Arguments

object	A Seurat object
features	List of features to aggregate
meta.name	Name of column in metadata to store metafeature
cells	List of cells to use (default all cells)
assay	Which assay to use
slot	Which slot to take data from (default data)

Value

Returns a Seurat object with metafeature stored in objct metadata

Examples

```
data("pbmc_small")
pbmc_small <- MetaFeature(
    object = pbmc_small,
    features = c("LTB", "EAF2"),
    meta.name = 'var.aggregate'
)
head(pbmc_small[[]])
```


Description

Apply a ceiling and floor to all values in a matrix

Usage

MinMax(data, min, max)

Arguments

data Matrix or data frame
min all values below this min value will be replaced with min
$\max \quad$ all values above this max value will be replaced with max

Value

Returns matrix after performing these floor and ceil operations

Examples

```
mat <- matrix (data \(=\) rbinom \((\mathrm{n}=25\), size \(=20\), prob \(=0.2\) ), nrow \(=5\) )
mat
MinMax(data \(=\) mat, \(\min =4, \max =5)\)
```

```
MixingMetric Calculates a mixing metric
```


Description

Here we compute a measure of how well mixed a composite dataset is. To compute, we first examine the local neighborhood for each cell (looking at max.k neighbors) and determine for each group (could be the dataset after integration) the k nearest neighbor and what rank that neighbor was in the overall neighborhood. We then take the median across all groups as the mixing metric per cell.

Usage

```
MixingMetric(
        object,
        grouping.var,
        reduction = "pca",
        dims = 1:2,
        k = 5,
        max.k = 300,
        eps = 0,
        verbose = TRUE
    )
```


Arguments

object	Seurat object
grouping.var	Grouping variable for dataset
reduction	Which dimensionally reduced space to use
dims	Dimensions to use
k	Neighbor number to examine per group
max.k	Maximum size of local neighborhood to compute
eps	Error bound on the neighbor finding algorithm (from RANN)
verbose	Displays progress bar

Value

Returns a vector of values of the mixing metric for each cell

Description

Draws a heatmap of single cell feature expression with cells ordered by their mixscape ko probabilities.

Usage

MixscapeHeatmap(object, ident. 1 = NULL, ident. 2 = NULL, balanced = TRUE, logfc.threshold $=0.25$, assay = "RNA", max.genes $=100$,

```
    test.use = "wilcox",
    max.cells.group = NULL,
    order.by.prob = TRUE,
    group.by = NULL,
    mixscape.class = "mixscape_class",
    prtb.type = "KO",
    fc.name = "avg_log2FC",
    pval.cutoff = 0.05,
)
```


Arguments

object An object
ident. 1 Identity class to define markers for; pass an object of class phylo or 'clustertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
ident. 2 A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident. 1 , must pass a node to find markers for
balanced Plot an equal number of genes with both groups of cells.
logfc.threshold
Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 . Increasing logfc.threshold speeds up the function, but can miss weaker signals.
assay Assay to use in differential expression testing
max.genes Total number of DE genes to plot.
test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
- "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq 2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L
max.cells.group
Number of cells per identity to plot.
order.by.prob Order cells on heatmap based on their mixscape knockout probability from highest to lowest score.
group.by (Deprecated) Option to split densities based on mixscape classification. Please use mixscape.class instead
mixscape.class metadata column with mixscape classifications.
prtb.type specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.
fc.name Name of the fold change, average difference, or custom function column in the output data.frame. Default is avg_log2FC
pval.cutoff P-value cut-off for selection of significantly DE genes.
... Arguments passed to other methods and to specific DE methods

Value

A ggplot object.

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data. Finally, it uses the first 10 principle components from each projection as input to lda in MASS package together with mixscape class labels.

Usage

```
    MixscapeLDA(
        object,
        assay = NULL,
        ndims.print = 1:5,
        nfeatures.print = 30,
        reduction.key = "LDA_",
        seed = 42,
        pc.assay = "PRTB",
        labels = "gene",
        nt.label = "NT",
        npcs = 10,
        verbose = TRUE,
        logfc.threshold = 0.25
    )
```


Arguments

object	An object of class Seurat.
assay	Assay to use for performing Linear Discriminant Analysis (LDA).
ndims.print	Number of LDA dimensions to print.
nfeatures.print	
	Number of features to print for each LDA component.
reduction.key	Reduction key name.
seed	Value for random seed
pc.assay	Assay to use for running Principle components analysis.
labels	Meta data column with target gene class labels.
nt.label	Name of non-targeting cell class.
npcs	Number of principle components to use.
verbose	Print progress bar.
logfc.threshold	
	Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 . Increasing logfc.threshold speeds up the function, but can miss weaker signals.

Value

Returns a Seurat object with LDA added in the reduction slot.

ModalityWeights-class The ModalityWeights Class

Description

The ModalityWeights class is an intermediate data storage class that stores the modality weight and other related information needed for performing downstream analyses - namely data integration (FindModalityWeights) and data transfer (FindMultiModalNeighbors).

Slots

modality. weight.list A list of modality weights value from all modalities
modality. assay Names of assays for the list of dimensional reductions
params A list of parameters used in the FindModalityWeights
score.matrix a list of score matrices representing cross and within-modality prediction score, and kernel value
command Store log of parameters that were used

MULTIseqDemux Demultiplex samples based on classification method from MULTI-seq (McGinnis et al., bioRxiv 2018)

Description

Identify singlets, doublets and negative cells from multiplexing experiments. Annotate singlets by tags.

Usage

MULTIseqDemux (
object,
assay = "HTO", quantile $=0.7$, autoThresh = FALSE, maxiter = 5, qrange $=\operatorname{seq}($ from $=0.1$, to $=0.9$, by $=0.05)$, verbose = TRUE
)

Arguments

object	Seurat object. Assumes that the specified assay data has been added
assay	Name of the multiplexing assay (HTO by default)
quantile	The quantile to use for classification
autoThresh	Whether to perform automated threshold finding to define the best quantile. De- fault is FALSE
maxiter	Maximum number of iterations if autoThresh = TRUE. Default is 5
qrange	A range of possible quantile values to try if autoThresh = TRUE
verbose	Prints the output

Value

A Seurat object with demultiplexing results stored at object\$MULTI_ID

References

https://www.biorxiv.org/content/10.1101/387241v1

Examples

\#\# Not run:
object <- MULTIseqDemux (object)
\#\# End(Not run)
Neighbor-class The Neighbor Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject: :Neighbor-class

Description

It will color the query cells and the neighbors of the query cells in the DimPlot

Usage

```
    NNPlot(
        object,
        reduction,
        nn.idx,
        query.cells,
        dims = 1:2,
        label = FALSE,
        label.size = 4,
        repel = FALSE,
        sizes.highlight = 2,
        pt.size = 1,
        cols.highlight = c("#377eb8", "#e41a1c"),
        na.value = "#bdbdbd",
        order = c("self", "neighbors", "other"),
        show.all.cells = TRUE,
    )
```


Arguments

object reduction	Seurat object Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
nn.idx query.cells dims	the neighbor index of all cells cells used to find their neighbors Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
label	Whether to label the clusters
label.size	Sets size of labels repel sizes.highlight
Repel labels	

$$
\begin{array}{ll}
\text { cols.highlight } & \begin{array}{l}
\text { A vector of colors to highlight the cells as; will repeat to the length groups in } \\
\text { cells.highlight }
\end{array} \\
\text { na.value } & \begin{array}{l}
\text { Color value for NA points when using custom scale }
\end{array} \\
\text { order } & \begin{array}{l}
\text { Specify the order of plotting for the idents. This can be useful for crowded plots } \\
\text { if points of interest are being buried. Provide either a full list of valid idents or a } \\
\text { subset to be plotted last (on top) }
\end{array} \\
\text { show.all.cells } & \text { Show all cells or only query and neighbor cells } \\
\ldots & \text { Extra parameters passed to DimPlot }
\end{array}
$$

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

```
NNtoGraph

\section*{Description}

Convert Neighbor class to an asymmetrical Graph class

\section*{Usage}

NNtoGraph(nn.object, col.cells = NULL, weighted = FALSE)

\section*{Arguments}
\begin{tabular}{ll} 
nn. object & A neighbor class object \\
col.cells & Cells names of the neighbors, cell names in nn.object is used by default \\
weighted & Determine if use distance in the Graph
\end{tabular}

\section*{Value}

Returns a Graph object
\begin{tabular}{l}
\hline NormalizeData \(\quad\) Normalize Data \\
\hline
\end{tabular}

\section*{Description}

Normalize the count data present in a given assay.

\section*{Usage}
```

NormalizeData(object, ...)

S3 method for class 'V3Matrix'

NormalizeData(
object,
normalization.method = "LogNormalize",
scale.factor = 10000,
margin = 1,
block.size = NULL,
verbose = TRUE,
)

S3 method for class 'Assay'

NormalizeData(
object,
normalization.method = "LogNormalize",
scale.factor = 10000,
margin = 1,
verbose = TRUE,
)
\#\# S3 method for class 'Seurat'
NormalizeData(
object,
assay = NULL,
normalization.method = "LogNormalize",
scale.factor = 10000,
margin = 1,
verbose = TRUE,
)

```

\section*{Arguments}
object
An object
Arguments passed to other methods
normalization.method
Method for normalization.
- "LogNormalize": Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log \(1 p\)
- "CLR": Applies a centered log ratio transformation
- "RC": Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. No logtransformation is applied. For counts per million (CPM) set scale.factor \(=1 \mathrm{e} 6\)
\begin{tabular}{ll} 
scale.factor & Sets the scale factor for cell-level normalization \\
margin & If performing CLR normalization, normalize across features (1) or cells (2) \\
block.size & \begin{tabular}{l} 
How many cells should be run in each chunk, will try to split evenly across \\
threads
\end{tabular} \\
verbose & \begin{tabular}{l} 
display progress bar for normalization procedure
\end{tabular} \\
assay & Name of assay to use
\end{tabular}

\section*{Value}

Returns object after normalization

\section*{Examples}
```


Not run:

data("pbmc_small")
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)

End(Not run)

```
PCASigGenes Significant genes from a PCA

\section*{Description}

Returns a set of genes, based on the JackStraw analysis, that have statistically significant associations with a set of PCs.
```

Usage
PCASigGenes(
object,
pcs.use,
pval.cut = 0.1,
use.full = FALSE,
max.per.pc = NULL
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
pcs.use & PCS to use. \\
pval.cut & P-value cutoff \\
use.full & \begin{tabular}{l} 
Use the full list of genes (from the projected PCA). Assumes that ProjectDim \\
has been run. Currently, must be set to FALSE.
\end{tabular} \\
max.per.pc & \begin{tabular}{l} 
Maximum number of genes to return per PC. Used to avoid genes from one PC \\
dominating the entire analysis.
\end{tabular}
\end{tabular}

\section*{Value}

A vector of genes whose p-values are statistically significant for at least one of the given PCs.

\section*{See Also}

ProjectDim JackStraw

\section*{Examples}
```

data("pbmc_small")
PCASigGenes(pbmc_small, pcs.use = 1:2)

```

\section*{PercentAbove}

Calculate the percentage of a vector above some threshold

\section*{Description}

Calculate the percentage of a vector above some threshold

\section*{Usage}

PercentAbove(x, threshold)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of values \\
threshold & Threshold to use when calculating percentage
\end{tabular}

\section*{Value}

Returns the percentage of \(x\) values above the given threshold

\section*{Examples}
```

set.seed(42)
PercentAbove(sample(1:100, 10), 75)

```

PercentageFeatureSet Calculate the percentage of all counts that belong to a given set of features

\section*{Description}

This function enables you to easily calculate the percentage of all the counts belonging to a subset of the possible features for each cell. This is useful when trying to compute the percentage of transcripts that map to mitochondrial genes for example. The calculation here is simply the column sum of the matrix present in the counts slot for features belonging to the set divided by the column sum for all features times 100 .

\section*{Usage}
```

PercentageFeatureSet(
object,
pattern = NULL,
features = NULL,
col.name = NULL,
assay = NULL
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A Seurat object \\
pattern & A regex pattern to match features against \\
features & A defined feature set. If features provided, will ignore the pattern matching \\
col.name & \begin{tabular}{l} 
Name in meta.data column to assign. If this is not null, returns a Seurat object \\
with the proportion of the feature set stored in metadata.
\end{tabular} \\
assay & \begin{tabular}{l} 
Assay to use
\end{tabular}
\end{tabular}

\section*{Value}

Returns a vector with the proportion of the feature set or if md.name is set, returns a Seurat object with the proportion of the feature set stored in metadata.

\section*{Examples}
```

data("pbmc_small")

Calculate the proportion of transcripts mapping to mitochondrial genes

NOTE: The pattern provided works for human gene names. You may need to adjust depending on your

system of interest

pbmc_small[["percent.mt"]] <- PercentageFeatureSet(object = pbmc_small, pattern = "^MT-")

```

\section*{Description}

Plots previously computed tree (from BuildClusterTree)

\section*{Usage}

PlotClusterTree(object, direction = "downwards", ...)

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
direction & \begin{tabular}{l} 
A character string specifying the direction of the tree (default is downwards) \\
Possible options: "rightwards", "leftwards", "upwards", and "downwards".
\end{tabular} \\
\(\ldots\) & Additional arguments to ape : : plot.phylo
\end{tabular}

\section*{Value}

Plots dendogram (must be precomputed using BuildClusterTree), returns no value

\section*{Examples}
```


Not run:

if (requireNamespace("ape", quietly = TRUE)) {
data("pbmc_small")
pbmc_small <- BuildClusterTree(object = pbmc_small)
PlotClusterTree(object = pbmc_small)
}

End(Not run)

```

PlotPerturbScore Function to plot perturbation score distributions.

\section*{Description}

Density plots to visualize perturbation scores calculated from RunMixscape function.

\section*{Usage}
```

PlotPerturbScore(
object,
target.gene.class = "gene",
target.gene.ident = NULL,
mixscape.class = "mixscape_class",
col = "orange2",
split.by = NULL,
before.mixscape = FALSE,
prtb.type = "KO"
)

```

\section*{Arguments}
object An object of class Seurat.
target.gene.class
meta data column specifying all target gene names in the experiment.
target.gene.ident
Target gene name to visualize perturbation scores for.
mixscape.class meta data column specifying mixscape classifications.
col Specify color of target gene class or knockout cell class. For control nontargeting and non-perturbed cells, colors are set to different shades of grey.
split.by For datasets with more than one cell type. Set equal TRUE to visualize perturbation scores for each cell type separately.
before.mixscape
Option to split densities based on mixscape classification (default) or original target gene classification. Default is set to NULL and plots cells by original class ID.
prtb.type specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.

\section*{Value}

A ggplot object.
PolyDimPlot Polygon DimPlot

\section*{Description}

Plot cells as polygons, rather than single points. Color cells by identity, or a categorical variable in metadata

\section*{Usage}
```

PolyDimPlot(
object,
group.by = NULL,
cells = NULL,
poly.data = "spatial",
flip.coords = FALSE
)

```

\section*{Arguments}
\[
\begin{array}{ll}
\text { object } & \text { Seurat object } \\
\text { group.by } & \begin{array}{l}
\text { A grouping variable present in the metadata. Default is to use the groupings } \\
\text { present in the current cell identities (Idents(object = object)) }
\end{array} \\
\text { cells } & \text { Vector of cells to plot (default is all cells) } \\
\text { poly.data } & \text { Name of the polygon dataframe in the misc slot } \\
\text { flip.coords } & \text { Flip x and y coordinates }
\end{array}
\]

\section*{Value}

Returns a ggplot object

PolyFeaturePlot Polygon FeaturePlot

\section*{Description}

Plot cells as polygons, rather than single points. Color cells by any value accessible by FetchData.
```

Usage
PolyFeaturePlot(
object,
features,
cells = NULL,
poly.data = "spatial",
ncol = ceiling(x = length(x = features)/2),
min.cutoff = 0,
max.cutoff = NA,
common.scale = TRUE,
flip.coords = FALSE
)

```

\section*{Arguments}
object Seurat object
features Vector of features to plot. Features can come from:
- An Assay feature (e.g. a gene name - "MS4A1")
- A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
- A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
cells Vector of cells to plot (default is all cells)
poly.data Name of the polygon dataframe in the misc slot
ncol Number of columns to split the plot into
min.cutoff, max.cutoff
Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' \(q \# \#\) ' where '\#\#' is the quantile (eg, 'q1', 'q10')
common.scale
flip.coords Flip x and y coordinates

\section*{Value}

Returns a ggplot object
PredictAssay Predict value from nearest neighbors

\section*{Description}

This function will predict expression or cell embeddings from its k nearest neighbors index. For each cell, it will average its k neighbors value to get its new imputed value. It can average expression value in assays and cell embeddings from dimensional reductions.
```

Usage
PredictAssay(
object,
nn.idx,
assay,
reduction = NULL,
dims = NULL,
return.assay = TRUE,
slot = "scale.data",
features = NULL,
mean.function = rowMeans,
seed = 4273,
verbose = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & The object used to calculate knn \\
\(\mathrm{nn} . \mathrm{idx}\) & k near neighbour indices. A cells x k matrix. \\
assay & Assay used for prediction \\
reduction & Cell embedding of the reduction used for prediction \\
dims & Number of dimensions of cell embedding \\
return.assay & Return an assay or a predicted matrix \\
slot & slot used for prediction \\
features & features used for prediction \\
mean.function & the function used to calculate row mean \\
seed & Sets the random seed to check if the nearest neighbor is query cell \\
verbose & Print progress
\end{tabular}

Value
return an assay containing predicted expression value in the data slot

PrepareBridgeReference
Prepare the bridge and reference datasets

\section*{Description}

Preprocess the multi-omic bridge and unimodal reference datasets into an extended reference. This function performs the following three steps: 1. Performs within-modality harmonization between bridge and reference 2. Performs dimensional reduction on the SNN graph of bridge datasets via Laplacian Eigendecomposition 3. Constructs a bridge dictionary representation for unimodal reference cells

\section*{Usage}

PrepareBridgeReference(
reference,
bridge,
reference.reduction = "pca", reference.dims = 1:50,
normalization.method = c("SCT", "LogNormalize"), reference.assay = NULL,
bridge.ref.assay = "RNA",
bridge.query.assay = "ATAC",
supervised.reduction = c("slsi", "spca", NULL),
bridge.query.reduction = NULL,
bridge.query.features = NULL,
```

 laplacian.reduction.name = "lap",
 laplacian.reduction.key = "lap_",
 laplacian.reduction.dims = 1:50,
 verbose = TRUE
)

```

\section*{Arguments}
reference A reference Seurat object
bridge A multi-omic bridge Seurat object
reference. reduction
Name of dimensional reduction of the reference object (default is 'pca')
reference.dims Number of dimensions used for the reference.reduction (default is 50)
normalization.method
Name of normalization method used: LogNormalize or SCT
reference.assay
Assay name for reference (default is DefaultAssay)
bridge.ref.assay
Assay name for bridge used for reference mapping. RNA by default
bridge.query.assay
Assay name for bridge used for query mapping. ATAC by default
supervised. reduction
Type of supervised dimensional reduction to be performed for integrating the bridge and query. \#' Options are:
- slsi: Perform supervised LSI as the dimensional reduction for the bridgequery integration
- spca: Perform supervised PCA as the dimensional reduction for the bridgequery integration
- NULL: no supervised dimensional reduction will be calculated. bridge.query.reduction is used for the bridge-query integration
bridge.query. reduction
Name of dimensions used for the bridge-query harmonization. 'bridge.query.reduction' and 'supervised.reduction' cannot be NULL together.
bridge.query.features
Features used for bridge query dimensional reduction (default is NULL which uses VariableFeatures from the bridge object)
laplacian.reduction.name
Name of dimensional reduction name of graph laplacian eigenspace (default is
'lap')
laplacian.reduction.key
Dimensional reduction key (default is 'lap_')
laplacian.reduction.dims
Number of dimensions used for graph laplacian eigenspace (default is 50)
verbose Print progress and message (default is TRUE)

\section*{Value}

Returns a BridgeReferenceSet that can be used as input to FindBridgeTransferAnchors. The parameters used are stored in the BridgeReferenceSet as well
PrepLDA Function to prepare data for Linear Discriminant Analysis.

\section*{Description}

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data.

\section*{Usage}

PrepLDA(
        object,
        de.assay \(=\) "RNA",
        pc.assay = "PRTB",
        labels = "gene",
        nt.label = "NT",
        npcs = 10,
        verbose = TRUE,
        logfc.threshold \(=0.25\)
    )

\section*{Arguments}
\begin{tabular}{ll} 
object & An object of class Seurat. \\
de.assay & Assay to use for selection of DE genes. \\
pc.assay & Assay to use for running Principle components analysis. \\
labels & Meta data column with target gene class labels. \\
nt.label & Name of non-targeting cell class. \\
npcs & Number of principle components to use. \\
verbose & Print progress bar. \\
logfc. threshold
\end{tabular}

Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 . Increasing logfc.threshold speeds up the function, but can miss weaker signals.

\section*{Value}

Returns a list of the first 10 PCs from each projection.

PrepSCTFindMarkers Prepare object to run differential expression on SCT assay with multiple models

\section*{Description}

Given a merged object with multiple SCT models, this function uses minimum of the median UMI (calculated using the raw UMI counts) of individual objects to reverse the individual SCT regression model using minimum of median UMI as the sequencing depth covariate. The counts slot of the SCT assay is replaced with recorrected counts and the data slot is replaced with \(\log 1 \mathrm{p}\) of recorrected counts.

\section*{Usage}

PrepSCTFindMarkers(object, assay = "SCT", verbose = TRUE)

\section*{Arguments}
object Seurat object with SCT assays
assay Assay name where for SCT objects are stored; Default is 'SCT'
verbose Print messages and progress

\section*{Value}

Returns a Seurat object with recorrected counts and data in the SCT assay.

\section*{Progress Updates with progressr}

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers (global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

\section*{Parallelization with future}

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple \(R\) sessions; for other plans, see the "Implemented evaluation strategies" section of ?future: :plan. For a more thorough introduction to future, see vignette("future-1-overview")

\section*{Examples}
```

data("pbmc_small")
pbmc_small1 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_small2 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_merged <- merge(x = pbmc_small1, y = pbmc_small2)
pbmc_merged <- PrepSCTFindMarkers(object = pbmc_merged)
markers <- FindMarkers(

```
```

 object = pbmc_merged,
 ident.1 = "0",
 ident.2 = "1",
 assay = "SCT"
)
 pbmc_subset <- subset(pbmc_merged, idents = c("0", "1"))
 markers_subset <- FindMarkers(
 object = pbmc_subset,
 ident.1 = "0",
 ident.2 = "1",
 assay = "SCT",
 recorrect_umi = FALSE
)
    ```

PrepSCTIntegration Prepare an object list normalized with sctransform for integration.

\section*{Description}

This function takes in a list of objects that have been normalized with the SCTransform method and performs the following steps:
- If anchor.features is a numeric value, calls SelectIntegrationFeatures to determine the features to use in the downstream integration procedure.
- Ensures that the sctransform residuals for the features specified to anchor.features are present in each object in the list. This is necessary because the default behavior of SCTransform is to only store the residuals for the features determined to be variable. Residuals are recomputed for missing features using the stored model parameters via the GetResidual function.
- Subsets the scale.data slot to only contain the residuals for anchor.features for efficiency in downstream processing.

\section*{Usage}
```

PrepSCTIntegration(
object.list,
assay = NULL,
anchor.features = 2000,
sct.clip.range = NULL,
verbose = TRUE
)

```

\section*{Arguments}
object.list A list of Seurat objects to prepare for integration

> The name of the Assay to use for integration. This can be a single name if all the assays to be integrated have the same name, or a character vector containing the name of each Assay in each object to be integrated. The specified assays must have been normalized using SCTransform. If NULL (default), the current default assay for each object is used.
```

anchor.features

```

Can be either:
- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process
sct.clip. range Numeric of length two specifying the min and max values the Pearson residual will be clipped to
verbose Display output/messages

\section*{Value}

A list of Seurat objects with the appropriate scale. data slots containing only the required anchor.features.

\section*{Examples}
```


Not run:

to install the SeuratData package see https://github.com/satijalab/seurat-data

library(SeuratData)
data("panc8")

panc8 is a merged Seurat object containing 8 separate pancreas datasets

split the object by dataset and take the first 2 to integrate

pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]

perform SCTransform normalization

pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)

select integration features and prep step

features <- SelectIntegrationFeatures(pancreas.list)
pancreas.list <- PrepSCTIntegration(
pancreas.list,
anchor.features = features
)

downstream integration steps

anchors <- FindIntegrationAnchors(
pancreas.list,
normalization.method = "SCT",
anchor.features = features
)
pancreas.integrated <- IntegrateData(anchors, normalization.method = "SCT")

End(Not run)

```

\section*{Description}

This function allows projection of high-dimensional single-cell RNA expression data from a full dataset onto the lower-dimensional embedding of the sketch of the dataset.

\section*{Usage}

ProjectData( object, assay = "RNA", sketched.assay = "sketch", sketched.reduction, full.reduction, dims, normalization.method = c("LogNormalize", "SCT"), refdata \(=\) NULL, k.weight = 50, umap.model = NULL, recompute.neighbors = FALSE, recompute. weights = FALSE, verbose = TRUE
)

\section*{Arguments}
```

object A Seurat object.
assay Assay name for the full data. Default is 'RNA'.
sketched.assay Sketched assay name to project onto. Default is 'sketch'.
sketched.reduction
Dimensional reduction results of the sketched assay to project onto.
full.reduction Dimensional reduction name for the projected full dataset.
dims Dimensions to include in the projection.
normalization.method
Normalization method to use. Can be 'LogNormalize' or 'SCT'. Default is
'LogNormalize'.
refdata An optional list for label transfer from sketch to full data. Default is NULL.
Similar to refdata in 'MapQuery`
k.weight Number of neighbors to consider when weighting labels for transfer. Default is 50.
umap.model An optional pre-computed UMAP model. Default is NULL.
recompute. neighbors
Whether to recompute the neighbors for label transfer. Default is FALSE.

```
recompute.weights
Whether to recompute the weights for label transfer. Default is FALSE.
verbose Print progress and diagnostic messages.

\section*{Value}

A Seurat object with the full data projected onto the sketched dimensional reduction results. The projected data are stored in the specified full reduction.

ProjectDim Project Dimensional reduction onto full dataset

\section*{Description}

Takes a pre-computed dimensional reduction (typically calculated on a subset of genes) and projects this onto the entire dataset (all genes). Note that the cell loadings will remain unchanged, but now there are gene loadings for all genes.

\section*{Usage}
```

ProjectDim(
object,
reduction = "pca",
assay = NULL,
dims.print = 1:5,
nfeatures.print = 20,
overwrite = FALSE,
do.center = FALSE,
verbose = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll}
\begin{tabular}{ll} 
object & Seurat object \\
reduction & Reduction to use \\
assay & Assay to use \\
dims.print & Number of dims to print features for \\
nfeatures.print
\end{tabular} \\
& Number of features with highest/lowest loadings to print for each dimension \\
overwrite & Replace the existing data in feature.loadings \\
do.center & Center the dataset prior to projection (should be set to TRUE) \\
verbose & Print top genes associated with the projected dimensions
\end{tabular}

\section*{Value}

Returns Seurat object with the projected values

\section*{Examples}
```

data("pbmc_small")
pbmc_small
pbmc_small <- ProjectDim(object = pbmc_small, reduction = "pca")

Vizualize top projected genes in heatmap

DimHeatmap(object = pbmc_small, reduction = "pca", dims = 1, balanced = TRUE)

```

\section*{Description}

Project query data to reference dimensional reduction
```

Usage
ProjectDimReduc(
query,
reference,
mode = c("pcaproject", "lsiproject"),
reference.reduction,
combine = FALSE,
query.assay = NULL,
reference.assay = NULL,
features = NULL,
do.scale = TRUE,
reduction.name = NULL,
reduction.key = NULL,
verbose = TRUE
)

```

\section*{Arguments}

\begin{tabular}{ll} 
features & Features used for projection \\
do.scale & Determine if scale expression matrix in the pcaproject mode \\
reduction.name & dimensional reduction name, reference.reduction is used by default \\
reduction.key & dimensional reduction key, the key in reference.reduction is used by default \\
verbose & Print progress and message
\end{tabular}

\section*{Value}

Returns a query-only or query-reference combined seurat object
```

ProjectIntegration Integrate embeddings from the integrated sketched.assay

```

\section*{Description}

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Hao, et al Biorxiv 2022: doi:10.1101/2022.02.24.481684
```

Usage
ProjectIntegration(
object,
sketched.assay = "sketch",
assay = "RNA",
reduction = "integrated_dr",
features = NULL,
layers = "data",
reduction.name = NULL,
reduction.key = NULL,
method = c("sketch", "data"),
ratio = 0.8,
sketched.layers = NULL,
seed = 123,
verbose = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A Seurat object with all cells for one dataset \\
sketched.assay & Assay name for sketched-cell expression (default is 'sketch') \\
assay & Assay name for original expression (default is 'RNA') \\
reduction & \begin{tabular}{l} 
Dimensional reduction name for batch-corrected embeddings in the sketched \\
object (default is 'integrated_dr')
\end{tabular} \\
features & Features used for atomic sketch integration \\
layers & Names of layers for correction.
\end{tabular}
\begin{tabular}{|c|c|}
\hline ne & Name to save new reduction as; defaults to paste0(reduction, '. orig') \\
\hline reduction.key & Key for new dimensional reduction; defaults to creating one from reduction. name \\
\hline method & Methods to construct sketch-cell representation for all cells (default is 'sketch'). Can be one of: \\
\hline & \begin{tabular}{l}
- "sketch": Use random sketched data slot \\
- "data": Use data slot
\end{tabular} \\
\hline ratio & Sketch ratio of data slot when dictionary.method is set to "sketch"; defaults to 0.8 \\
\hline sketched.layers & \\
\hline & Names of sketched layers, defaults to all layers of "object[[assay]]" \\
\hline seed & A positive integer. The seed for the random number generator, defaults to 123. \\
\hline verbose & Print progress and message \\
\hline
\end{tabular}

\section*{Details}

First learn a atom dictionary representation to reconstruct each cell. Then, using this dictionary representation, reconstruct the embeddings of each cell from the integrated atoms.

\section*{Value}

Returns a Seurat object with an integrated dimensional reduction
```

ProjectUMAP Project query into UMAP coordinates of a reference

```

\section*{Description}

This function will take a query dataset and project it into the coordinates of a provided reference UMAP. This is essentially a wrapper around two steps:
- FindNeighbors - Find the nearest reference cell neighbors and their distances for each query cell.
- RunUMAP - Perform umap projection by providing the neighbor set calculated above and the umap model previously computed in the reference.
```

Usage
ProjectUMAP(query, ...)
\#\# Default S3 method:
ProjectUMAP(
query,
query.dims = NULL,
reference,
reference.dims = NULL,

```
```

 k.param = 30,
 nn.method = "annoy",
 n.trees = 50,
 annoy.metric = "cosine",
 12.norm = FALSE,
 cache.index = TRUE,
 index = NULL,
 neighbor.name = "query_ref.nn",
 reduction.model,
)

S3 method for class 'DimReduc'

ProjectUMAP(
query,
query.dims = NULL,
reference,
reference.dims = NULL,
k.param = 30,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "cosine",
12.norm = FALSE,
cache.index = TRUE,
index = NULL,
neighbor.name = "query_ref.nn",
reduction.model,
)

S3 method for class 'Seurat'

ProjectUMAP(
query,
query.reduction,
query.dims = NULL,
reference,
reference.reduction,
reference.dims = NULL,
k.param = 30,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "cosine",
12.norm = FALSE,
cache.index = TRUE,
index = NULL,
neighbor.name = "query_ref.nn",
reduction.model,
reduction.name = "ref.umap",

```
```

 reduction.key = "refUMAP_",
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline query & Query dataset \\
\hline & Additional parameters to RunUMAP \\
\hline query.dims & Dimensions (columns) to use from query \\
\hline reference & Reference dataset \\
\hline reference.dims & Dimensions (columns) to use from reference \\
\hline k.param & Defines k for the k-nearest neighbor algorithm \\
\hline nn.method & Method for nearest neighbor finding. Options include: rann, annoy \\
\hline n.trees & More trees gives higher precision when using annoy approximate nearest neighbor search \\
\hline annoy.metric & Distance metric for annoy. Options include: euclidean, cosine, manhattan, and hamming \\
\hline 12.norm & Take L2Norm of the data \\
\hline cache.index & Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE) \\
\hline index & Precomputed index. Useful if querying new data against existing index to avoid recomputing. \\
\hline neighbor. name & Name to store neighbor information in the query \\
\hline \multicolumn{2}{|l|}{reduction.model} \\
\hline & DimReduc object that contains the umap model \\
\hline \multicolumn{2}{|l|}{query. reduction} \\
\hline & Name of reduction to use from the query for neighbor finding \\
\hline \multicolumn{2}{|l|}{reference. reduction} \\
\hline & Name of reduction to use from the reference for neighbor finding \\
\hline reduction. name & Name of projected UMAP to store in the query \\
\hline reduction.key & Value for the projected UMAP key \\
\hline
\end{tabular}

PseudobulkExpression Pseudobulk Expression

\section*{Description}

Normalize the count data present in a given assay.
Returns a representative expression value for each identity class

\section*{Usage}
```

PseudobulkExpression(object, ...)

S3 method for class 'Assay'

PseudobulkExpression(
object,
assay,
category.matrix,
features = NULL,
layer = "data",
slot = deprecated(),
verbose = TRUE,
)

S3 method for class 'StdAssay'

PseudobulkExpression(
object,
assay,
category.matrix,
features = NULL,
layer = "data",
slot = deprecated(),
verbose = TRUE,
)

S3 method for class 'Seurat'

PseudobulkExpression(
object,
assays = NULL,
features = NULL,
return.seurat = FALSE,
group.by = "ident",
add.ident = NULL,
layer = "data",
slot = deprecated(),
method = "average",
normalization.method = "LogNormalize",
scale.factor = 10000,
margin = 1,
verbose = TRUE,
)

```

\section*{Arguments}
object
Seurat object
\begin{tabular}{|c|c|}
\hline & Arguments to be passed to methods such as CreateSeuratObject \\
\hline assay & The name of the passed assay - used primarily for warning/error messages \\
\hline \multicolumn{2}{|l|}{category.matrix} \\
\hline & A matrix defining groupings for pseudobulk expression calculations; each column represents an identity class, and each row a sample \\
\hline features & Features to analyze. Default is all features in the assay \\
\hline layer & Layer(s) to user; if multiple are given, assumed to follow the order of 'assays' (if specified) or object's assays \\
\hline slot & (Deprecated) See layer \\
\hline verbose & Print messages and show progress bar \\
\hline assays & Which assays to use. Default is all assays \\
\hline return.seurat & Whether to return the data as a Seurat object. Default is FALSE \\
\hline group.by & Categories for grouping (e.g, "ident", "replicate", "celltype"); "ident" by default \\
\hline add.ident & (Deprecated) See group.by \\
\hline method & The method used for calculating pseudobulk expression; one of: "average" or "aggregate" \\
\hline \multicolumn{2}{|l|}{normalization.method} \\
\hline & Method for normalization, see NormalizeData \\
\hline scale.factor & Scale factor for normalization, see NormalizeData \\
\hline margin & Margin to perform CLR normalization, see NormalizeData \\
\hline
\end{tabular}

\section*{Value}

Returns object after normalization
Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.
```

Radius.SlideSeq Get Spot Radius

```

\section*{Description}

Get Spot Radius

\section*{Usage}
```


S3 method for class 'SlideSeq'

Radius(object, ...)
\#\# S3 method for class 'STARmap'
Radius(object, ...)
\#\# S3 method for class 'VisiumV1'

```
```

Radius(object, scale = "lowres", ...)

S3 method for class 'VisiumV1'

Radius(object, scale = "lowres", ...)

```

\section*{Arguments}
```

object An image object
... Arguments passed to other methods
scale A factor to scale the radius by; one of: "hires", "lowres", or NULL for the unscaled
value.

```

See Also
```

SeuratObject::Radius

```
Read10X Load in data from 10X

\section*{Description}

Enables easy loading of sparse data matrices provided by 10X genomics.

\section*{Usage}
```

 Read10X(
 data.dir,
 gene.column = 2,
 cell.column = 1,
 unique.features = TRUE,
 strip.suffix = FALSE
)
    ```

\section*{Arguments}
data.dir Directory containing the matrix.mtx, genes.tsv (or features.tsv), and barcodes.tsv files provided by 10X. A vector or named vector can be given in order to load several data directories. If a named vector is given, the cell barcode names will be prefixed with the name.
gene.column Specify which column of genes.tsv or features.tsv to use for gene names; default is 2
cell.column Specify which column of barcodes.tsv to use for cell names; default is 1 unique.features Make feature names unique (default TRUE)
strip.suffix Remove trailing "-1" if present in all cell barcodes.

\section*{Value}

If features.csv indicates the data has multiple data types, a list containing a sparse matrix of the data from each type will be returned. Otherwise a sparse matrix containing the expression data will be returned.

\section*{Examples}
```


Not run:

For output from CellRanger < 3.0

data_dir <- 'path/to/data/directory'
list.files(data_dir) \# Should show barcodes.tsv, genes.tsv, and matrix.mtx
expression_matrix <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = expression_matrix)

For output from CellRanger >= 3.0 with multiple data types

data_dir <- 'path/to/data/directory'
list.files(data_dir) \# Should show barcodes.tsv.gz, features.tsv.gz, and matrix.mtx.gz
data <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = data$`Gene Expression`)
seurat_object[['Protein']] = CreateAssayObject(counts = data$`Antibody Capture`)

End(Not run)

```
Read10X_Coordinates Load 10X Genomics Visium Tissue Positions

\section*{Description}

Load 10X Genomics Visium Tissue Positions

\section*{Usage}

Read10X_Coordinates(filename, filter.matrix)

\section*{Arguments}
filename Path to a tissue_positions_list.csv file
filter.matrix Filter spot/feature matrix to only include spots that have been determined to be over tissue

\section*{Value}

A data.frame
```

Read10X_h5 Read 10X hdf5 file

```

\section*{Description}

Read count matrix from 10X CellRanger hdf5 file. This can be used to read both scATAC-seq and scRNA-seq matrices.

\section*{Usage}

Read10X_h5(filename, use.names = TRUE, unique.features = TRUE)

\section*{Arguments}
\begin{tabular}{ll} 
filename & Path to h5 file \\
use. names & Label row names with feature names rather than ID numbers. \\
unique.features
\end{tabular}

Make feature names unique (default TRUE)

\section*{Value}

Returns a sparse matrix with rows and columns labeled. If multiple genomes are present, returns a list of sparse matrices (one per genome).
Read10X_Image Load a 10X Genomics Visium Image

\section*{Description}

Load a 10X Genomics Visium Image

\section*{Usage}
```

 Read10X_Image(
 image.dir,
 image.name = "tissue_lowres_image.png",
 assay = "Spatial",
 slice = "slice1",
 filter.matrix = TRUE
)
    ```

\section*{Arguments}
\begin{tabular}{ll} 
image.dir & \begin{tabular}{l} 
Path to directory with 10X Genomics visium image data; should include files \\
tissue_lowres_image.png, scalefactors_json.json and tissue_positions_list.csv
\end{tabular} \\
image.name & PNG file to read in \\
assay & Name of associated assay \\
slice & \begin{tabular}{l} 
Name for the image, used to populate the instance's key \\
filter.matrix
\end{tabular} \\
\begin{tabular}{l} 
Filter spot/feature matrix to only include spots that have been determined to be \\
over tissue
\end{tabular}
\end{tabular}

Value
A VisiumV2 object
```

See Also

```
```

VisiumV2 Load10X_Spatial

```
```

VisiumV2 Load10X_Spatial

```
Read10X_probe_metadata

\section*{Read10x Probe Metadata}

\section*{Description}

This function reads the probe metadata from a 10x Genomics probe barcode matrix file in HDF5 format.

\section*{Usage}

Read10X_probe_metadata(data.dir, filename = "raw_probe_bc_matrix.h5")

\section*{Arguments}
data.dir The directory where the file is located.
filename The name of the file containing the raw probe barcode matrix in HDF5 format. The default filename is 'raw_probe_bc_matrix.h5'.

\section*{Value}

Returns a data.frame containing the probe metadata.

\section*{Description}

Load 10X Genomics Visium Scale Factors

\section*{Usage}

Read10X_ScaleFactors(filename)

\section*{Arguments}
filename Path to a scalefactors_json.json file

\section*{Value}

A scalefactors object
ReadAkoya Read and Load Akoya CODEX data

\section*{Description}

Read and Load Akoya CODEX data

\section*{Usage}
```

ReadAkoya(
filename,
type = c("inform", "processor", "qupath"),
filter = "DAPI|Blank|Empty",
inform.quant = c("mean", "total", "min", "max", "std")
)
LoadAkoya(
filename,
type = c("inform", "processor", "qupath"),
fov,
assay = "Akoya",
)

```

\section*{Arguments}
\begin{tabular}{ll} 
filename & Path to matrix generated by upstream processing. \\
type & \begin{tabular}{l} 
Specify which type matrix is being provided. \\
• "processor": matrix generated by CODEX Processor \\
• "inform": matrix generated by inForm \\
• "qupath": matrix generated by QuPath
\end{tabular} \\
& \begin{tabular}{l} 
A pattern to filter features by; pass NA to skip feature filtering
\end{tabular} \\
filter \\
inform. quant & When type is "inform", the quantification level to read in \\
fov & Name to store FOV as \\
assay & Name to store expression matrix as \\
... & Ignored
\end{tabular}

\section*{Value}

ReadAkoya: A list with some combination of the following values
- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", " \(y\) ", and "cell"
- "metadata": a data frame with cell-level meta data; includes all columns in filename that aren't in "matrix" or "centroids"

When type is "inform", additional expression matrices are returned and named using their segmentation type (eg. "nucleus", "membrane"). The "Entire Cell" segmentation type is returned in the "matrix" entry of the list

LoadAkoya: A Seurat object

\section*{Progress Updates with progressr}

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers (global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

\section*{Note}

This function requires the data.table package to be installed

\section*{Description}

Enables easy loading of sparse data matrices

\section*{Usage}
```

ReadMtx(
mtx,
cells,
features,
cell.column = 1,
feature.column = 2,
cell.sep = "\t",
feature.sep = "\t",
skip.cell = 0,
skip.feature = 0,
mtx.transpose = FALSE,
unique.features = TRUE,
strip.suffix = FALSE
)

```

\section*{Arguments}
mtx \(\quad\) Name or remote URL of the mtx file
cells Name or remote URL of the cells/barcodes file
features Name or remote URL of the features/genes file
cell.column Specify which column of cells file to use for cell names; default is 1
feature.column Specify which column of features files to use for feature/gene names; default is 2
cell.sep Specify the delimiter in the cell name file
feature.sep Specify the delimiter in the feature name file
skip.cell Number of lines to skip in the cells file before beginning to read cell names
skip.feature Number of lines to skip in the features file before beginning to gene names
mtx.transpose Transpose the matrix after reading in
unique.features
Make feature names unique (default TRUE)
strip.suffix Remove trailing "-1" if present in all cell barcodes.

\section*{Value}

A sparse matrix containing the expression data.

\section*{Examples}
```


Not run:

For local files:

expression_matrix <- ReadMtx(
mtx = "count_matrix.mtx.gz", features = "features.tsv.gz",
cells = "barcodes.tsv.gz"
)
seurat_object <- CreateSeuratObject(counts = expression_matrix)

For remote files:

expression_matrix <- ReadMtx(mtx = "http://localhost/matrix.mtx",
cells = "http://localhost/barcodes.tsv",
features = "http://localhost/genes.tsv")
seurat_object <- CreateSeuratObject(counts = data)

End(Not run)

```
ReadNanostring Read and Load Nanostring SMI data

\section*{Description}

Read and Load Nanostring SMI data

\section*{Usage}
```

ReadNanostring(
data.dir,
mtx.file = NULL,
metadata.file = NULL,
molecules.file = NULL,
segmentations.file = NULL,
type = "centroids",
mol.type = "pixels",
metadata = NULL,
mols.filter = NA_character_,
genes.filter = NA_character_,
fov.filter = NULL,
subset.counts.matrix = NULL,
cell.mols.only = TRUE
)

```
    LoadNanostring(data.dir, fov, assay = "Nanostring")

\section*{Arguments}
data.dir Path to folder containing Nanostring SMI outputs
\(m t x . f i l e \quad\) Path to Nanostring cell \(x\) gene matrix CSV
metadata.file Contains metadata including cell center, area, and stain intensities
molecules.file Path to molecules file
segmentations.file
Path to segmentations CSV
type Type of cell spatial coordinate matrices to read; choose one or more of:
- "centroids": cell centroids in pixel coordinate space
- "segmentations": cell segmentations in pixel coordinate space
mol.type Type of molecule spatial coordinate matrices to read; choose one or more of:
- "pixels": molecule coordinates in pixel space
metadata Type of available metadata to read; choose zero or more of:
- "Area": number of pixels in cell segmentation
- "fov": cell's fov
- "Mean.MembraneStain": mean membrane stain intensity
- "Mean.DAPI": mean DAPI stain intensity
- "Mean.G": mean green channel stain intensity
- "Mean.Y": mean yellow channel stain intensity
- "Mean.R": mean red channel stain intensity
- "Max.MembraneStain": max membrane stain intensity
- "Max.DAPI": max DAPI stain intensity
- "Max.G": max green channel stain intensity
- "Max.Y": max yellow stain intensity
- "Max.R": max red stain intensity
mols.filter Filter molecules that match provided string
genes.filter Filter genes from cell \(x\) gene matrix that match provided string
fov.filter Only load in select FOVs. Nanostring SMI data contains 30 total FOVs.
subset.counts.matrix
If the counts matrix should be built from molecule coordinates for a specific segmentation; One of:
- "Nuclear": nuclear segmentations
- "Cytoplasm": cell cytoplasm segmentations
- "Membrane": cell membrane segmentations
cell.mols.only If TRUE, only load molecules within a cell
fov Name to store FOV as
assay Name to store expression matrix as

\section*{Value}

ReadNanostring: A list with some combination of the following values:
- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"

LoadNanostring: A Seurat object

\section*{Progress Updates with progressr}

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers (global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

\section*{Parallelization with future}

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple \(R\) sessions; for other plans, see the "Implemented evaluation strategies" section of ?future: :plan. For a more thorough introduction to future, see vignette("future-1-overview")

\section*{Note}

This function requires the data.table package to be installed

\section*{Description}

Read output from Parse Biosciences

\section*{Usage}

ReadParseBio(data.dir, ...)

\section*{Arguments}
\begin{tabular}{ll} 
data.dir & Directory containing the data files \\
\(\ldots\) & Extra parameters passed to ReadMtx
\end{tabular}
ReadSlideSeq Load Slide-seq spatial data

\section*{Description}

Load Slide-seq spatial data

\section*{Usage}

ReadSlideSeq(coord.file, assay = "Spatial")

\section*{Arguments}
coord.file Path to csv file containing bead coordinate positions
assay Name of assay to associate image to

\section*{Value}

A SlideSeq object

\section*{See Also}

SlideSeq

ReadSTARsolo
Read output from STARsolo

\section*{Description}

Read output from STARsolo

\section*{Usage}

ReadSTARsolo(data.dir, ...)

\section*{Arguments}
\begin{tabular}{ll} 
data.dir & Directory containing the data files \\
\(\ldots\) & Extra parameters passed to ReadMtx
\end{tabular}
ReadVitessce Read Data From Vitessce

\section*{Description}

Read in data from Vitessce-formatted JSON files

\section*{Usage}

ReadVitessce(
        counts = NULL,
        coords = NULL,
        molecules = NULL,
        type = c("segmentations", "centroids"),
        filter = NA_character_
    )

LoadHuBMAPCODEX(data.dir, fov, assay = "CODEX")

\section*{Arguments}
counts Path or URL to a Vitessce-formatted JSON file with expression data; should end in ".genes.json" or ". clusters. json"; pass NULL to skip
coords Path or URL to a Vitessce-formatted JSON file with cell/spot spatial coordinates; should end in ". cells. json"; pass NULL to skip
molecules Path or URL to a Vitessce-formatted JSON file with molecule spatial coordinates; should end in ". molecules.json"; pass NULL to skip
type Type of cell/spot spatial coordinates to return, choose one or more from:
- "segmentations" cell/spot segmentations
- "centroids" cell/spot centroids
filter A character to filter molecules by, pass NA to skip molecule filtering
data.dir Path to a directory containing Vitessce cells and clusters JSONs
fov Name to store FOV as
assay \(\quad\) Name to store expression matrix as

\section*{Value}

ReadVitessce: A list with some combination of the following values:
- "counts": if counts is not NULL, an expression matrix with cells as columns and features as rows
- "centroids": if coords is not NULL and type is contains"centroids", a data frame with cell centroids in three columns: " \(x\) ", " \(y\) ", and "cell"
- "segmentations": if coords is not NULL and type contains "centroids", a data frame with cell segmentations in three columns: "x", "y" and "cell"
- "molecules": if molecules is not NULL, a data frame with molecule spatial coordinates in three columns: "x", "y", and "gene"

LoadHuBMAPCODEX: A Seurat object

\section*{Progress Updates with progressr}

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers (global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

\section*{Note}

This function requires the jsonlite package to be installed

\section*{Examples}
```


Not run:

coords <- ReadVitessce(
counts =
"https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.genes.json",
coords =
"https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.cells.json",
molecules =
"https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.molecules.json"
)
names(coords)
coords$counts[1:10, 1:10]
head(coords$centroids)
head(coords$segmentations)
head(coords$molecules)

End(Not run)

```
ReadVizgen Read and Load MERFISH Input from Vizgen

\section*{Description}

Read and load in MERFISH data from Vizgen-formatted files

\section*{Usage}

ReadVizgen(
data.dir,
transcripts \(=\) NULL,
spatial = NULL,
molecules = NULL,
```

 type = "segmentations",
 mol.type = "microns",
 metadata = NULL,
 filter = NA_character_,
 z = 3L
)
LoadVizgen(data.dir, fov, assay = "Vizgen", z = 3L)

```

\section*{Arguments}
data.dir Path to the directory with Vizgen MERFISH files; requires at least one of the following files present:
- "cell_by_gene.csv": used for reading count matrix
- "cell_metadata.csv": used for reading cell spatial coordinate matrices
- "detected_transcripts.csv": used for reading molecule spatial coordinate matrices
transcripts Optional file path for counts matrix; pass NA to suppress reading counts matrix
spatial Optional file path for spatial metadata; pass NA to suppress reading spatial coordinates. If spatial is provided and type is "segmentations", uses dirname(spatial) instead of data.dir to find HDF5 files
molecules Optional file path for molecule coordinates file; pass NA to suppress reading spatial molecule information
type \(\quad\) Type of cell spatial coordinate matrices to read; choose one or more of:
- "segmentations": cell segmentation vertices; requires hdf5r to be installed and requires a directory "cell_boundaries" within data.dir. Within "cell_boundaries", there must be one or more HDF5 file named "feature_data_\#\#.hdf5"
- "centroids": cell centroids in micron coordinate space
- "boxes": cell box outlines in micron coordinate space
mol.type Type of molecule spatial coordinate matrices to read; choose one or more of:
- "pixels": molecule coordinates in pixel space
- "microns": molecule coordinates in micron space
metadata Type of available metadata to read; choose zero or more of:
- "volume": estimated cell volume
- "fov": cell's fov
filter A character to filter molecules by, pass NA to skip molecule filtering
z
Z-index to load; must be between 0 and 6, inclusive
fov Name to store FOV as
assay \(\quad\) Name to store expression matrix as

\section*{Value}

ReadVizgen: A list with some combination of the following values:
- "transcripts": a sparse matrix with expression data; cells are columns and features are rows
- "segmentations": a data frame with cell polygon outlines in three columns: "x", " \(y\) ", and "cell"
- "centroids": a data frame with cell centroid coordinates in three columns: "x", " \(y\) ", and "cell"
- "boxes": a data frame with cell box outlines in three columns: "x", "y", and "cell"
- "microns": a data frame with molecule micron coordinates in three columns: "x", " \(y\) ", and "gene"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"
- "metadata": a data frame with the cell-level metadata requested by metadata

LoadVizgen: A Seurat object

\section*{Progress Updates with progressr}

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers (global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

\section*{Parallelization with future}

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple \(R\) sessions; for other plans, see the "Implemented evaluation strategies" section of ?future: :plan. For a more thorough introduction to future, see vignette("future-1-overview")

\section*{Note}

This function requires the data.table package to be installed
RegroupIdents Regroup idents based on meta.data info

\section*{Description}

For cells in each ident, set a new identity based on the most common value of a specified metadata column.

\section*{Usage}

RegroupIdents(object, metadata)

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
metadata & Name of metadata column
\end{tabular}

\section*{Value}

A Seurat object with the active idents regrouped

\section*{Examples}
```

data("pbmc_small")
pbmc_small <- RegroupIdents(pbmc_small, metadata = "groups")

```
RelativeCounts Normalize raw data to fractions

\section*{Description}

Normalize count data to relative counts per cell by dividing by the total per cell. Optionally use a scale factor, e.g. for counts per million (CPM) use scale. factor \(=1 \mathrm{e} 6\).

\section*{Usage}

RelativeCounts(data, scale.factor = 1, verbose = TRUE)

\section*{Arguments}
\begin{tabular}{ll} 
data & Matrix with the raw count data \\
scale.factor & Scale the result. Default is 1 \\
verbose & Print progress
\end{tabular}

\section*{Value}

Returns a matrix with the relative counts

\section*{Examples}
```

mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- RelativeCounts(data = mat)
mat_norm

```

\section*{Description}

Rename Cells in an Object
```

Usage
\#\# S3 method for class 'SCTAssay'
RenameCells(object, new.names = NULL, ...)
\#\# S3 method for class 'SlideSeq'
RenameCells(object, new.names = NULL, ...)
\#\# S3 method for class 'STARmap'
RenameCells(object, new.names = NULL, ...)
\#\# S3 method for class 'VisiumV1'
RenameCells(object, new.names = NULL, ...)

```

\section*{Arguments}
object An object
new. names vector of new cell names
... Arguments passed to other methods

\section*{See Also}

SeuratObject: :RenameCells
RidgePlot Single cell ridge plot

\section*{Description}

Draws a ridge plot of single cell data (gene expression, metrics, PC scores, etc.)

\section*{Usage}
```

RidgePlot(
object,
features,
cols = NULL,
idents = NULL,
sort = FALSE,
assay = NULL,
group.by = NULL,
y.max = NULL,
same.y.lims = FALSE,
log = FALSE,
ncol = NULL,
slot = deprecated(),
layer = "data",
stack = FALSE,
combine = TRUE,
fill.by = "feature"
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline object & Seurat object \\
\hline features & Features to plot (gene expression, metrics, PC scores, anything that can be retreived by FetchData) \\
\hline cols & Colors to use for plotting \\
\hline idents & Which classes to include in the plot (default is all) \\
\hline sort & Sort identity classes (on the x-axis) by the average expression of the attribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction \\
\hline assay & Name of assay to use, defaults to the active assay \\
\hline group.by & Group (color) cells in different ways (for example, orig.ident) \\
\hline \(y\).max & Maximum y axis value \\
\hline same.y.lims & Set all the y-axis limits to the same values \\
\hline log & plot the feature axis on log scale \\
\hline ncol & Number of columns if multiple plots are displayed \\
\hline slot & Slot to pull expression data from (e.g. "counts" or "data") \\
\hline layer & Layer to pull expression data from (e.g. "counts" or "data") \\
\hline stack & Horizontally stack plots for each feature \\
\hline combine & Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot \\
\hline fill.by & Color violins/ridges based on either 'feature' or 'ident' \\
\hline
\end{tabular}

\section*{Value}

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

\section*{Examples}
```

data("pbmc_small")
RidgePlot(object = pbmc_small, features = 'PC_1')

```
RPCAIntegration Seurat-RPCA Integration

\section*{Description}

\section*{Seurat-RPCA Integration}

\section*{Usage}

RPCAIntegration( object = NULL, assay = NULL, layers = NULL,
        orig = NULL,
        new.reduction = "integrated.dr",
        reference = NULL,
        features = NULL,
        normalization.method = c("LogNormalize", "SCT"),
        dims = 1:30,
        k.filter = NA,
        scale.layer = "scale.data",
        dims.to.integrate = NULL,
        k.weight \(=100\),
        weight. reduction \(=\) NULL,
        sd.weight = 1,
        sample.tree = NULL,
        preserve.order = FALSE,
        verbose = TRUE,
    )

Arguments
\begin{tabular}{ll} 
object & A Seurat object \\
assay & Name of Assay in the Seurat object \\
layers & Names of layers in assay \\
orig & A dimensional reduction to correct \\
new.reduction & Name of new integrated dimensional reduction \\
reference & A reference Seurat object \\
features & A vector of features to use for integration
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Name of normalization method used: LogNormalize or SCT \\
\hline dims & Dimensions of dimensional reduction to use for integration \\
\hline k.filter & Number of anchors to filter \\
\hline scale.layer & Name of scaled layer in Assay \\
\hline \multicolumn{2}{|l|}{dims.to.integrate} \\
\hline & Number of dimensions to return integrated values for \\
\hline k.weight & Number of neighbors to consider when weighting anchors \\
\hline \multicolumn{2}{|l|}{weight.reduction} \\
\hline & Dimension reduction to use when calculating anchor weights. This can be one of: \\
\hline & - A string, specifying the name of a dimension reduction present in all objects to be integrated \\
\hline & - A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated \\
\hline & - A vector of DimReduc objects, specifying the object to use for each object in the integration \\
\hline & - NULL, in which case the full corrected space is used for computing anchor weights. \\
\hline sd.weight & Controls the bandwidth of the Gaussian kernel for weighting \\
\hline \multirow[t]{6}{*}{sample.tree} & Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix ( \(\mathrm{c}(-2,1,-3,-1)\), ncol \(=2\) ) gives: \\
\hline & [,1] [,2] \\
\hline & \([1] \quad-2-\), \\
\hline & \([2] \quad 1 \quad-\), \\
\hline & Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1 . \\
\hline & If NULL, the sample tree will be computed automatically. \\
\hline preserve.order & Do not reorder objects based on size for each pairwise integration. \\
\hline verbose & Print progress \\
\hline & Arguments passed on to FindIntegrationAnchors \\
\hline
\end{tabular}

\section*{Examples}
```


Not run:

Preprocessing

obj <- SeuratData::LoadData("pbmcsca")
obj[["RNA"]] <- split(obj[["RNA"]], f = obj\$Method)
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)

```
```

obj <- RunPCA(obj)

After preprocessing, we run integration

obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
orig.reduction = "pca", new.reduction = 'integrated.rpca',
verbose = FALSE)

Reference-based Integration

Here, we use the first layer as a reference for integraion

Thus, we only identify anchors between the reference and the rest of the datasets,

saving computational resources

obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
orig.reduction = "pca", new.reduction = 'integrated.rpca',
reference = 1, verbose = FALSE)

Modifying parameters

We can also specify parameters such as `k.anchor` to increase the strength of

integration

obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
orig.reduction = "pca", new.reduction = 'integrated.rpca',
k.anchor = 20, verbose = FALSE)

Integrating SCTransformed data

obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
orig.reduction = "pca", new.reduction = 'integrated.rpca',
assay = "SCT", verbose = FALSE)

End(Not run)

```

\section*{Description}

Runs a canonical correlation analysis using a diagonal implementation of CCA. For details about stored CCA calculation parameters, see PrintCCAParams.

\section*{Usage}

RunCCA(object1, object2, ...)
\#\# Default S3 method:
RunCCA(
object1,
object2,
standardize = TRUE,
num.cc \(=20\),
```

 seed.use = 42,
 verbose = FALSE,
)

S3 method for class 'Seurat'

RunCCA(
object1,
object2,
assay1 = NULL,
assay2 = NULL,
num.cc = 20,
features = NULL,
renormalize = FALSE,
rescale = FALSE,
compute.gene.loadings = TRUE,
add.cell.id1 = NULL,
add.cell.id2 = NULL,
verbose = TRUE,
...
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object1 & First Seurat object \\
object2 & Second Seurat object.
\end{tabular}
... Extra parameters (passed onto MergeSeurat in case with two objects passed, passed onto ScaleData in case with single object and rescale.groups set to TRUE)
standardize Standardize matrices - scales columns to have unit variance and mean 0
num.cc Number of canonical vectors to calculate
seed.use Random seed to set. If NULL, does not set a seed
verbose Show progress messages
assay1, assay2 Assays to pull from in the first and second objects, respectively
features \(\quad\) Set of genes to use in CCA. Default is the union of both the variable features sets present in both objects.
renormalize Renormalize raw data after merging the objects. If FALSE, merge the data matrices also.
rescale Rescale the datasets prior to CCA. If FALSE, uses existing data in the scale data slots.
compute.gene.loadings
Also compute the gene loadings. NOTE - this will scale every gene in the dataset which may impose a high memory cost.
add.cell.id1, add.cell.id2
Add ...

\section*{Value}

Returns a combined Seurat object with the CCA results stored.

\section*{See Also}

\author{
merge. Seurat
}

\section*{Examples}
```


Not run:

data("pbmc_small")
pbmc_small

As CCA requires two datasets, we will split our test object into two just for this example

pbmc1 <- subset(pbmc_small, cells = colnames(pbmc_small)[1:40])
pbmc2 <- subset(pbmc_small, cells = colnames(x = pbmc_small)[41:80])
pbmc1[["group"]] <- "group1"
pbmc2[["group"]] <- "group2"
pbmc_cca <- RunCCA(object1 = pbmc1, object2 = pbmc2)

Print results

print(x = pbmc_cca[["cca"]])

End(Not run)

```

RunGraphLaplacian Run Graph Laplacian Eigendecomposition

\section*{Description}

Run a graph laplacian dimensionality reduction. It is used as a low dimensional representation for a cell-cell graph. The input graph should be symmetric

\section*{Usage}
```

RunGraphLaplacian(object, ...)

S3 method for class 'Seurat'

RunGraphLaplacian(
object,
graph,
reduction.name = "lap",
reduction.key = "LAP_",
n = 50,
verbose = TRUE,
)

Default S3 method:

RunGraphLaplacian(object, n = 50, reduction.key = "LAP_", verbose = TRUE, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & A Seurat object \\
\(\ldots\) & Arguments passed to eigs_sym \\
graph & The name of graph \\
reduction. name & dimensional reduction name, lap by default \\
reduction. key & \begin{tabular}{l} 
dimensional reduction key, specifies the string before the number for the dimen- \\
sion names. LAP by default
\end{tabular} \\
n & \begin{tabular}{l} 
Total Number of Eigenvectors to compute and store (50 by default)
\end{tabular} \\
verbose & Print message and process
\end{tabular}

\section*{Value}

Returns Seurat object with the Graph laplacian eigenvector calculation stored in the reductions slot

RunICA Run Independent Component Analysis on gene expression

\section*{Description}

Run fastica algorithm from the ica package for ICA dimensionality reduction. For details about stored ICA calculation parameters, see PrintICAParams.

\section*{Usage}

RunICA(object, ...)
\#\# Default S3 method:
RunICA(
object,
assay = NULL,
nics = 50,
rev.ica = FALSE,
ica.function = "icafast",
verbose = TRUE,
ndims.print \(=1: 5\),
nfeatures.print \(=30\),
reduction.name = "ica",
reduction.key = "ica_",
seed.use \(=42\),
)
\#\# S3 method for class 'Assay'
RunICA(
object,
```

 assay = NULL,
 features = NULL,
 nics = 50,
 rev.ica = FALSE,
 ica.function = "icafast",
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
 reduction.name = "ica",
 reduction.key = "ica_",
 seed.use = 42,
)

S3 method for class 'Seurat'

RunICA(
object,
assay = NULL,
features = NULL,
nics = 50,
rev.ica = FALSE,
ica.function = "icafast",
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.name = "ica",
reduction.key = "IC_",
seed.use = 42,
..
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
\(\ldots\) & Additional arguments to be passed to fastica \\
assay & Name of Assay ICA is being run on \\
nics & Number of ICs to compute \\
rev.ica & \begin{tabular}{l} 
By default, computes the dimensional reduction on the cell x feature matrix. \\
Setting to true will compute it on the transpose (feature x cell matrix).
\end{tabular} \\
\begin{tabular}{ll} 
ica.function & ICA function from ica package to run (options: icafast, icaimax, icajade) \\
verbose & Print the top genes associated with high/low loadings for the ICs \\
ndims.print & ICs to print genes for \\
nfeatures.print
\end{tabular} \\
& Number of genes to print for each IC
\end{tabular}
\[
\begin{array}{ll}
\text { reduction. key } & \text { dimensional reduction key, specifies the string before the number for the dimen- } \\
\text { sion names. } \\
\text { seed. use } & \text { Set a random seed. Setting NULL will not set a seed. } \\
\text { features } & \text { Features to compute ICA on }
\end{array}
\]

RunLDA Run Linear Discriminant Analysis

\section*{Description}

Run Linear Discriminant Analysis
Function to perform Linear Discriminant Analysis.

\section*{Usage}

RunLDA(object, ...)
\#\# Default S3 method:
RunLDA(
object,
labels,
assay = NULL,
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print \(=30\),
reduction.key = "LDA_",
seed \(=42\),
)
\#\# S3 method for class 'Assay'
RunLDA(
object,
assay = NULL,
labels,
features = NULL, verbose = TRUE, ndims.print \(=1: 5\), nfeatures.print \(=30\), reduction.key = "LDA_", seed \(=42\),
...
)
\#\# S3 method for class 'Seurat'
RunLDA(
```

 object,
 assay = NULL,
 labels,
 features = NULL,
 reduction.name = "lda",
 reduction.key = "LDA_",
 seed = 42,
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object of class Seurat. \\
\(\ldots\) & Arguments passed to other methods \\
labels & Meta data column with target gene class labels. \\
assay & Assay to use for performing Linear Discriminant Analysis (LDA). \\
verbose & Print the top genes associated with high/low loadings for the PCs \\
ndims.print & Number of LDA dimensions to print. \\
nfeatures.print & Number of features to print for each LDA component. \\
reduction.key & \begin{tabular}{l} 
Reduction key name. \\
seed
\end{tabular} \\
\begin{tabular}{l} 
Value for random seed
\end{tabular} \\
reatures & Features to compute LDA on \\
\hline
\end{tabular}

Run the mark variogram computation on a given position matrix and expression matrix.

\section*{Description}

Wraps the functionality of markvario from the spatstat package.

\section*{Usage}

RunMarkVario(spatial.location, data, ...)

\section*{Arguments}
```

 spatial.location
    ```
                    A 2 column matrix giving the spatial locations of each of the data points also in data
data Matrix containing the data used as "marks" (e.g. gene expression)
Arguments passed to markvario
```

RunMixscape

```

Run Mixscape

\section*{Description}

Function to identify perturbed and non-perturbed gRNA expressing cells that accounts for multiple treatments/conditions/chemical perturbations.

\section*{Usage}

RunMixscape(
object,
assay = "PRTB",
        slot = "scale.data",
        labels = "gene",
        nt.class.name \(=\) " NT ",
        new.class.name = "mixscape_class",
        min.de.genes \(=5\),
        min.cells = 5,
        de.assay = "RNA",
        logfc.threshold \(=0.25\),
        iter.num = 10,
        verbose = FALSE,
        split.by = NULL,
        fine.mode = FALSE,
        fine.mode.labels = "guide_ID",
        prtb.type = "KO"
    )

\section*{Arguments}
\begin{tabular}{ll} 
object & An object of class Seurat. \\
assay & Assay to use for mixscape classification. \\
slot & Assay data slot to use. \\
labels & metadata column with target gene labels. \\
nt.class.name & Classification name of non-targeting gRNA cells. \\
new.class.name & Name of mixscape classification to be stored in metadata.
\end{tabular}
\begin{tabular}{ll} 
min.de.genes & \begin{tabular}{l} 
Required number of genes that are differentially expressed for method to sepa- \\
rate perturbed and non-perturbed cells. \\
Minimum number of cells in target gene class. If fewer than this many cells are \\
assigned to a target gene class during classification, all are assigned NP.
\end{tabular} \\
min.cells & \begin{tabular}{l} 
Assay to use when performing differential expression analysis. Usually RNA. \\
de.assay \\
logfc.threshold
\end{tabular} \\
Limit testing to genes which show, on average, at least X-fold difference (log- \\
scale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold \\
speeds up the function, but can miss weaker signals.
\end{tabular}

\section*{Value}

Returns Seurat object with with the following information in the meta data and tools slots:
mixscape_class Classification result with cells being either classified as perturbed (KO, by default) or non-perturbed (NP) based on their target gene class.
mixscape_class.global Global classification result (perturbed, NP or NT)
p_ko Posterior probabilities used to determine if a cell is KO (default). Name of this item will change to match prtb.type parameter setting. \((>0.5)\) or NP
perturbation score Perturbation scores for every cell calculated in the first iteration of the function.

RunMoransI
Compute Moran's I value.

\section*{Description}

Wraps the functionality of the Moran.I function from the ape package. Weights are computed as 1/distance.

\section*{Usage}

RunMoransI(data, pos, verbose \(=\) TRUE)

\section*{Arguments}
\begin{tabular}{ll} 
data & Expression matrix \\
pos & Position matrix \\
verbose & Display messages/progress
\end{tabular}

RunPCA Run Principal Component Analysis

\section*{Description}

Run a PCA dimensionality reduction. For details about stored PCA calculation parameters, see PrintPCAParams.

\section*{Usage}

RunPCA(object, ...)
\#\# Default S3 method:
RunPCA(
object,
assay = NULL,
npcs \(=50\),
rev.pca = FALSE,
weight.by.var \(=\) TRUE, verbose = TRUE,
ndims.print = 1:5,
nfeatures.print \(=30\),
reduction.key = "PC_",
seed.use = 42,
approx = TRUE,
)
\#\# S3 method for class 'Assay'
RunPCA(
object,
assay = NULL,
features = NULL,
npcs \(=50\),
rev.pca = FALSE,
weight.by.var = TRUE,
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.key = "PC_",
seed.use = 42,
```

)

S3 method for class 'Seurat'

RunPCA(
object,
assay = NULL,
features = NULL,
npcs = 50,
rev.pca = FALSE,
weight.by.var = TRUE,
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.name = "pca",
reduction.key = "PC_",
seed.use = 42,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object \\
\(\ldots\) & Arguments passed to other methods and IRLBA \\
assay & \begin{tabular}{l} 
Name of Assay PCA is being run on
\end{tabular} \\
npcs & Total Number of PCs to compute and store ( 50 by default) \\
rev.pca & \begin{tabular}{l} 
By default computes the PCA on the cell x gene matrix. Setting to true will \\
compute it on gene x cell matrix.
\end{tabular} \\
weight.by.var & \begin{tabular}{l} 
Weight the cell embeddings by the variance of each PC (weights the gene load- \\
ings if rev.pca is TRUE)
\end{tabular} \\
verbose & \begin{tabular}{l} 
Print the top genes associated with high/low loadings for the PCs
\end{tabular} \\
ndims.print & \begin{tabular}{l} 
PCs to print genes for
\end{tabular} \\
nfeatures.print
\end{tabular}\(\quad\)\begin{tabular}{l} 
Number of genes to print for each PC
\end{tabular}

\section*{Value}

Returns Seurat object with the PCA calculation stored in the reductions slot

\section*{Description}

Run a supervised LSI (SLSI) dimensionality reduction supervised by a cell-cell kernel. SLSI is used to capture a linear transformation of peaks that maximizes its dependency to the given cell-cell kernel.

\section*{Usage}

RunSLSI(object, ...)
\#\# Default S3 method:
RunSLSI (
object,
assay = NULL,
\(\mathrm{n}=50\),
reduction.key = "SLSI_",
graph = NULL,
verbose \(=\) TRUE, seed.use \(=42\),
)
\#\# S3 method for class 'Assay'
RunSLSI(
object,
assay = NULL,
features = NULL, \(\mathrm{n}=50\), reduction.key = "SLSI_", graph = NULL, verbose = TRUE, seed. use \(=42\),
)
\#\# S3 method for class 'Seurat'
RunSLSI(
object,
assay = NULL,
features = NULL,
```

 n = 50,
 reduction.name = "slsi",
 reduction.key = "SLSI_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 ...
)
    ```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object \\
\(\ldots\) & Arguments passed to IRLBA irlba \\
assay & Name of Assay SLSI is being run on \\
n & Total Number of SLSI components to compute and store \\
reduction.key & \begin{tabular}{l} 
dimensional reduction key, specifies the string before the number for the dimen- \\
sion names
\end{tabular} \\
graph & \begin{tabular}{l} 
Graph used supervised by SLSI \\
verbose
\end{tabular} \\
\begin{tabular}{l} 
Display messages
\end{tabular} \\
seed.use & \begin{tabular}{l} 
Set a random seed. Setting NULL will not set a seed. \\
features
\end{tabular} \\
\begin{tabular}{l} 
Features to compute SLSI on. If NULL, SLSI will be run using the variable \\
features for the Assay.
\end{tabular} \\
reduction. name & \begin{tabular}{l} 
dimensional reduction name
\end{tabular}
\end{tabular}

\section*{Value}

Returns Seurat object with the SLSI calculation stored in the reductions slot
RunSPCA Run Supervised Principal Component Analysis

\section*{Description}

Run a supervised PCA (SPCA) dimensionality reduction supervised by a cell-cell kernel. SPCA is used to capture a linear transformation which maximizes its dependency to the given cell-cell kernel. We use SNN graph as the kernel to supervise the linear matrix factorization.

\section*{Usage}

RunSPCA(object, ...)
\#\# Default S3 method:
RunSPCA(
object,
assay = NULL,
```

 npcs = 50,
 reduction.key = "SPC_",
 graph = NULL,
 verbose = FALSE,
 seed.use = 42,
 ..
)

S3 method for class 'Assay'

RunSPCA(
object,
assay = NULL,
features = NULL,
npcs = 50,
reduction.key = "SPC_",
graph = NULL,
verbose = TRUE,
seed.use = 42,
...
)

S3 method for class 'Assay5'

RunSPCA(
object,
assay = NULL,
features = NULL,
npcs = 50,
reduction.key = "SPC_",
graph = NULL,
verbose = TRUE,
seed.use = 42,
layer = "scale.data",
)

S3 method for class 'Seurat'

RunSPCA(
object,
assay = NULL,
features = NULL,
npcs = 50,
reduction.name = "spca",
reduction.key = "SPC_",
graph = NULL,
verbose = TRUE,
seed.use = 42,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object \\
\(\ldots\) & Arguments passed to other methods and IRLBA \\
assay & Name of Assay SPCA is being run on \\
npcs & Total Number of SPCs to compute and store (50 by default) \\
reduction.key & \begin{tabular}{l} 
dimensional reduction key, specifies the string before the number for the dimen- \\
sion names. SPC by default
\end{tabular} \\
graph & \begin{tabular}{l} 
Graph used supervised by SPCA
\end{tabular} \\
verbose & \begin{tabular}{l} 
Print the top genes associated with high/low loadings for the SPCs \\
seed. use
\end{tabular} \\
\begin{tabular}{l} 
Set a random seed. By default, sets the seed to 42. Setting NULL will not set a \\
seed.
\end{tabular} \\
features & \begin{tabular}{l} 
Features to compute SPCA on. If features=NULL, SPCA will be run using the \\
variable features for the Assay.
\end{tabular} \\
layer & \begin{tabular}{l} 
Layer to run SPCA on \\
reduction. name \\
dimensional reduction name, spca by default
\end{tabular}
\end{tabular}

\section*{Value}

Returns Seurat object with the SPCA calculation stored in the reductions slot

\section*{References}

Barshan E, Ghodsi A, Azimifar Z, Jahromi MZ. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition. 2011 Jul 1;44(7):1357-71. https://www.sciencedirect.com/science/article/pii/S0031320310005819? casa_token=AZMFg50tPnAAAAAA:_Udu7GJ7G2ed1-XSmr-3IGSISUwcHfMpNtCj-qacXH5SBC4nwzVid36GXI3r8XG8dK5WOQu

RunTSNE Runt-distributed Stochastic Neighbor Embedding

\section*{Description}

Run t-SNE dimensionality reduction on selected features. Has the option of running in a reduced dimensional space (i.e. spectral tSNE, recommended), or running based on a set of genes. For details about stored TSNE calculation parameters, see PrintTSNEParams.

\section*{Usage}

RunTSNE (object, ...)
\#\# S3 method for class 'matrix'
RunTSNE (
object,
assay = NULL,
```

 seed.use = 1,
 tsne.method = "Rtsne",
 dim.embed = 2,
 reduction.key = "tSNE_",
)

S3 method for class 'DimReduc'

RunTSNE(
object,
cells = NULL,
dims = 1:5,
seed.use = 1,
tsne.method = "Rtsne",
dim.embed = 2,
reduction.key = "tSNE_",
)

S3 method for class 'dist'

RunTSNE(
object,
assay = NULL,
seed.use = 1,
tsne.method = "Rtsne",
dim.embed = 2,
reduction.key = "tSNE_",
)

S3 method for class 'Seurat'

RunTSNE(
object,
reduction = "pca",
cells = NULL,
dims = 1:5,
features = NULL,
seed.use = 1,
tsne.method = "Rtsne",
dim.embed = 2,
distance.matrix = NULL,
reduction.name = "tsne",
reduction.key = "tSNE_",
)

```

\section*{Arguments}
object Seurat object
\begin{tabular}{|c|c|}
\hline & Arguments passed to other methods and to t-SNE call (most commonly used is perplexity) \\
\hline assay & Name of assay that that t-SNE is being run on \\
\hline seed.use & Random seed for the t-SNE. If NULL, does not set the seed \\
\hline tsne.method & \begin{tabular}{l}
Select the method to use to compute the tSNE. Available methods are: \\
- "Rtsne": Use the Rtsne package Barnes-Hut implementation of tSNE (default) \\
- "FIt-SNE": Use the FFT-accelerated Interpolation-based t-SNE. Based on Kluger Lab code found here: https://github.com/KlugerLab/FIt-SNE
\end{tabular} \\
\hline dim.embed & The dimensional space of the resulting tSNE embedding (default is 2). For example, set to 3 for a 3d tSNE \\
\hline reduction.key & dimensional reduction key, specifies the string before the number for the dimension names. "tSNE_" by default \\
\hline cells & Which cells to analyze (default, all cells) \\
\hline dims & Which dimensions to use as input features \\
\hline reduction & Which dimensional reduction (e.g. PCA, ICA) to use for the tSNE. Default is PCA \\
\hline features & If set, run the tSNE on this subset of features (instead of running on a set of reduced dimensions). Not set (NULL) by default; dims must be NULL to run on features \\
\hline \multicolumn{2}{|l|}{distance.matrix} \\
\hline & If set, runs tSNE on the given distance matrix instead of data matrix (experimental) \\
\hline reduction.name & dimensional reduction name, specifies the position in the object\$dr list. tsne by default \\
\hline
\end{tabular}
RunUMAP Run UMAP

\section*{Description}

Runs the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique. To run using umap.method="umap-learn", you must first install the umap-learn python package (e.g. via pip install umap-learn). Details on this package can be found here: https: //github.com/lmcinnes/umap. For a more in depth discussion of the mathematics underlying UMAP, see the ArXiv paper here: https://arxiv.org/abs/1802.03426.

\section*{Usage}

RunUMAP(object, ...)
\#\# Default S3 method:
RunUMAP(
```

 object,
 reduction.key = "UMAP_",
 assay = NULL,
 reduction.model = NULL,
 return.model = FALSE,
 umap.method = "uwot",
 n.neighbors = 30L,
 n.components = 2L,
 metric = "cosine",
 n.epochs = NULL,
 learning.rate = 1,
 min.dist = 0.3,
 spread = 1,
 set.op.mix.ratio = 1,
 local.connectivity = 1L,
 repulsion.strength = 1,
 negative.sample.rate = 5,
 a = NULL,
 b = NULL,
 uwot.sgd = FALSE,
 seed.use = 42,
 metric.kwds = NULL,
 angular.rp.forest = FALSE,
 densmap = FALSE,
 dens.lambda = 2,
 dens.frac = 0.3,
 dens.var.shift = 0.1,
 verbose = TRUE,
)

S3 method for class 'Graph'

RunUMAP(
object,
assay = NULL,
umap.method = "umap-learn",
n.components = 2L,
metric = "correlation",
n.epochs = 0L,
learning.rate = 1,
min.dist = 0.3,
spread = 1,
repulsion.strength = 1,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42L,

```
```

 metric.kwds = NULL,
 densmap = FALSE,
 densmap.kwds = NULL,
 verbose = TRUE,
 reduction.key = "UMAP_",
)

S3 method for class 'Neighbor'

RunUMAP(object, reduction.model, ...)

S3 method for class 'Seurat'

RunUMAP(
object,
dims = NULL,
reduction = "pca",
features = NULL,
graph = NULL,
assay = DefaultAssay(object = object),
nn.name = NULL,
slot = "data",
umap.method = "uwot",
reduction.model = NULL,
return.model = FALSE,
n.neighbors = 30L,
n.components = 2L,
metric = "cosine",
n.epochs = NULL,
learning.rate = 1,
min.dist = 0.3,
spread = 1,
set.op.mix.ratio = 1,
local.connectivity = 1L,
repulsion.strength = 1,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42L,
metric.kwds = NULL,
angular.rp.forest = FALSE,
densmap = FALSE,
dens.lambda = 2,
dens.frac = 0.3,
dens.var.shift = 0.1,
verbose = TRUE,
reduction.name = "umap",
reduction.key = NULL,

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline object & An object \\
\hline & Arguments passed to other methods and UMAP \\
\hline reduction.key & dimensional reduction key, specifies the string before the number for the dimension names. UMAP by default \\
\hline assay & Assay to pull data for when using features, or assay used to construct Graph if running UMAP on a Graph \\
\hline \multicolumn{2}{|l|}{reduction.model} \\
\hline & DimReduc object that contains the umap model \\
\hline return.model & whether UMAP will return the uwot model \\
\hline \multirow[t]{4}{*}{umap.method} & UMAP implementation to run. Can be \\
\hline & uwot: Runs umap via the uwot R package \\
\hline & uwot-learn: Runs umap via the uwot R package and return the learned umap model \\
\hline & umap-learn: Run the Seurat wrapper of the python umap-learn package \\
\hline n. neighbors & This determines the number of neighboring points used in local approximations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. In general this parameter should often be in the range 5 to 50 . \\
\hline n. components & The dimension of the space to embed into. \\
\hline metric & metric: This determines the choice of metric used to measure distance in the input space. A wide variety of metrics are already coded, and a user defined function can be passed as long as it has been JITd by numba. \\
\hline n.epochs & he number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If NULL is specified, a value will be selected based on the size of the input dataset ( 200 for large datasets, 500 for small). \\
\hline learning.rate & The initial learning rate for the embedding optimization. \\
\hline min.dist & This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are moreevenly distributed, while smaller values allow the algorithm to optimise more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5 . \\
\hline spread & The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. \\
\hline \multicolumn{2}{|l|}{set.op.mix.ratio} \\
\hline & Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product \(t\)-norm. The value of this parameter should be between 0.0 and 1.0 ; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. \\
\hline
\end{tabular}

\section*{local.connectivity}

The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold.

\section*{repulsion.strength}

Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples.

\section*{negative.sample.rate}

The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy.
a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.
b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.
uwot.sgd Set uwot: :umap (fast_sgd = TRUE); see umap for more details
seed.use Set a random seed. By default, sets the seed to 42 . Setting NULL will not set a seed
metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on.
angular.rp.forest
Whether to use an angular random projection forest to initialise the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen automatically.
densmap Whether to use the density-augmented objective of densMAP. Turning on this option generates an embedding where the local densities are encouraged to be correlated with those in the original space. Parameters below with the prefix 'dens' further control the behavior of this extension. Default is FALSE. Only compatible with 'umap-learn' method and version of umap-learn \(>=\) 0.5.0
dens.lambda Specific parameter which controls the regularization weight of the density correlation term in densMAP. Higher values prioritize density preservation over the UMAP objective, and vice versa for values closer to zero. Setting this parameter to zero is equivalent to running the original UMAP algorithm. Default value is 2.
dens.frac \(\quad\) Specific parameter which controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. The first ( 1 - dens_frac) fraction of epochs optimize the original UMAP objective before introducing the density correlation term. Default is 0.3 .
dens.var.shift Specific parameter which specifies a small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small number. Default is 0.1 .
\begin{tabular}{ll} 
verbose & Controls verbosity \\
densmap. kwds & A dictionary of arguments to pass on to the densMAP optimization. \\
dims & \begin{tabular}{l} 
Which dimensions to use as input features, used only if features is NULL \\
reduction
\end{tabular} \\
\begin{tabular}{l} 
Which dimensional reduction (PCA or ICA) to use for the UMAP input. Default \\
is PCA
\end{tabular} \\
features & \begin{tabular}{l} 
If set, run UMAP on this subset of features (instead of running on a set of re- \\
duced dimensions). Not set (NULL) by default; dims must be NULL to run on \\
features
\end{tabular} \\
graph & \begin{tabular}{l} 
Name of graph on which to run UMAP \\
nn. name
\end{tabular} \\
\begin{tabular}{l} 
Name of knn output on which to run UMAP
\end{tabular} \\
reduction.name & The slot used to pull data for when using features. data slot is by default.
\end{tabular}

\section*{Value}

Returns a Seurat object containing a UMAP representation

\section*{References}

McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

\section*{Examples}
```


Not run:

data("pbmc_small")
pbmc_small

Run UMAP map on first 5 PCs

pbmc_small <- RunUMAP(object = pbmc_small, dims = 1:5)

Plot results

DimPlot(object = pbmc_small, reduction = 'umap')

End(Not run)

```

\section*{Description}

Downsample each cell to a specified number of UMIs. Includes an option to upsample cells below specified UMI as well.

\section*{Usage}

SampleUMI(data, max.umi \(=1000\), upsample \(=\) FALSE, verbose \(=\) FALSE)

\section*{Arguments}
\begin{tabular}{ll} 
data & Matrix with the raw count data \\
max.umi & Number of UMIs to sample to \\
upsample & Upsamples all cells with fewer than max.umi \\
verbose & Display the progress bar
\end{tabular}

\section*{Value}

Matrix with downsampled data

\section*{Examples}
```

data("pbmc_small")
counts = as.matrix(x = GetAssayData(object = pbmc_small, assay = "RNA", slot = "counts"))
downsampled = SampleUMI(data = counts)
head(x = downsampled)

```

\section*{Description}

Save the Annoy index

\section*{Usage}

SaveAnnoyIndex(object, file)

\section*{Arguments}
\begin{tabular}{ll} 
object & A Neighbor object with the annoy index stored \\
file & Path to file to write index to
\end{tabular}

ScaleData Scale and center the data.

\section*{Description}

Scales and centers features in the dataset. If variables are provided in vars.to.regress, they are individually regressed against each feature, and the resulting residuals are then scaled and centered.

\section*{Usage}
```

ScaleData(object, ...)

```
\#\# Default S3 method:
ScaleData(
    object,
    features = NULL,
    vars.to.regress = NULL,
    latent. data = NULL,
    split.by = NULL,
    model.use = "linear",
    use.umi = FALSE,
    do.scale = TRUE,
    do. center = TRUE,
    scale. \(\max =10\),
    block.size \(=1000\),
    min.cells.to.block \(=3000\),
    verbose = TRUE,
    )
    \#\# S3 method for class 'IterableMatrix'
    ScaleData(
        object,
        features = NULL,
        do.scale = TRUE,
        do. center = TRUE ,
        scale. \(\max =10\),
        ...
    )
    \#\# S3 method for class 'Assay'
    ScaleData(
        object,
        features = NULL,
        vars.to.regress = NULL,
        latent.data = NULL,
        split.by = NULL,
```

 model.use = "linear",
 use.umi = FALSE,
 do.scale = TRUE,
 do.center = TRUE,
 scale.max = 10,
 block.size = 1000,
 min.cells.to.block = 3000,
 verbose = TRUE,
 ..
)

S3 method for class 'Seurat'

ScaleData(
object,
features = NULL,
assay = NULL,
vars.to.regress = NULL,
split.by = NULL,
model.use = "linear",
use.umi = FALSE,
do.scale = TRUE,
do.center = TRUE,
scale.max = 10,
block.size = 1000,
min.cells.to.block = 3000,
verbose = TRUE,
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline object & An object \\
\hline & Arguments passed to other methods \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
features \\
vars.to.regress
\end{tabular}} & Vector of features names to scale/center. Default is variable features. \\
\hline & \\
\hline & Variables to regress out (previously latent.vars in RegressOut). For example, nUMI, or percent.mito. \\
\hline latent.data & Extra data to regress out, should be cells x latent data \\
\hline split.by & Name of variable in object metadata or a vector or factor defining grouping of cells. See argument \(f\) in split for more details \\
\hline model.use & Use a linear model or generalized linear model (poisson, negative binomial) for the regression. Options are 'linear' (default), 'poisson', and 'negbinom' \\
\hline use.umi & Regress on UMI count data. Default is FALSE for linear modeling, but automatically set to TRUE if model.use is 'negbinom' or 'poisson' \\
\hline do.scale & Whether to scale the data. \\
\hline do. center & Whether to center the data. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
scale.max & \begin{tabular}{l} 
Max value to return for scaled data. The default is 10. Setting this can help \\
reduce the effects of features that are only expressed in a very small number of \\
cells. If regressing out latent variables and using a non-linear model, the default \\
is 50.
\end{tabular} \\
block.size & \begin{tabular}{l} 
Default size for number of features to scale at in a single computation. Increas- \\
ing block.size may speed up calculations but at an additional memory cost.
\end{tabular} \\
min.cells.to.block \\
If object contains fewer than this number of cells, don't block for scaling calcu- \\
lations.
\end{tabular}

\section*{Details}

ScaleData now incorporates the functionality of the function formerly known as RegressOut (which regressed out given the effects of provided variables and then scaled the residuals). To make use of the regression functionality, simply pass the variables you want to remove to the vars.to.regress parameter.

Setting center to TRUE will center the expression for each feature by subtracting the average expression for that feature. Setting scale to TRUE will scale the expression level for each feature by dividing the centered feature expression levels by their standard deviations if center is TRUE and by their root mean square otherwise.

\section*{ScaleFactors Get image scale factors}

\section*{Description}

Get image scale factors

\section*{Usage}
```

ScaleFactors(object, ...)
scalefactors(spot, fiducial, hires, lowres)
\#\# S3 method for class 'VisiumV1'
ScaleFactors(object, ...)
\#\# S3 method for class 'VisiumV2'
ScaleFactors(object, ...)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object to get scale factors from \\
\(\ldots\). & Arguments passed to other methods \\
spot & Spot full resolution scale factor \\
fiducial & Fiducial full resolution scale factor \\
hires & High resolutoin scale factor \\
lowres & Low resolution scale factor
\end{tabular}

\section*{Value}

An object of class scalefactors

\section*{Note}
scalefactors objects can be created with scalefactors()

\section*{Description}

Significant PCs should show a p-value distribution that is strongly skewed to the left compared to the null distribution. The p-value for each PC is based on a proportion test comparing the number of features with a p-value below a particular threshold (score.thresh), compared with the proportion of features expected under a uniform distribution of p-values.

\section*{Usage}
```

ScoreJackStraw(object, ...)
\#\# S3 method for class 'JackStrawData'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
\#\# S3 method for class 'DimReduc'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
\#\# S3 method for class 'Seurat'
ScoreJackStraw(
object,
reduction = "pca",
dims = 1:5,
score.thresh = 1e-05,
do.plot = FALSE,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & An object \\
\(\ldots\) & Arguments passed to other methods \\
dims & Which dimensions to examine \\
score.thresh & Threshold to use for the proportion test of PC significance (see Details) \\
reduction & \begin{tabular}{l} 
Reduction associated with JackStraw to score \\
do.plot
\end{tabular} \\
\begin{tabular}{l} 
Show plot. To return ggplot object, use JackStrawPlot after running Score- \\
JackStraw.
\end{tabular}
\end{tabular}

\section*{Value}

Returns a Seurat object

\section*{Author(s)}

Omri Wurtzel

\section*{See Also}
```

JackStrawPlot
JackStrawPlot

```
SCTAssay-class The SCTModel Class

\section*{Description}

The SCTModel object is a model and parameters storage from SCTransform. It can be used to calculate Pearson residuals for new genes.
The SCTAssay object contains all the information found in an Assay object, with extra information from the results of SCTransform

\section*{Usage}
```


S3 method for class 'SCTAssay'

levels(x)
\#\# S3 replacement method for class 'SCTAssay'
levels(x) <- value

```

\section*{Arguments}
x
value

An SCTAssay object
New levels, must be in the same order as the levels present

\section*{Value}
levels: SCT model names
levels<-: \(x\) with updated SCT model names

\section*{Slots}
feature.attributes A data.frame with feature attributes in SCTransform
cell.attributes A data.frame with cell attributes in SCTransform
clips A list of two numeric of length two specifying the min and max values the Pearson residual will be clipped to. One for vst and one for SCTransform
umi. assay Name of the assay of the seurat object containing UMI matrix and the default is RNA
model A formula used in SCTransform
arguments other information used in SCTransform
median_umi Median UMI (or scale factor) used to calculate corrected counts
SCTModel.list A list containing SCT models

\section*{Get and set SCT model names}

SCT results are named by initial run of SCTransform in order to keep SCT parameters straight between runs. When working with merged SCTAssay objects, these model names are important. levels allows querying the models present. levels<- allows the changing of the names of the models present, useful when merging SCTAssay objects. Note: unlike normal levels<-, levels<-. SCTAssay allows complete changing of model names, not reordering.

\section*{Creating an SCTAssay from an Assay}

Conversion from an Assay object to an SCTAssay object by is done by adding the additional slots to the object. If from has results generated by SCTransform from Seurat v3.0.0 to v3.1.1, the conversion will automagically fill the new slots with the data

\section*{See Also}

Assay
Assay

\section*{Examples}
```


Not run:

SCTAssay objects are generated from SCTransform

pbmc_small <- SCTransform(pbmc_small)

End(Not run)

Not run:

SCTAssay objects are generated from SCTransform

pbmc_small <- SCTransform(pbmc_small)
pbmc_small[["SCT"]]

```
```


End(Not run)

Not run:

Query and change SCT model names

levels(pbmc_small[['SCT']])
levels(pbmc_small[['SCT']]) <- '3'
levels(pbmc_small[['SCT']])

End(Not run)

```

\section*{SCTransform Perform sctransform-based normalization}

\section*{Description}

This function calls sctransform::vst. The sctransform package is available at https://github.com/satijalab/sctransform. Use this function as an alternative to the NormalizeData, FindVariableFeatures, ScaleData workflow. Results are saved in a new assay (named SCT by default) with counts being (corrected) counts, data being \(\log 1 \mathrm{p}\) (counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of new assay.

\section*{Usage}
```

SCTransform(object, ...)

Default S3 method:

SCTransform(
object,
cell.attr,
reference.SCT.model = NULL,
do.correct.umi = TRUE,
ncells = 5000,
residual.features = NULL,
variable.features.n = 3000,
variable.features.rv.th = 1.3,
vars.to.regress = NULL,
latent.data = NULL,
do.scale = FALSE,
do.center = TRUE,
clip.range = c(-sqrt(x = ncol(x = umi)/30), sqrt(x = ncol(x = umi)/30)),
vst.flavor = "v2",
conserve.memory = FALSE,
return.only.var.genes = TRUE,
seed.use = 1448145,
verbose = TRUE,

```
```

)

S3 method for class 'Assay'

SCTransform(
object,
cell.attr,
reference.SCT.model = NULL,
do.correct.umi = TRUE,
ncells = 5000,
residual.features = NULL,
variable.features.n = 3000,
variable.features.rv.th = 1.3,
vars.to.regress = NULL,
latent.data = NULL,
do.scale = FALSE,
do.center = TRUE,
clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
vst.flavor = "v2",
conserve.memory = FALSE,
return.only.var.genes = TRUE,
seed.use = 1448145,
verbose = TRUE,
)

S3 method for class 'Seurat'

SCTransform(
object,
assay = "RNA",
new.assay.name = "SCT",
reference.SCT.model = NULL,
do.correct.umi = TRUE,
ncells = 5000,
residual.features = NULL,
variable.features.n = 3000,
variable.features.rv.th = 1.3,
vars.to.regress = NULL,
do.scale = FALSE,
do.center = TRUE,
clip.range = c(-sqrt(x = ncol(x = object[[assay]])/30), sqrt(x = ncol(x =
object[[assay]])/30)),
vst.flavor = "v2",
conserve.memory = FALSE,
return.only.var.genes = TRUE,
seed.use = 1448145,
verbose = TRUE,
)

```
```


S3 method for class 'IterableMatrix'

SCTransform(
object,
cell.attr,
reference.SCT.model = NULL,
do.correct.umi = TRUE,
ncells = 5000,
residual.features = NULL,
variable.features.n = 3000,
variable.features.rv.th = 1.3,
vars.to.regress = NULL,
latent.data = NULL,
do.scale = FALSE,
do.center = TRUE,
clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
vst.flavor = "v2",
conserve.memory = FALSE,
return.only.var.genes = TRUE,
seed.use = 1448145,
verbose = TRUE,
)

```

\section*{Arguments}
object UMI counts matrix
... Additional parameters passed to sctransform: :vst
cell.attr A metadata with cell attributes
reference. SCT.model
If not NULL, compute residuals for the object using the provided SCT model;
supports only \(\log _{\text {_ }} u m i\) as the latent variable. If residual.features are not specified, compute for the top variable.features.n specified in the model which are also present in the object. If residual.features are specified, the variable features of the resulting SCT assay are set to the top variable.features.n in the model.
do. correct. umi Place corrected UMI matrix in assay counts slot; default is TRUE
ncells Number of subsampling cells used to build NB regression; default is 5000
residual.features
Genes to calculate residual features for; default is NULL (all genes). If specified, will be set to VariableFeatures of the returned object.
variable.features.n
Use this many features as variable features after ranking by residual variance; default is 3000 . Only applied if residual.features is not set.
variable.features.rv.th
Instead of setting a fixed number of variable features, use this residual variance cutoff; this is only used when variable.features. \(n\) is set to NULL; default is 1.3. Only applied if residual.features is not set.
\begin{tabular}{|c|c|}
\hline & Variables to regress out in a second non-regularized linear \\
\hline latent.data & Extra data to regress out, should be cells x latent data regression. For example, percent.mito. Default is NULL \\
\hline do.scale & Whether to scale residuals to have unit variance; default is FALSE \\
\hline do.center & Whether to center residuals to have mean zero; default is TRUE \\
\hline clip.range & Range to clip the residuals to; default is \(c(-\operatorname{sqrt}(n / 30), \operatorname{sqrt}(n / 30))\), where \(n\) is the number of cells \\
\hline vst.flavor & When set to 'v2' sets method = glmGamPoi_offset, n_cells=2000, and exclude_poisson \(=\) TRUE which causes the model to learn theta and intercept only besides excluding poisson genes from learning and regularization \\
\hline \multicolumn{2}{|l|}{conserve.memory} \\
\hline & If set to TRUE the residual matrix for all genes is never created in full; useful for large data sets, but will take longer to run; this will also set return.only.var.genes to TRUE; default is FALSE \\
\hline \multicolumn{2}{|l|}{return.only.var.genes} \\
\hline & If set to TRUE the scale.data matrices in output assay are subset to contain only the variable genes; default is TRUE \\
\hline seed.use & Set a random seed. By default, sets the seed to 1448145 . Setting NULL will not set a seed. \\
\hline verbose & Whether to print messages and progress bars \\
\hline assay & Name of assay to pull the count data from; default is 'RNA' \\
\hline new.assay.name & Name for the new assay containing the normalized data; default is 'SCT' \\
\hline
\end{tabular}

\section*{Value}

Returns a Seurat object with a new assay (named SCT by default) with counts being (corrected) counts, data being \(\log 1 \mathrm{p}\) (counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of the new assay.

\section*{See Also}
correct_counts get_residuals

\section*{Description}

Pull the SCTResults information from an SCTAssay object.

\section*{Usage}

SCTResults(object, ...)
SCTResults(object, ...) <- value
\#\# S3 method for class 'SCTModel'
SCTResults(object, slot, ...)
\#\# S3 replacement method for class 'SCTModel'
SCTResults(object, slot, ...) <- value
\#\# S3 method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...)
\#\# S3 replacement method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...) <- value
\#\# S3 method for class 'Seurat'
SCTResults(object, assay = "SCT", slot, model = NULL, ...)

\section*{Arguments}
\begin{tabular}{ll} 
object & An object \\
\(\ldots\) & Arguments passed to other methods (not used) \\
value & new data to set \\
slot & Which slot to pull the SCT results from \\
model & \begin{tabular}{l} 
Name of SCModel to pull result from. Available names can be retrieved with \\
levels.
\end{tabular} \\
assay & Assay in the Seurat object to pull from
\end{tabular}

\section*{Value}

Returns the value present in the requested slot for the requested group. If group is not specified, returns a list of slot results for each group unless there is only one group present (in which case it just returns the slot directly).
```

SelectIntegrationFeatures

```

\section*{Select integration features}

\section*{Description}

Choose the features to use when integrating multiple datasets. This function ranks features by the number of datasets they are deemed variable in, breaking ties by the median variable feature rank across datasets. It returns the top scoring features by this ranking.

\section*{Usage}
```

SelectIntegrationFeatures(
object.list,
nfeatures = 2000,
assay = NULL,
verbose = TRUE,
fvf.nfeatures = 2000,
...
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object.list & List of seurat objects \\
nfeatures & \begin{tabular}{l} 
Number of features to return \\
assay
\end{tabular} \\
\begin{tabular}{l} 
Name or vector of assay names (one for each object) from which to pull the \\
variable features.
\end{tabular} \\
verbose & \begin{tabular}{l} 
Print messages \\
fvf.nfeatures \\
nfeatures for FindVariableFeatures. Used if VariableFeatures have not \\
been set for any object in object.list.
\end{tabular} \\
\(\ldots\) & Additional parameters to FindVariableFeatures
\end{tabular}

\section*{Details}

If for any assay in the list, FindVariableFeatures hasn't been run, this method will try to run it using the fvf.nfeatures parameter and any additional ones specified through the ....

\section*{Value}

A vector of selected features

\section*{Examples}
```


Not run:

to install the SeuratData package see https://github.com/satijalab/seurat-data

library(SeuratData)
data("panc8")

panc8 is a merged Seurat object containing 8 separate pancreas datasets

split the object by dataset and take the first 2

pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]

perform SCTransform normalization

pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)

select integration features

features <- SelectIntegrationFeatures(pancreas.list)

End(Not run)

```
```

SelectIntegrationFeatures5
Select integration features

```

\section*{Description}

Select integration features
```

Usage
SelectIntegrationFeatures5(
object,
nfeatures = 2000,
assay = NULL,
method = NULL,
layers = NULL,
verbose = TRUE,
)

```
Arguments
    object Seurat object
    nfeatures Number of features to return for integration
    assay Name of assay to use for integration feature selection
    method Which method to pull. For HVFInfo and VariableFeatures, choose one from
        one of the following:
                            - "vst"
                            - "sctransform" or "sct"
                            - "mean.var.plot", "dispersion", "mvp", or "disp"
    layers Name of layers to use for integration feature selection
    verbose Print messages
    ... Arguments passed on to method
    SelectSCTIntegrationFeatures
        Select SCT integration features

\section*{Description}

Select SCT integration features
```

Usage
SelectSCTIntegrationFeatures(
object,
nfeatures = 3000,
assay = NULL,
verbose = TRUE,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
nfeatures & Number of features to return for integration \\
assay & Name of assay to use for integration feature selection \\
verbose & Print messages \\
\(\ldots\) & Arguments passed on to method
\end{tabular}
SetIntegrationData Set integration data

\section*{Description}

Set integration data

\section*{Usage}

SetIntegrationData(object, integration.name, slot, new.data)

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
integration. name
\end{tabular}\(\quad\)\begin{tabular}{ll} 
Name of integration object
\end{tabular}

\section*{Value}

Returns a Seurat object

\section*{Description}

Converts a quantile in character form to a number regarding some data. String form for a quantile is represented as a number prefixed with " q "; for example, 10th quantile is " \(q 10\) " while 2 nd quantile is " q 2 ". Will only take a quantile of non-zero data values

\section*{Usage}

SetQuantile(cutoff, data)

\section*{Arguments}
cutoff The cutoff to turn into a quantile
data The data to turn find the quantile of

\section*{Value}

The numerical representation of the quantile

\section*{Examples}
```

set.seed(42)
SetQuantile('q10', sample(1:100, 10))

```

\section*{Description}

The Seurat object is a representation of single-cell expression data for R ; for more details, please see the documentation in SeuratObject

\section*{See Also}
```

SeuratObject::Seurat-class

```

\section*{Description}

For more details, please see the documentation in SeuratObject

\section*{See Also}

SeuratObject: :SeuratCommand-class

Seurat Theme Seurat Themes

\section*{Description}

Various themes to be applied to ggplot2-based plots
SeuratTheme The curated Seurat theme, consists of ...
DarkTheme A dark theme, axes and text turn to white, the background becomes black
NoAxes Removes axis lines, text, and ticks
NoLegend Removes the legend
FontSize Sets axis and title font sizes
NoGrid Removes grid lines
SeuratAxes Set Seurat-style axes
SpatialTheme A theme designed for spatial visualizations (eg PolyFeaturePlot, PolyDimPlot)
RestoreLegend Restore a legend after removal
RotatedAxis Rotate X axis text 45 degrees
BoldTitle Enlarges and emphasizes the title

\section*{Usage}

SeuratTheme()
CenterTitle(...)

DarkTheme(...)
FontSize(
x.text = NULL,
y.text = NULL,
x.title = NULL,
y.title \(=\) NULL,
```

 main = NULL,
)
 NoAxes(..., keep.text = FALSE, keep.ticks = FALSE)
 NoLegend(...)
 NoGrid(...)
 SeuratAxes(...)
 SpatialTheme(...)
 RestoreLegend(..., position = "right")
 RotatedAxis(...)
 BoldTitle(...)
 WhiteBackground(...)
    ```

\section*{Arguments}
... Extra parameters to be passed to theme
\(x\).text, y.text \(\quad X\) and \(Y\) axis text sizes
\(x . t i t l e, y . t i t l e\)
X and Y axis title sizes
main Plot title size
keep.text Keep axis text
keep.ticks Keep axis ticks
position A position to restore the legend to

\section*{Value}

A ggplot2 theme object

\section*{See Also}
theme

\section*{Examples}
```


Generate a plot with a dark theme

library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd=2), y = rbinom(n=100, size = 100, prob=0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + DarkTheme(legend.position = 'none')

```
```


Generate a plot with no axes

library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p<- ggplot(data = df, mapping = aes (x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoAxes()

Generate a plot with no legend

library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoLegend()

Generate a plot with no grid lines

library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p<- ggplot(data = df, mapping = aes (x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoGrid()

```
SketchData Sketch Data

\section*{Description}

This function uses sketching methods to downsample high-dimensional single-cell RNA expression data, which can help with scalability for large datasets.

\section*{Usage}
```

SketchData(
object,
assay = NULL,
ncells = 5000L,
sketched.assay = "sketch",
method = c("LeverageScore", "Uniform"),
var.name = "leverage.score",
over.write = FALSE,
seed = 123L,
cast = "dgCMatrix",
verbose = TRUE,
)

```

\section*{Arguments}
object
assay
A Seurat object.
Assay name. Default is NULL, in which case the default assay of the object is used.
\begin{tabular}{|c|c|}
\hline ncells & A positive integer indicating the number of cells to sample for the sketching. Default is 5000 . \\
\hline sketched.assay & Sketched assay name. A sketch assay is created or overwrite with the sketch data. Default is 'sketch'. \\
\hline method & Sketching method to use. Can be 'LeverageScore' or 'Uniform'. Default is 'LeverageScore'. \\
\hline var.name over.write & A metadata column name to store the leverage scores. Default is 'leverage.score'. whether to overwrite existing column in the metadata. Default is FALSE. \\
\hline seed & A positive integer for the seed of the random number generator. Default is 123. \\
\hline cas & The type to cast the resulting assay to. Default is 'dgCMatrix'. \\
\hline verbose & Print progress and diagnostic messages \\
\hline & Arguments passed to other methods \\
\hline
\end{tabular}

\section*{Value}

A Seurat object with the sketched data added as a new assay.
```

SlideSeq-class The SlideSeq class

```

\section*{Description}

The SlideSeq class represents spatial information from the Slide-seq platform

\section*{Slots}
coordinates ...

\section*{Slots}
assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
key A one-length character vector with the object's key; keys must be one or more alphanumeric characters followed by an underscore "_" (regex pattern "^[a-zA-Z][a-zA-Z0-9]*_\$")

SpatialImage-class The SpatialImage Class

\section*{Description}

For more details, please see the documentation in SeuratObject

\section*{See Also}

SeuratObject::SpatialImage-class

SpatialPlot Visualize spatial clustering and expression data.

\section*{Description}

SpatialPlot plots a feature or discrete grouping (e.g. cluster assignments) as spots over the image that was collected. We also provide SpatialFeaturePlot and SpatialDimPlot as wrapper functions around SpatialPlot for a consistent naming framework.

\section*{Usage}
```

SpatialPlot(
object,
group.by = NULL,
features = NULL,
images = NULL,
cols = NULL,
image.alpha = 1,
image.scale = "lowres",
crop = TRUE,
slot = "data",
keep.scale = "feature",
min.cutoff = NA,
max.cutoff = NA,
cells.highlight = NULL,
cols.highlight = c("\#DE2D26", "grey50"),
facet.highlight = FALSE,
label = FALSE,
label.size = 5,
label.color = "white",
label.box = TRUE,
repel = FALSE,
ncol = NULL,
combine = TRUE,
pt.size.factor = 1.6,
alpha = c(1, 1),
shape = 21,
stroke = NA,
interactive = FALSE,
do.identify = FALSE,
identify.ident = NULL,
do.hover = FALSE,
information = NULL
)
SpatialDimPlot(
object,

```
```

 group.by = NULL,
 images = NULL,
 cols = NULL,
 crop = TRUE,
 cells.highlight = NULL,
 cols.highlight = c("#DE2D26", "grey50"),
 facet.highlight = FALSE,
 label = FALSE,
 label.size = 7,
 label.color = "white",
 repel = FALSE,
 ncol = NULL,
 combine = TRUE,
 pt.size.factor = 1.6,
 alpha = c(1, 1),
 image.alpha = 1,
 image.scale = "lowres",
 shape = 21,
 stroke = NA,
 label.box = TRUE,
 interactive = FALSE,
 information = NULL
)
SpatialFeaturePlot(
object,
features,
images = NULL,
crop = TRUE,
slot = "data",
keep.scale = "feature",
min.cutoff = NA,
max.cutoff = NA,
ncol = NULL,
combine = TRUE,
pt.size.factor = 1.6,
alpha = c(1, 1),
image.alpha = 1,
image.scale = "lowres",
shape = 21,
stroke = NA,
interactive = FALSE,
information = NULL
)

```

\section*{Arguments}
object A Seurat object
\begin{tabular}{ll}
\begin{tabular}{l} 
group.by \\
features
\end{tabular} & \begin{tabular}{l} 
Name of meta.data column to group the data by \\
Name of the feature to visualize. Provide either group.by OR features, not both.
\end{tabular} \\
images & \begin{tabular}{l} 
Name of the images to use in the plot(s)
\end{tabular} \\
cols & \begin{tabular}{l} 
Vector of colors, each color corresponds to an identity class. This may also be \\
a single character or numeric value corresponding to a palette as specified by \\
brewer. pal. info. By default, ggplot2 assigns colors
\end{tabular} \\
image.alpha & \begin{tabular}{l} 
Adjust the opacity of the background images. Set to 0 to remove. \\
image.scale
\end{tabular} \\
Choose the scale factor ("lowres"/"hires") to apply in order to matchthe plot with \\
the specified 'image' - defaults to "lowres"
\end{tabular}
pt.size.factor Scale the size of the spots.
\begin{tabular}{ll} 
alpha & \begin{tabular}{l} 
Controls opacity of spots. Provide as a vector specifying the min and max for \\
SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each \\
plot.
\end{tabular} \\
shape & \begin{tabular}{l} 
Control the shape of the spots - same as the ggplot2 parameter. The default is \\
21, which plots circles - use 22 to plot squares.
\end{tabular} \\
stroke & \begin{tabular}{l} 
Control the width of the border around the spots
\end{tabular} \\
interactive & \begin{tabular}{l} 
Launch an interactive SpatialDimPlot or SpatialFeaturePlot session, see ISpatialDimPlot \\
or ISpatialFeaturePlot for more details
\end{tabular} \\
do.identify, do. hover \\
DEPRECATED in favor of interactive
\end{tabular}

\section*{Value}

If do.identify, either a vector of cells selected or the object with selected cells set to the value of identify.ident (if set). Else, if do. hover, a plotly object with interactive graphics. Else, a ggplot object

\section*{Examples}
```


Not run:

For functionality analagous to FeaturePlot

SpatialPlot(seurat.object, features = "MS4A1")
SpatialFeaturePlot(seurat.object, features = "MS4A1")

For functionality analagous to DimPlot

SpatialPlot(seurat.object, group.by = "clusters")
SpatialDimPlot(seurat.object, group.by = "clusters")

End(Not run)

```
SplitObject Splits object into a list of subsetted objects.

\section*{Description}

Splits object based on a single attribute into a list of subsetted objects, one for each level of the attribute. For example, useful for taking an object that contains cells from many patients, and subdividing it into patient-specific objects.

\section*{Usage}

SplitObject(object, split.by = "ident")

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
split.by & \begin{tabular}{l} 
Attribute for splitting. Default is "ident". Currently only supported for class- \\
level (i.e. non-quantitative) attributes.
\end{tabular}
\end{tabular}

\section*{Value}

A named list of Seurat objects, each containing a subset of cells from the original object.

\section*{Examples}
```

data("pbmc_small")

Assign the test object a three level attribute

groups <- sample(c("group1", "group2", "group3"), size = 80, replace = TRUE)
names(groups) <- colnames(pbmc_small)
pbmc_small <- AddMetaData(object = pbmc_small, metadata = groups, col.name = "group")
obj.list <- SplitObject(pbmc_small, split.by = "group")

```
```

STARmap-class The STARmap class

```

\section*{Description}

The STARmap class

\section*{Slots}
assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
key A one-length character vector with the object's key; keys must be one or more alphanumeric characters followed by an underscore "_" (regex pattern "^[a-zA-Z][a-zA-Z0-9]*_\$")
subset.AnchorSet Subset an AnchorSet object

\section*{Description}

Subset an AnchorSet object
```

Usage
\#\# S3 method for class 'AnchorSet'
subset(
x,
score.threshold = NULL,
disallowed.dataset.pairs = NULL,
dataset.matrix = NULL,
group.by = NULL,
disallowed.ident.pairs = NULL,
ident.matrix = NULL,
)

```

\section*{Arguments}
\(x \quad\) object to be subsetted.
score.threshold
Only anchor pairs with scores greater than this value are retained.
disallowed.dataset.pairs
Remove any anchors formed between the provided pairs. E.g. list(c(1,5), \(c(1,2))\) filters out any anchors between datasets 1 and 5 and datasets 1 and 2.
dataset.matrix Provide a binary matrix specifying whether a dataset pair is allowable (1) or not (0). Should be a dataset \(x\) dataset matrix.
group.by Grouping variable to determine allowable ident pairs
disallowed.ident.pairs
Remove any anchors formed between provided ident pairs. E.g. list(c("CD4", "CD8"), c("B-cell", "T-cell"))
ident.matrix Provide a binary matrix specifying whether an ident pair is allowable (1) or not (0). Should be an ident \(x\) ident symmetric matrix
... further arguments to be passed to or from other methods.

\section*{Value}

Returns an AnchorSet object with specified anchors filtered out
```

SubsetByBarcodeInflections

```

Subset a Seurat Object based on the Barcode Distribution Inflection Points

\section*{Description}

This convenience function subsets a Seurat object based on calculated inflection points.

\section*{Usage}

SubsetByBarcodeInflections(object)

\section*{Arguments}
\[
\text { object } \quad \text { Seurat object }
\]

\section*{Details}

See [CalculateBarcodeInflections()] to calculate inflection points and [BarcodeInflectionsPlot()] to visualize and test inflection point calculations.

\section*{Value}

Returns a subsetted Seurat object.

\section*{Author(s)}

Robert A. Amezquita, <robert.amezquita@fredhutch.org>

\section*{See Also}

CalculateBarcodeInflections BarcodeInflectionsPlot

\section*{Examples}
```

data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(
object = pbmc_small,
group.column = 'groups',
threshold.low = 20,
threshold.high = 30
)
SubsetByBarcodeInflections(object = pbmc_small)

```

TopCells Find cells with highest scores for a given dimensional reduction technique

\section*{Description}

Return a list of genes with the strongest contribution to a set of components

\section*{Usage}

TopCells(object, dim = 1, ncells = 20, balanced = FALSE, ...)

\section*{Arguments}
\begin{tabular}{ll} 
object & DimReduc object \\
dim & Dimension to use \\
ncells & Number of cells to return \\
balanced & Return an equal number of cells with both + and - scores. \\
\(\ldots\). & Extra parameters passed to Embeddings
\end{tabular}

\section*{Value}

Returns a vector of cells

\section*{Examples}
```

data("pbmc_small")
pbmc_small
head(TopCells(object = pbmc_small[["pca"]]))

Can specify which dimension and how many cells to return

TopCells(object = pbmc_small[["pca"]], dim = 2, ncells = 5)

```

TopFeatures Find features with highest scores for a given dimensional reduction technique

\section*{Description}

Return a list of features with the strongest contribution to a set of components

\section*{Usage}
```

TopFeatures(
object,
dim = 1,
nfeatures = 20,
projected = FALSE,
balanced = FALSE,
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & DimReduc object \\
dim & Dimension to use \\
nfeatures & Number of features to return \\
projected & Use the projected feature loadings \\
balanced & Return an equal number of features with both + and - scores. \\
\(\ldots\) & Extra parameters passed to Loadings
\end{tabular}

\section*{Value}

Returns a vector of features

\section*{Examples}
```

data("pbmc_small")
pbmc_small
TopFeatures(object = pbmc_small[["pca"]], dim = 1)

After projection:

TopFeatures(object = pbmc_small[["pca"]], dim = 1, projected = TRUE)

```
TopNeighbors Get nearest neighbors for given cell

\section*{Description}

Return a vector of cell names of the nearest n cells.

\section*{Usage}

TopNeighbors(object, cell, \(\mathrm{n}=5\) )

\section*{Arguments}
object Neighbor object
cell Cell of interest
\(\mathrm{n} \quad\) Number of neighbors to return

\section*{Value}

Returns a vector of cell names

TransferAnchorSet-class
The TransferAnchorSet Class

\section*{Description}

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

\section*{Description}

Transfer categorical or continuous data across single-cell datasets. For transferring categorical information, pass a vector from the reference dataset (e.g. refdata = reference\$celltype). For transferring continuous information, pass a matrix from the reference dataset (e.g. refdata \(=\) GetAssayData(reference[['RNA']])).

\section*{Usage}

TransferData(
anchorset, refdata, reference = NULL,
query = NULL,
query.assay = NULL,
weight.reduction = "pcaproject",
12. norm = FALSE,
dims = NULL,
k.weight \(=50\),
sd.weight = 1,
eps = 0,
n.trees \(=50\),
verbose \(=\) TRUE,
slot = "data",
prediction.assay = FALSE,
only.weights = FALSE,
store.weights = TRUE
)

\section*{Arguments}
anchorset An AnchorSet object generated by FindTransferAnchors
refdata Data to transfer. This can be specified in one of two ways:
- The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
- The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with GetAssayData and provide that matrix here.
reference \(\quad\) Reference object from which to pull data to transfer
query Query object into which the data will be transferred.
query.assay Name of the Assay to use from query
weight. reduction
Dimensional reduction to use for the weighting anchors. Options are:
- pcaproject: Use the projected PCA used for anchor building
- 1siproject: Use the projected LSI used for anchor building
- pca: Use an internal PCA on the query only
- cca: Use the CCA used for anchor building
- custom DimReduc: User provided DimReduc object computed on the query cells
12. norm Perform L2 normalization on the cell embeddings after dimensional reduction
dims Set of dimensions to use in the anchor weighting procedure. If NULL, the same dimensions that were used to find anchors will be used for weighting.
k.weight Number of neighbors to consider when weighting anchors
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
eps \(\quad\) Error bound on the neighbor finding algorithm (from RANN)
n.trees More trees gives higher precision when using annoy approximate nearest neighbor search
verbose Print progress bars and output
slot Slot to store the imputed data. Must be either "data" (default) or "counts"
prediction.assay
Return an Assay object with the prediction scores for each class stored in the data slot.
only.weights Only return weights matrix
store.weights Optionally store the weights matrix used for predictions in the returned query object.

\section*{Details}

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147
For both transferring discrete labels and also feature imputation, we first compute the weights matrix.
- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k . weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd. weight and normalize across all k . weight anchors.

The main difference between label transfer (classification) and feature imputation is what gets multiplied by the weights matrix. For label transfer, we perform the following steps:
- Create a binary classification matrix, the rows corresponding to each possible class and the columns corresponding to the anchors. If the reference cell in the anchor pair is a member of a certain class, that matrix entry is filled with a 1 , otherwise 0 .
- Multiply this classification matrix by the transpose of weights matrix to compute a prediction score for each class for each cell in the query dataset.

For feature imputation, we perform the following step:
- Multiply the expression matrix for the reference anchor cells by the weights matrix. This returns a predicted expression matrix for the specified features for each cell in the query dataset.

\section*{Value}

If query is not provided, for the categorical data in refdata, returns a data.frame with label predictions. If refdata is a matrix, returns an Assay object where the imputed data has been stored in the provided slot.
If query is provided, a modified query object is returned. For the categorical data in refdata, prediction scores are stored as Assays (prediction.score.NAME) and two additional metadata fields: predicted.NAME and predicted.NAME.score which contain the class prediction and the score for that predicted class. For continuous data, an Assay called NAME is returned. NAME here corresponds to the name of the element in the refdata list.

\section*{References}

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

\section*{Examples}
```


Not run:

to install the SeuratData package see https://github.com/satijalab/seurat-data

library(SeuratData)
data("pbmc3k")

for demonstration, split the object into reference and query

pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]

perform standard preprocessing on each object

pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)
pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)

find anchors

anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)

transfer labels

predictions <- TransferData(anchorset = anchors, refdata = pbmc.reference\$seurat_annotations)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)

End(Not run)

```

\section*{Description}

This function transfers cell type labels from a sketched dataset to a full dataset based on the similarities in the lower dimensional space.

\section*{Usage}

TransferSketchLabels(
object,
sketched.assay = "sketch",
reduction,
dims,
refdata \(=\) NULL,
\(k=50\),
reduction.model = NULL, neighbors = NULL,
recompute. neighbors = FALSE,
recompute.weights = FALSE,
verbose = TRUE
)

\section*{Arguments}
object A Seurat object.
sketched.assay Sketched assay name. Default is 'sketch'.
reduction Dimensional reduction name to use for label transfer.
dims An integer vector indicating which dimensions to use for label transfer.
refdata A list of character strings indicating the metadata columns containing labels to transfer. Default is NULL. Similar to refdata in 'MapQuery"
\(k \quad\) Number of neighbors to use for label transfer. Default is 50.
reduction.model
Dimensional reduction model to use for label transfer. Default is NULL.
neighbors An object storing the neighbors found during the sketching process. Default is NULL.
recompute. neighbors
Whether to recompute the neighbors for label transfer. Default is FALSE.
recompute.weights
Whether to recompute the weights for label transfer. Default is FALSE.
verbose Print progress and diagnostic messages

\section*{Value}

A Seurat object with transferred labels stored in the metadata. If a UMAP model is provided, the full data are also projected onto the UMAP space, with the results stored in a new reduction, full. 'reduction.model'

UnSketchEmbeddings Transfer embeddings from sketched cells to the full data

\section*{Description}

Transfer embeddings from sketched cells to the full data

\section*{Usage}

UnSketchEmbeddings( atom.data, atom.cells = NULL, orig.data, embeddings, sketch.matrix = NULL
)

\section*{Arguments}
\begin{tabular}{ll} 
atom.data & Atom data \\
atom.cells & Atom cells \\
orig.data & Original data \\
embeddings & Embeddings of atom cells \\
sketch.matrix & Sketch matrix
\end{tabular}

\section*{UpdateSCTAssays \\ Update pre-V4 Assays generated with SCTransform in the Seurat to} the new SCTAssay class

\section*{Description}

Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class

\section*{Usage}

UpdateSCTAssays(object)

\section*{Arguments}
object A Seurat object

\section*{Value}

A Seurat object with updated SCTAssays

UpdateSymbolList Get updated synonyms for gene symbols

\section*{Description}

Find current gene symbols based on old or alias symbols using the gene names database from the HUGO Gene Nomenclature Committee (HGNC)

\section*{Usage}
```

 GeneSymbolThesarus(
 symbols,
 timeout = 10,
 several.ok = FALSE,
 search.types = c("alias_symbol", "prev_symbol"),
 verbose = TRUE,
)
 UpdateSymbolList(
 symbols,
 timeout = 10,
 several.ok = FALSE,
 verbose = TRUE,
)
    ```

\section*{Arguments}
\begin{tabular}{ll} 
symbols & A vector of gene symbols \\
timeout & Time to wait before canceling query in seconds \\
several.ok & Allow several current gene symbols for each provided symbol \\
search. types & \begin{tabular}{l} 
Type of query to perform: \\
"alias_symbol" Find alternate symbols for the genes described by symbols
\end{tabular} \\
& \begin{tabular}{l} 
"prev_symbol" Find new new symbols for the genes described by symbols
\end{tabular} \\
& \begin{tabular}{l} 
"phis parameter accepts multiple options and short-hand options (eg. "prev" for
\end{tabular} \\
verbose & Show a progress bar depicting search progress \\
\(\ldots\) & Extra parameters passed to GET
\end{tabular}

\section*{Details}

For each symbol passed, we query the HGNC gene names database for current symbols that have the provided symbol as either an alias (alias_symbol) or old (prev_symbol) symbol. All other queries are not supported.

\section*{Value}

GeneSymbolThesarus:, if several.ok, a named list where each entry is the current symbol found for each symbol provided and the names are the provided symbols. Otherwise, a named vector with the same information.

UpdateSymbolList: symbols with updated symbols from HGNC's gene names database

\section*{Note}

This function requires internet access

\section*{Source}
https://www.genenames.org/https://www.genenames.org/help/rest/

\section*{See Also}

GET

\section*{Examples}
```


Not run:

GeneSybmolThesarus(symbols = c("FAM64A"))

End(Not run)

Not run:

UpdateSymbolList(symbols = cc.genes\$s.genes)

End(Not run)

```
VariableFeaturePlot View variable features

\section*{Description}

View variable features

\section*{Usage}
```

VariableFeaturePlot(
object,
cols = c("black", "red"),
pt.size = 1,
log = NULL,
selection.method = NULL,
assay = NULL,
raster = NULL,
raster.dpi = c(512, 512)
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
cols & Colors to specify non-variable/variable status \\
pt.size & Size of the points on the plot \\
log & Plot the x-axis in log scale \\
selection.method \\
[Deprecated]
\end{tabular}\(\quad\)\begin{tabular}{l} 
Assay to pull variable features from \\
assay \\
raster
\end{tabular} \begin{tabular}{l} 
Convert points to raster format, default is NULL which will automatically use \\
raster if the number of points plotted is greater than 100,000
\end{tabular}

\section*{Value}

A ggplot object

\section*{See Also}

FindVariableFeatures

\section*{Examples}
```

data("pbmc_small")
VariableFeaturePlot(object = pbmc_small)

```

\section*{Description}

The VisiumV1 class represents spatial information from the 10X Genomics Visium platform

\section*{Slots}
image A three-dimensional array with PNG image data, see readPNG for more details
scale.factors An object of class scalefactors; see scalefactors for more information
coordinates A data frame with tissue coordinate information
spot.radius Single numeric value giving the radius of the spots

VisiumV2-class The VisiumV2 class

\section*{Description}

The VisiumV2 class represents spatial information from the 10X Genomics Visium HD platform it can also accomodate data from the standard Visium platform

\section*{Slots}
image A three-dimensional array with PNG image data, see readPNG for more details scale.factors An object of class scalefactors; see scalefactors for more information

VizDimLoadings Visualize Dimensional Reduction genes

\section*{Description}

Visualize top genes associated with reduction components

\section*{Usage}
```

VizDimLoadings(
object,
dims = 1:5,
nfeatures = 30,
col = "blue",
reduction = "pca",
projected = FALSE,
balanced = FALSE,
ncol = NULL,
combine = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll} 
object & Seurat object \\
dims & Number of dimensions to display \\
nfeatures & \begin{tabular}{l} 
Number of genes to display
\end{tabular} \\
col & Color of points to use \\
reduction & \begin{tabular}{l} 
Reduction technique to visualize results for
\end{tabular} \\
projected & \begin{tabular}{l} 
Use reduction values for full dataset (i.e. projected dimensional reduction val- \\
ues)
\end{tabular} \\
balanced & \begin{tabular}{l} 
Return an equal number of genes with + and - scores. If FALSE (default), returns \\
the top genes ranked by the scores absolute values
\end{tabular} \\
ncol & \begin{tabular}{l} 
Number of columns to display \\
combine
\end{tabular} \\
\begin{tabular}{l} 
Combine plots into a single patchwork ggplot object. If FALSE, return a list of \\
ggplot objects
\end{tabular}
\end{tabular}

\section*{Value}

A patchwork ggplot object if combine = TRUE; otherwise, a list of ggplot objects

\section*{Examples}
```

data("pbmc_small")
VizDimLoadings(object = pbmc_small)

```
VlnPlot Single cell violin plot

\section*{Description}

Draws a violin plot of single cell data (gene expression, metrics, PC scores, etc.)

\section*{Usage}
```

VlnPlot(
object,
features,
cols = NULL,
pt.size = NULL,
alpha = 1,
idents = NULL,
sort = FALSE,
assay = NULL,
group.by = NULL,
split.by = NULL,
adjust = 1,

```
```

 y.max = NULL,
 same.y.lims = FALSE,
 log = FALSE,
 ncol = NULL,
 slot = deprecated(),
 layer = NULL,
 split.plot = FALSE,
 stack = FALSE,
 combine = TRUE,
 fill.by = "feature",
 flip = FALSE,
 add.noise = TRUE,
 raster = NULL
)

```

\section*{Arguments}
object
features
cols Colors to use for plotting
pt.size Point size for points
alpha Alpha value for points
idents Which classes to include in the plot (default is all)
sort Sort identity classes (on the x-axis) by the average expression of the attribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction
assay Name of assay to use, defaults to the active assay
group.by Group (color) cells in different ways (for example, orig.ident)
split.by A factor in object metadata to split the plot by, pass 'ident' to split by cell identity'
adjust Adjust parameter for geom_violin
y.max Maximum y axis value
same.y.lims \(\quad\) Set all the \(y\)-axis limits to the same values
log plot the feature axis on log scale
ncol Number of columns if multiple plots are displayed
slot Slot to pull expression data from (e.g. "counts" or "data")
layer Layer to pull expression data from (e.g. "counts" or "data")
split.plot plot each group of the split violin plots by multiple or single violin shapes.
stack Horizontally stack plots for each feature
combine Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot
fill.by Color violins/ridges based on either 'feature' or 'ident'
flip flip plot orientation (identities on \(x\)-axis)
add.noise determine if adding a small noise for plotting
raster Convert points to raster format. Requires 'ggrastr' to be installed.

\section*{Value}

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

\section*{See Also}

FetchData

\section*{Examples}
```

data("pbmc_small")
VlnPlot(object = pbmc_small, features = 'PC_1')
VlnPlot(object = pbmc_small, features = 'LYZ', split.by = 'groups')

```

\section*{Index}
* clustering

BuildNicheAssay, 28
FindClusters, 76
FindMultiModalNeighbors, 88
FindNeighbors, 90
FindSubCluster, 95
* convenience

DimHeatmap, 51
DimPlot, 52
ReadParseBio, 196
ReadSTARsolo, 197
SpatialPlot, 249
* datasets
cc.genes, 32
cc.genes. updated. 2019, 32
* data
cc.genes, 32
cc.genes.updated. 2019, 32
* differential_expression

FindAllMarkers, 70
FindConservedMarkers, 78
FindMarkers, 82
FoldChange, 102
PrepSCTFindMarkers, 175
* dimensional_reduction

JackStraw, 131
L2CCA, 136
L2Dim, 136
PCASigGenes, 165
ProjectDim, 179
ProjectUMAP, 182
RunCCA, 207
RunGraphLaplacian, 209
RunICA, 210
RunPCA, 216
RunSLSI, 218
RunSPCA, 219
RunTSNE, 221
RunUMAP, 223

ScoreJackStraw, 233
* future

PrepSCTFindMarkers, 175
ReadNanostring, 194
ReadVizgen, 199
* integration

AnnotateAnchors, 15
BridgeCellsRepresentation, 25
CCAIntegration, 33
FastRPCAIntegration, 62
FindBridgeIntegrationAnchors, 74
FindBridgeTransferAnchors, 75
FindIntegrationAnchors, 79
FindTransferAnchors, 96
GetTransferPredictions, 108
HarmonyIntegration, 111
IntegrateData, 123
IntegrateEmbeddings, 126
IntegrateLayers, 128
JointPCAIntegration, 134
LocalStruct, 147
MappingScore, 149
MapQuery, 151
MixingMetric, 155
NNtoGraph, 163
PredictAssay, 171
PrepareBridgeReference, 172
PrepSCTIntegration, 176
ProjectDimReduc, 180
ProjectIntegration, 181
SelectIntegrationFeatures, 240
SelectIntegrationFeatures5, 242
SelectSCTIntegrationFeatures, 242
TransferData, 258
UnSketchEmbeddings, 262
* mixscape

CalcPerturbSig, 28
DEenrichRPlot, 48
MixscapeHeatmap, 156

MixscapeLDA, 159
PlotPerturbScore, 168
PrepLDA, 174
RunLDA, 212
RunMixscape, 214
* objects

AnchorSet-class, 14
as.CellDataSet, 16
as.Seurat.CellDataSet, 17
as.SingleCellExperiment, 18
as.sparse.H5Group, 18
BridgeReferenceSet-class, 26
Cells.SCTModel, 37
CreateSCTAssayObject, 46
DietSeurat, 50
FilterSlideSeq, 69
GetAssay, 104
GetImage.SlideSeq, 105
GetIntegrationData, 106
GetTissueCoordinates.SlideSeq, 107
HVFInfo. SCTAssay, 117
IntegrationAnchorSet-class, 129
IntegrationData-class, 129
merge.SCTAssay, 153
ModalityWeights-class, 160
Radius.SlideSeq, 186
RenameCells. SCTAssay, 203
ScaleFactors, 232
SCTAssay-class, 234
SCTResults, 239
SetIntegrationData, 243
SplitObject, 252
STARmap-class, 253
subset.AnchorSet, 253
TopCells, 255
TopFeatures, 256
TopNeighbors, 257
TransferAnchorSet-class, 257
UpdateSCTAssays, 262
VisiumV1-class, 266
VisiumV2-class, 266
* preprocessing

CalculateBarcodeInflections, 30
FetchResiduals, 68
FindSpatiallyVariableFeatures, 93
FindVariableFeatures, 99
GetResidual, 106
HTODemux, 114

Load10X_Spatial, 142
LoadCurioSeeker, 144
LoadSTARmap, 145
LoadXenium, 146
LogNormalize, 148
MULTIseqDemux, 160
NormalizeData, 164
Read10X, 187
Read10X_Coordinates, 188
Read10X_h5, 189
Read10X_Image, 189
Read10X_probe_metadata, 190
Read10X_ScaleFactors, 191
ReadAkoya, 191
ReadMtx, 193
ReadNanostring, 194
ReadSlideSeq, 197
ReadVitessce, 198
ReadVizgen, 199
RelativeCounts, 202
RunMarkVario, 213
RunMoransI, 215
SampleUMI, 228
ScaleData, 230
SCTransform, 236
SubsetByBarcodeInflections, 254
* sketching

LeverageScore, 139
ProjectData, 178
SketchData, 247
TransferSketchLabels, 261
* spatial

Cells.SCTModel, 37
FilterSlideSeq, 69
FindSpatiallyVariableFeatures, 93
GetImage. SlideSeq, 105
GetTissueCoordinates.SlideSeq, 107
ImageDimPlot, 118
ImageFeaturePlot, 120
ISpatialDimPlot, 130
ISpatialFeaturePlot, 130
LinkedPlots, 141
PolyFeaturePlot, 170
Radius.SlideSeq, 186
ScaleFactors, 232
SlideSeq-class, 248
SpatialPlot, 249
STARmap-class, 253
```

 VisiumV1-class,266
 VisiumV2-class,266
 * tree
BuildClusterTree, 26
* utilities
AddAzimuthResults, 10
AddModuleScore, 11
AggregateExpression, 12
as.sparse.H5Group, 18
AverageExpression, 21
CaseMatch, 31
CellCycleScoring, 35
CollapseSpeciesExpressionMatrix,
41
CreateCategoryMatrix,46
CustomDistance,47
ExpMean,60
ExpSD,60
ExpVar,61
FastRowScale, 62
GroupCorrelation,110
LoadAnnoyIndex, 144
LogVMR, 149
MetaFeature, 154
MinMax, 155
PercentAbove, 166
PercentageFeatureSet, 167
PseudobulkExpression,184
RegroupIdents,201
RPCAIntegration, 205
SaveAnnoyIndex, 229
SetQuantile, 244
UpdateSymbolList, }26
* visualization
AugmentPlot,19
AutoPointSize, 20
BarcodeInflectionsPlot, 22
BGTextColor, 23
BlackAndWhite, 24
CellScatter,37
CellSelector,39
CollapseEmbeddingOutliers,40
ColorDimSplit,42
CombinePlots,44
contrast-theory,45
DimHeatmap,51
DimPlot,52
DiscretePalette,55

```
    DoHeatmap, 56
    DotPlot, 58
    ElbowPlot, 59
    FeaturePlot, 63
    FeatureScatter, 66
    GroupCorrelationPlot, 111
    HoverLocator, 113
    HTOHeatmap, 116
    IFeaturePlot, 118
    ImageDimPlot, 118
    ImageFeaturePlot, 120
    ISpatialDimPlot, 130
    ISpatialFeaturePlot, 130
    JackStrawPlot, 133
    LabelClusters, 137
    LabelPoints, 138
    LinkedPlots, 141
    NNPlot, 162
    PlotClusterTree, 168
    PolyDimPlot, 169
    PolyFeaturePlot, 170
    RidgePlot, 203
    SeuratTheme, 245
    SpatialPlot, 249
    VariableFeaturePlot, 264
    VizDimLoadings, 266
    VlnPlot, 267
?future::plan, 175, 196, 201

AddAzimuthResults, 10
AddModuleScore, 11, 36
AggregateExpression, 12
AnchorSet, 15, 81, 123, 129, 254, 257, 258
AnchorSet (AnchorSet-class), 14
AnchorSet-class, 14
AnnotateAnchors, 15
annotation_raster, 19
ape::plot.phylo, 168
as.CellDataSet, 16
as.data.frame.Matrix
(as.sparse.H5Group), 18
as.Seurat.CellDataSet, 17
as.Seurat.SingleCellExperiment
(as.Seurat.CellDataSet), 17
as.SingleCellExperiment, 18
as.sparse.H5Group, 18
Assay, 125, 177, 234, 235
Assay-class, 19
Assay5, 112

AugmentPlot, 19
AutoPointSize, 20
AverageExpression, 21
BarcodeInflectionsPlot, 22, 31, 255
BGTextColor, 23
BlackAndWhite, 24
BlueAndRed (BlackAndWhite), 24
BoldTitle (SeuratTheme), 245
brewer.pal.info, 42, 53, 119, 133, 251
BridgeCellsRepresentation, 25
BridgeReferenceSet, 74, 75
BridgeReferenceSet
(BridgeReferenceSet-class), 26
BridgeReferenceSet-class, 26
BuildClusterTree, 26, 72, 86, 104, 157
BuildNicheAssay, 28
CalcPerturbSig, 28
CalculateBarcodeInflections, 23, 30, 255
CaseMatch, 31
cc.genes, 32, 33
cc.genes. updated. 2019, 32

CCAIntegration, 33
CellCycleScoring, 35
Cellplot (CellScatter), 37
Cells.SCTModel, 37
Cells.SlideSeq (Cells.SCTModel), 37
Cells. STARmap (Cells. SCTModel), 37
Cells.VisiumV1 (Cells.SCTModel), 37
CellScatter, 37
CellSelector, 39, 55, 66
CenterTitle (SeuratTheme), 245
CollapseEmbeddingOutliers, 40
CollapseSpeciesExpressionMatrix, 41
ColorDimSplit, 42
CombinePlots, 44, 142
contrast-theory, 45
correct_counts, 239
CreateCategoryMatrix, 46
CreateSCTAssayObject, 46
CreateSeuratObject, 13, 21, 186
CustomDistance, 47
CustomPalette (BlackAndWhite), 24
DarkTheme (SeuratTheme), 245
data.frame, 19
DEenrichRPlot, 48
DefaultAssay, 173

DietSeurat, 50
dimensional reduction, 34, 112, 134, 205
DimHeatmap, 51
DimPlot, 39, 42, 43, 52, 66, 114
DimReduc, 34, 124, 127, 135, 206, 259
DimReduc-class, 55
DiscretePalette, 42, 53, 55, 119, 133
DoHeatmap, 56
DotPlot, 58
ElbowPlot, 59
Embeddings, 256
ExpMean, 60
ExpSD, 60
ExpVar, 61
facet_grid, 137
facet_wrap, 137
FastRowScale, 62
FastRPCAIntegration, 62
FeatureHeatmap (FeaturePlot), 63
FeatureLocator (CellSelector), 39
FeaturePlot, 39, 55, 63, 66, 114
FeatureScatter, 66
FetchData, 55, 59, 170, 269
FetchResiduals, 68
FilterSlideSeq, 69
FindAllMarkers, 70
FindAllMarkersNode (FindAllMarkers), 70
FindBridgeIntegrationAnchors, 74
FindBridgeTransferAnchors, 75, 174
FindClusters, 76
FindConservedMarkers, 78
FindIntegrationAnchors, 62, 63, 79, 123, 124, 259
FindMarkers, 82, 104
FindMarkersNode (FindMarkers), 82
FindMultiModalNeighbors, 88, 160
FindNeighbors, 90
FindSpatiallyVariableFeatures, 93
FindSubCluster, 95
FindTransferAnchors, 16, 96, 151, 258
FindVariableFeatures, 99, 241, 265
FindVariableGenes
(FindVariableFeatures), 99
FoldChange, 102
FontSize (SeuratTheme), 245
GenePlot (FeatureScatter), 66

GeneSymbolThesarus (UpdateSymbolList), 263
geom_raster, 52
geom_text, 137, 138
geom_text_repel, 137
GET, 263, 264
get_residuals, 69, 107, 239
GetAssay, 104
GetAssayData, 152, 258
GetImage.SlideSeq, 105
GetImage. STARmap (GetImage. SlideSeq), 105
GetImage.VisiumV1 (GetImage. SlideSeq), 105
GetIntegrationData, 106
GetResidual, 106, 176
GetTissueCoordinates.SlideSeq, 107
GetTissueCoordinates. STARmap (GetTissueCoordinates.SlideSeq), 107
GetTissueCoordinates.VisiumV1
(GetTissueCoordinates.SlideSeq), 107
GetTissueCoordinates.VisiumV2
(GetTissueCoordinates.SlideSeq), 107
GetTransferPredictions, 108
ggplot_build, 114
Graph, 92
Graph-class, 109
Graphs, 92
GroupCorrelation, 110
GroupCorrelationPlot, 111
harmony::HarmonyMatrix, 113
HarmonyIntegration, 111
hclust, 35, 124, 127, 135, 206
HoverLocator, 55, 66, 113
HTODemux, 114, 116
HTOHeatmap, 115, 116
HVFInfo, 117
HVFInfo. SCTAssay, 117
ICAPlot (DimPlot), 52
IFeaturePlot, 118
image, 52
ImageDimPlot, 118
ImageFeaturePlot, 120
IntegrateData, 14, 79, 81, 123, 128

IntegrateEmbeddings, 62, 74-76, 98, 126, 151-153
IntegrateLayers, 128
IntegrationAnchorSet (IntegrationAnchorSet-class), 129
IntegrationAnchorSet-class, 129
IntegrationData
(IntegrationData-class), 129
IntegrationData-class, 129
Intensity (contrast-theory), 45
ISpatialDimPlot, 130, 252
ISpatialFeaturePlot, 130, 252
JackStraw, 131, 166
JackStrawData-class, 132
JackStrawPlot, 133, 234
JointPCAIntegration, 134
L2CCA, 136
L2Dim, 136
LabelClusters, 137
Labeler (LabelPoints), 138
LabelPoints, 138
layout, 114
levels.SCTAssay (SCTAssay-class), 234
levels<-. SCTAssay (SCTAssay-class), 234
LeverageScore, 139
LinkedDimPlot (LinkedPlots), 141
LinkedFeaturePlot (LinkedPlots), 141
LinkedPlot (LinkedPlots), 141
LinkedPlots, 141
Load10X_Spatial, 142, 190
LoadAkoya (ReadAkoya), 191
LoadAnnoyIndex, 144
LoadCurioSeeker, 144
LoadHuBMAPCODEX (ReadVitessce), 198
Loadings, 256
LoadNanostring (ReadNanostring), 194
LoadSTARmap, 145
LoadVizgen (ReadVizgen), 199
LoadXenium, 146
LocalStruct, 147
LogNormalize, 148
LogVMR, 149
Luminance (contrast-theory), 45
make. names, 19
MappingScore, 149

MapQuery, 75, 76, 98, 151
MeanVarPlot (VariableFeaturePlot), 264
merge. SCTAssay, 153
merge.Seurat, 209
MetaFeature, 154
MinMax, 155
MixingMetric, 155
MixscapeHeatmap, 156
MixscapeLDA, 159
ModalityWeights, 89
ModalityWeights
(ModalityWeights-class), 160
ModalityWeights-class, 160
MULTIseqDemux, 160
Neighbor, 92, 257
Neighbor-class, 161
Neighbors, 92
NNPlot, 162
NNtoGraph, 163
NoAxes (SeuratTheme), 245
NoGrid (SeuratTheme), 245
NoLegend (SeuratTheme), 245
NormalizeData, 13, 164, 186
patchwork, 43, 52, 54, 57, 66, 68, 122, 163, 204, 268, 269
PCAPlot (DimPlot), 52
PCASigGenes, 165
PCHeatmap (DimHeatmap), 51
PercentAbove, 166
PercentageFeatureSet, 167
plan, 175, 196, 201
PlotClusterTree, 168
PlotPerturbScore, 168
PolyDimPlot, 169, 245
PolyFeaturePlot, 170, 245
PredictAssay, 171
PrepareBridgeReference, 74, 75, 172
PrepLDA, 174
PrepSCTFindMarkers, 175
PrepSCTIntegration, 176
ProjectData, 178
ProjectDim, 166, 179
ProjectDimReduc, 180
ProjectIntegration, 181
ProjectUMAP, 151-153, 182
PseudobulkExpression, 184
PurpleAndYellow (BlackAndWhite), 24

Radius.SlideSeq, 186
Radius. STARmap (Radius.SlideSeq), 186
Radius.VisiumV1 (Radius.SlideSeq), 186
Radius.VisiumV2 (Radius.SlideSeq), 186
RANN, 97, 124, 259
RcppAnnoy, 97
Read10X, 187
Read10X_Coordinates, 188
Read10X_h5, 143, 189
Read10X_Image, 189
Read10X_probe_metadata, 190
Read10X_ScaleFactors, 191
ReadAkoya, 191
ReadMtx, 193, 196, 197
ReadNanostring, 194
ReadParseBio, 196
readPNG, 266
ReadSlideSeq, 197
ReadSTARsolo, 197
ReadVitessce, 198
ReadVizgen, 199
ReadXenium (LoadXenium), 146
RegroupIdents, 201
RelativeCounts, 202
RenameCells.SCTAssay, 203
RenameCells.SlideSeq
(RenameCells.SCTAssay), 203
RenameCells.STARmap
(RenameCells.SCTAssay), 203
RenameCells.VisiumV1
(RenameCells.SCTAssay), 203
RestoreLegend (SeuratTheme), 245
RidgePlot, 203
RotatedAxis (SeuratTheme), 245
RPCAIntegration, 205
RunCCA, 207
RunGraphLaplacian, 209
RunICA, 210
RunLDA, 212
RunMarkVario, 94, 213
RunMixscape, 214
RunMoransI, 94, 215
RunPCA, 62, 216
RunSLSI, 218
RunSPCA, 219
RunSVD, 97
RunTFIDF, 97
RunTSNE, 221

RunUMAP, 9, 184, 223
SampleUMI, 228
SaveAnnoyIndex, 229
ScaleData, 13, 22, 230
ScaleFactors, 232
scalefactors, 266
scalefactors (ScaleFactors), 232
ScaleFactors.VisiumV1 (ScaleFactors), 232
ScaleFactors.VisiumV2 (ScaleFactors), 232
ScoreJackStraw, 134, 233
SCTAssay, 117, 239
SCTAssay (SCTAssay-class), 234
SCTAssay-class, 234
SCTModel (SCTAssay-class), 234
SCTransform, 176, 177, 234, 235, 236
SCTResults, 239, 239
SCTResults<- (SCTResults), 239
SelectIntegrationFeatures, 63, 80, 81, 176, 177, 240
SelectIntegrationFeatures5, 242
SelectSCTIntegrationFeatures, 242
SetIntegrationData, 243
SetQuantile, 244
Seurat, \(10,13,22,50,63,79,80,92,96,119\), \(125,128,136,144-146,153,176\), 177, 186, 192, 196, 199, 201, 243
Seurat (Seurat-package), 8
Seurat-class, 244
Seurat-package, 8
SeuratAxes (SeuratTheme), 245
SeuratCommand-class, 245
SeuratObject, 19, 55, 109, 132, 161, 244, 245, 248
SeuratObject::as.Seurat, 17
SeuratObject::as.sparse, 19
SeuratObject::Cells, 37
SeuratObject::GetImage, 106
SeuratObject::GetTissueCoordinates, 108
SeuratObject::Radius, 187
SeuratObject::RenameCells, 203
SeuratTheme, 245
SketchData, 247
SlideSeq, 197
SlideSeq (SlideSeq-class), 248
SlideSeq-class, 248
sparse matrix, 146, 192, 196, 201
SpatialDimPlot, 69, 70
SpatialDimPlot (SpatialPlot), 249
SpatialFeaturePlot (SpatialPlot), 249
SpatialImage-class, 248
SpatialPlot, 249
SpatialTheme (SeuratTheme), 245
split, 231
SplitDotPlotGG (DotPlot), 58
SplitObject, 252
STARmap, 145
STARmap (STARmap-class), 253
STARmap-class, 253
subset.AnchorSet, 253
SubsetByBarcodeInflections, 23, 31, 254
theme, 246
Tool, 27
TopCells, 255
TopFeatures, 256
TopNeighbors, 257
TransferAnchorSet
(TransferAnchorSet-class), 257
TransferAnchorSet-class, 257
TransferData, 14, 76, 96, 98, 108, 151, 152, 258
TransferSketchLabels, 261
TSNEPlot (DimPlot), 52
umap, 227
UMAPPlot (DimPlot), 52
UnSketchEmbeddings, 262
UpdateSCTAssays, 262
UpdateSymbolList, 11, 12, 263
VariableFeaturePlot, 264
VariableGenePlot (VariableFeaturePlot), 264
VisiumV1 (VisiumV1-class), 266
VisiumV1-class, 266
VisiumV2, 190
VisiumV2 (VisiumV2-class), 266
VisiumV2-class, 266
VizDimLoadings, 266
VlnPlot, 267
WhiteBackground (SeuratTheme), 245
with_progress, 175, 192, 196, 199, 201
Writing integration method functions, 129```

