| Type: | Package | 
| Version: | 0.1.0 | 
| Title: | Regression Kink with a Time-Varying Threshold | 
| Description: | An algorithm is proposed to estimate regression kink model proposed by the paper, Lixiong Yang and Jen-Je Su (2018) <doi:10.1016/j.jimonfin.2018.06.002>. | 
| Imports: | MASS | 
| Depends: | R (≥ 3.5.0) | 
| License: | GPL-2 | GPL-3 [expanded from: GPL] | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.1 | 
| Author: | Lixiong Yang [aut, cre] | 
| Maintainer: | Lixiong Yang <ylx@lzu.edu.cn> | 
| NeedsCompilation: | no | 
| Packaged: | 2021-04-13 07:58:25 UTC; ylx | 
| Repository: | CRAN | 
| Date/Publication: | 2021-04-15 07:30:06 UTC | 
negtive part of a variable
Description
This is a function computing the negtive part of a variable.
Usage
neg.part(x)
Arguments
x | 
 A vector of response.  | 
Value
ne | 
 The negative part of a variable.  | 
Examples
pt1 <- proc.time()
##Simulated data
set.seed(12345)
n=200
x = rnorm(n)
obj <- neg.part(x)
proc.time() - pt1
positive part of a variable
Description
This is a function computing the positive part of a variable.
Usage
pos.part(x)
Arguments
x | 
 A vector of response.  | 
Value
ps | 
 The positive part of a variable.  | 
Examples
pt1 <- proc.time()
##Simulated data
set.seed(12345)
n=200
x = rnorm(n)
obj <- pos.part(x)
proc.time() - pt1
linear regression
Description
This is a function computing OLS estimates of linear model.
Usage
reg(X,y)
Arguments
y | 
 A vector of response.  | 
X | 
 data matrix  | 
Value
bols | 
 The ols estimates of a linear regression model.  | 
Examples
pt1 <- proc.time()
##Simulated data
set.seed(12345)
n=200
e = rnorm(n)
X = cbind(1,rnorm(n))
b0 =c(1,2)
y = X
obj <- reg(X,y)
proc.time() - pt1
Estimation for regression kink with a time-varying threshold
Description
This is a function estimating regression kink with a time-varying threshold.
Usage
rkt(y,x,z,q,r01,r02,r11,r12,stp1,stp2)
Arguments
y | 
 A vector of response.  | 
x | 
 A vector of regressor  | 
z | 
 A data matrix of control variables  | 
q | 
 A vector of variable affecting threshold  | 
r01 | 
 Lower bounder of parameter space for r0  | 
r02 | 
 Upper bounder of parameter space for r0  | 
r11 | 
 Lower bounder of parameter space for r1  | 
r12 | 
 Upper bounder of parameter space for r1  | 
stp1 | 
 Step used in grid search of r0  | 
stp2 | 
 Step used in grid search of r1  | 
Value
A list with the elements
bols | 
 The OLS estimates when a kink effect is ignored.  | 
bt | 
 The regression coefficients when a kink effect is included in the model.  | 
gammahat0 | 
 The estimated threshold of the constant one in threshold parameters.  | 
gammahat1 | 
 The estimated threshold of the slop in threshold parameters.  | 
sig | 
 The sum of squred errors of the kink model.  | 
Examples
sta <- proc.time()
##Simulated data
set.seed(12345)
n=200
x = rnorm(n)
q = rnorm(n)
rt = 0.2 - 0.5*q
z = rnorm(n)
x1 = cbind(neg.part(x-rt),pos.part(x-rt),z)
b0 =c(1,2,1)
y = b0[1]*x1[,1]+b0[2]*x1[,2]+b0[3]*x1[,3]+ rnorm(n)
# set grid search paramaters
r01 = 0
r02 = 2
stp1 = 0.1
r11 = -10
r12 = 5
stp2 = 0.1
# estimate the model with a state-dependent threshold
est1 <- rkt(y,x,z,q,r01,r02,r11,r12,stp1,stp2)
proc.time() - sta