None
random_wilcox_walk()
to
generate a random walk using the Wilcoxon signed-rank test.random_weibull_walk()
to
generate a random walk using the Weibull distribution.random_uniform_walk()
to
generate a random walk using the Uniform distribution.random_t_walk()
to generate a
random walk using the Student’s t-distribution.random_smirnov_walk()
to
generate a random walk using the Smirnov distribution.random_wilcoxon_sr_walk()
to
generate a random walk using the Wilcoxon signed-rank test with a
specified number of steps.random_poisson_walk()
to
generate a random walk using the Poisson distribution.random_negbinomial_walk()
to
generate a random walk using the Negative Binomial distribution.random_multinomial_walk()
to
generate a random walk using the Multinomial distribution.random_logistic_walk()
to
generate a random walk using the Logistic distribution.random_lognormal_walk()
to
generate a random walk using the Log-Normal distribution.random_hypergeometric_walk()
to
generate a walk using the Hypergeometric distribution.random_geometric_walk()
to
generate a random walk using the geometric distribution.random_f_walk()
to generate a
random walk using the F-distribution.random_chisquared_walk()
to
generate a random walk using the Chi-Squared distribution.random_binomial_walk()
to
generate a random walk using the Binomial distribution.random_gamma_walk()
to generate
a random walk using the Gamma distribution.random_exponential_walk()
to
generate a random walk using the Exponential distribution.random_cauchy_walk()
to
generate a random walk using the Cauchy distribution.random_beta_walk()
to generate
a random walk using the Beta distribution.random_displacement_walk()
to
generate a random walk using a custom displacement function.subset_walks()
to allow for a new
parameter of .value
to specify the column to subset by. It
defaults to “y”visualize_walks()
to allow
.pluck
to accept a vector of column names to pluck multiple
graphs.x
column
is now called step_number
for all random walk functions
including rw30(). The x
column is now the first dimension
of a 2D/3D random walk.rand_walk_column_names()
to generate column names for
random walks.confidence_interval()
to
generate confidence interval tibble..dimensions
parameter to random walk
functions to allow for the generation of random walks with up to 3
dimensions!https://www.spsanderson.com/steveondata/posts/2025-05-09/
None
std_cum_sum_augment()
to
calculate the cumulative sum of a random walk.std_cum_prod_augment()
to
calculate the cumulative product of a random walk.std_cum_min_augment()
to
calculate the cumulative minimum of a random walk.std_cum_max_augment()
to
calculate the cumulative maximum of a random walk.std_cum_mean_augment()
to
calculate the cumulative mean of a random walk.get_attributes()
to get
attributes without the row.names
running_quantile()
to calculate
the running quantile of a given vector..interactive
parameter to
visualize_walks()
to allow for interactive plots..pluck
parameter to
visualize_walks()
to allow for plucking of specific graph
of walks.https://www.spsanderson.com/steveondata/posts/2024-10-24/
None
rw30()
to generate 30 random
walks of 100 steps eachgeometric_brownian_motion()
to
generate Geometric Brownian Motionrandom_normal_drift_walk()
to
generate Random Walk with Driftbrownian_motion()
to generate
Brownian Motionrandom_normal_walk()
to generate
Random Walkdiscrete_walk()
to generate
Discrete Random Walkinternal_rand_walk_helper()
to
help generate common columns for random walks.euclidean_distance()
to
calculate the Euclidean distance of a random walk.visualize_walks()
to visualize
random walks.summarize_walks()
to summarize
random walks.None